Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
/*
 * Copyright (c) 2019 Nordic Semiconductor ASA
 * Copyright (c) 2024 STMicroelectronics
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include "test_uart.h"

#if defined(CONFIG_DCACHE) && defined(CONFIG_DT_DEFINED_NOCACHE)
#define __NOCACHE	__attribute__ ((__section__(CONFIG_DT_DEFINED_NOCACHE_NAME)))
#define NOCACHE_MEM 1
#elif defined(CONFIG_DCACHE) && defined(CONFIG_NOCACHE_MEMORY)
#define __NOCACHE	__nocache
#define NOCACHE_MEM 1
#else
#define NOCACHE_MEM 0
#endif /* CONFIG_NOCACHE_MEMORY */

K_SEM_DEFINE(tx_done, 0, 1);
K_SEM_DEFINE(tx_aborted, 0, 1);
K_SEM_DEFINE(rx_rdy, 0, 1);
K_SEM_DEFINE(rx_buf_coherency, 0, 255);
K_SEM_DEFINE(rx_buf_released, 0, 1);
K_SEM_DEFINE(rx_disabled, 0, 1);

ZTEST_BMEM volatile bool failed_in_isr;
static ZTEST_BMEM const struct device *const uart_dev =
	DEVICE_DT_GET(UART_NODE);

static void read_abort_timeout(struct k_timer *timer);
K_TIMER_DEFINE(read_abort_timer, read_abort_timeout, NULL);


static void init_test(void)
{
	__ASSERT_NO_MSG(device_is_ready(uart_dev));
	uart_rx_disable(uart_dev);
	uart_tx_abort(uart_dev);
	k_sem_reset(&tx_done);
	k_sem_reset(&tx_aborted);
	k_sem_reset(&rx_rdy);
	k_sem_reset(&rx_buf_released);
	k_sem_reset(&rx_disabled);
}

#ifdef CONFIG_USERSPACE
static void set_permissions(void)
{
	k_thread_access_grant(k_current_get(), &tx_done, &tx_aborted,
			      &rx_rdy, &rx_buf_coherency, &rx_buf_released,
			      &rx_disabled, uart_dev, &read_abort_timer);
}
#endif

static void uart_async_test_init(void)
{
	static bool initialized;

	__ASSERT_NO_MSG(device_is_ready(uart_dev));
	uart_rx_disable(uart_dev);
	uart_tx_abort(uart_dev);
	k_sem_reset(&tx_done);
	k_sem_reset(&tx_aborted);
	k_sem_reset(&rx_rdy);
	k_sem_reset(&rx_buf_coherency);
	k_sem_reset(&rx_buf_released);
	k_sem_reset(&rx_disabled);

#ifdef CONFIG_UART_WIDE_DATA
	const struct uart_config uart_cfg = {
		.baudrate = 115200,
		.parity = UART_CFG_PARITY_NONE,
		.stop_bits = UART_CFG_STOP_BITS_1,
		.data_bits = UART_CFG_DATA_BITS_9,
		.flow_ctrl = UART_CFG_FLOW_CTRL_NONE
	};
	__ASSERT_NO_MSG(uart_configure(uart_dev, &uart_cfg) == 0);
#endif

	if (!initialized) {
		init_test();
		initialized = true;
#ifdef CONFIG_USERSPACE
		set_permissions();
#endif
	}

}

struct test_data {
	volatile uint32_t tx_aborted_count;
	__aligned(32) uint8_t rx_first_buffer[10];
	uint32_t recv_bytes_first_buffer;
	__aligned(32) uint8_t rx_second_buffer[5];
	uint32_t recv_bytes_second_buffer;
	bool supply_second_buffer;
};

#if NOCACHE_MEM
static struct test_data tdata __used __NOCACHE;
#else
ZTEST_BMEM struct test_data tdata;
#endif /* NOCACHE_MEM */

static void test_single_read_callback(const struct device *dev,
			       struct uart_event *evt, void *user_data)
{
	ARG_UNUSED(dev);
	struct test_data *data = (struct test_data *)user_data;

	switch (evt->type) {
	case UART_TX_DONE:
		k_sem_give(&tx_done);
		break;
	case UART_TX_ABORTED:
		data->tx_aborted_count++;
		break;
	case UART_RX_RDY:
		if ((uintptr_t)evt->data.rx.buf < (uintptr_t)tdata.rx_second_buffer) {
			data->recv_bytes_first_buffer += evt->data.rx.len;
		} else {
			data->recv_bytes_second_buffer += evt->data.rx.len;
		}
		k_sem_give(&rx_rdy);
		break;
	case UART_RX_BUF_RELEASED:
		k_sem_give(&rx_buf_released);
		break;
	case UART_RX_BUF_REQUEST:
		if (data->supply_second_buffer) {
			/* Reply to one buffer request. */
			uart_rx_buf_rsp(dev, data->rx_second_buffer,
					sizeof(data->rx_second_buffer));
			data->supply_second_buffer = false;
		}
		break;
	case UART_RX_DISABLED:
		k_sem_give(&rx_disabled);
		break;
	default:
		break;
	}
}

ZTEST_BMEM volatile uint32_t tx_aborted_count;

static void *single_read_setup(void)
{
	uart_async_test_init();

	memset(&tdata, 0, sizeof(tdata));
	tdata.supply_second_buffer = true;
	uart_callback_set(uart_dev,
			  test_single_read_callback,
			  (void *) &tdata);

	return NULL;
}

static void tdata_check_recv_buffers(const uint8_t *tx_buf, uint32_t sent_bytes)
{
	uint32_t recv_bytes_total;

	recv_bytes_total = tdata.recv_bytes_first_buffer + tdata.recv_bytes_second_buffer;
	zassert_equal(recv_bytes_total, sent_bytes, "Incorrect number of bytes received");

	zassert_equal(memcmp(tx_buf, tdata.rx_first_buffer, tdata.recv_bytes_first_buffer), 0,
		      "Invalid data received in first buffer");
	zassert_equal(memcmp(tx_buf + tdata.recv_bytes_first_buffer, tdata.rx_second_buffer,
			     tdata.recv_bytes_second_buffer),
		      0, "Invalid data received in second buffer");

	/* check that the remaining bytes in the buffers are zero */
	for (int i = tdata.recv_bytes_first_buffer; i < sizeof(tdata.rx_first_buffer); i++) {
		zassert_equal(tdata.rx_first_buffer[i], 0,
			      "Received extra data to the first buffer");
	}

	for (int i = tdata.recv_bytes_second_buffer; i < sizeof(tdata.rx_second_buffer); i++) {
		zassert_equal(tdata.rx_second_buffer[i], 0,
			      "Received extra data to the second buffer");
	}
}

ZTEST_USER(uart_async_single_read, test_single_read)
{
	/* Check also if sending from read only memory (e.g. flash) works. */
	static const uint8_t tx_buf[] = "0123456789";
	uint32_t sent_bytes = 0;

	zassert_not_equal(memcmp(tx_buf, tdata.rx_first_buffer, 5), 0,
			  "Initial buffer check failed");

	uart_rx_enable(uart_dev, tdata.rx_first_buffer, 10, 50 * USEC_PER_MSEC);
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
		      "RX_RDY not expected at this point");

	uart_tx(uart_dev, tx_buf, 5, 100 * USEC_PER_MSEC);
	sent_bytes += 5;

	zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
		      "Extra RX_RDY received");

	tdata_check_recv_buffers(tx_buf, sent_bytes);

	uart_tx(uart_dev, tx_buf + sent_bytes, 5, 100 * USEC_PER_MSEC);
	sent_bytes += 5;

	zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
	zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)),
		      0,
		      "RX_BUF_RELEASED timeout");
	uart_rx_disable(uart_dev);

	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(1000)), 0,
		      "RX_DISABLED timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
		      "Extra RX_RDY received");

	tdata_check_recv_buffers(tx_buf, sent_bytes);

	zassert_equal(tdata.tx_aborted_count, 0, "TX aborted triggered");
}

static void *multiple_rx_enable_setup(void)
{
	uart_async_test_init();

	memset(&tdata, 0, sizeof(tdata));
	/* Reuse the callback from the single_read test case, as this test case
	 * does not need anything extra in this regard.
	 */
	uart_callback_set(uart_dev,
			  test_single_read_callback,
			  (void *)&tdata);

	return NULL;
}

ZTEST_USER(uart_async_multi_rx, test_multiple_rx_enable)
{
	/* Check also if sending from read only memory (e.g. flash) works. */
	static const uint8_t tx_buf[] = "test";
	const uint32_t rx_buf_size = sizeof(tx_buf);
	int ret;

	BUILD_ASSERT(sizeof(tx_buf) <= sizeof(tdata.rx_first_buffer), "Invalid buf size");

	/* Enable RX without a timeout. */
	ret = uart_rx_enable(uart_dev, tdata.rx_first_buffer, rx_buf_size, SYS_FOREVER_US);
	zassert_equal(ret, 0, "uart_rx_enable failed");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
		      "RX_RDY not expected at this point");
	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), -EAGAIN,
		      "RX_DISABLED not expected at this point");

	/* Disable RX before any data has been received. */
	ret = uart_rx_disable(uart_dev);
	zassert_equal(ret, 0, "uart_rx_disable failed");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
		      "RX_RDY not expected at this point");
	zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)), 0,
		      "RX_BUF_RELEASED timeout");
	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
		      "RX_DISABLED timeout");

	k_sem_reset(&rx_buf_released);
	k_sem_reset(&rx_disabled);

	/* Check that RX can be reenabled after "manual" disabling. */
	ret = uart_rx_enable(uart_dev, tdata.rx_first_buffer, rx_buf_size,
			     50 * USEC_PER_MSEC);
	zassert_equal(ret, 0, "uart_rx_enable failed");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
		      "RX_RDY not expected at this point");

	/* Send enough data to completely fill RX buffer, so that RX ends. */
	ret = uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100 * USEC_PER_MSEC);
	zassert_equal(ret, 0, "uart_tx failed");
	zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
		      "Extra RX_RDY received");
	zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)), 0,
		      "RX_BUF_RELEASED timeout");
	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
		      "RX_DISABLED timeout");
	zassert_equal(tx_aborted_count, 0, "Unexpected TX abort");

	tdata_check_recv_buffers(tx_buf, sizeof(tx_buf));

	k_sem_reset(&rx_rdy);
	k_sem_reset(&rx_buf_released);
	k_sem_reset(&rx_disabled);
	k_sem_reset(&tx_done);

	memset(&tdata, 0, sizeof(tdata));

	/* Check that RX can be reenabled after automatic disabling. */
	ret = uart_rx_enable(uart_dev, tdata.rx_first_buffer, rx_buf_size,
			     50 * USEC_PER_MSEC);
	zassert_equal(ret, 0, "uart_rx_enable failed");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
		      "RX_RDY not expected at this point");

	/* Fill RX buffer again to confirm that RX still works properly. */
	ret = uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100 * USEC_PER_MSEC);
	zassert_equal(ret, 0, "uart_tx failed");
	zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), -EAGAIN,
		      "Extra RX_RDY received");
	zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)), 0,
		      "RX_BUF_RELEASED timeout");
	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
		      "RX_DISABLED timeout");
	zassert_equal(tx_aborted_count, 0, "Unexpected TX abort");

	tdata_check_recv_buffers(tx_buf, sizeof(tx_buf));
}

#if NOCACHE_MEM
/* To ensure 32-bit alignment of the buffer array,
 * the two arrays are defined instead using an array of arrays
 */
static __aligned(32) uint8_t chained_read_buf_0[8] __used __NOCACHE;
static __aligned(32) uint8_t chained_read_buf_1[8] __used __NOCACHE;
static __aligned(32) uint8_t chained_cpy_buf[10] __used __NOCACHE;
#else
ZTEST_BMEM uint8_t chained_read_buf_0[8];
ZTEST_BMEM uint8_t chained_read_buf_1[8];
ZTEST_BMEM uint8_t chained_cpy_buf[10];
#endif /* NOCACHE_MEM */
ZTEST_BMEM volatile uint8_t rx_data_idx;
ZTEST_BMEM uint8_t rx_buf_idx;

ZTEST_BMEM uint8_t *read_ptr;

static uint8_t *chained_read_buf[2] = {chained_read_buf_0, chained_read_buf_1};

static void test_chained_read_callback(const struct device *dev,
				struct uart_event *evt, void *user_data)
{
	int err;

	switch (evt->type) {
	case UART_TX_DONE:
		k_sem_give(&tx_done);
		break;
	case UART_RX_RDY:
		zassert_true(rx_data_idx + evt->data.rx.len <= sizeof(chained_cpy_buf));
		memcpy(&chained_cpy_buf[rx_data_idx],
		       &evt->data.rx.buf[evt->data.rx.offset],
		       evt->data.rx.len);
		rx_data_idx += evt->data.rx.len;
		break;
	case UART_RX_BUF_REQUEST:
		err = uart_rx_buf_rsp(dev, chained_read_buf[rx_buf_idx],
				      sizeof(chained_read_buf_0));
		zassert_equal(err, 0);
		rx_buf_idx = !rx_buf_idx ? 1 : 0;
		break;
	case UART_RX_DISABLED:
		k_sem_give(&rx_disabled);
		break;
	default:
		break;
	}

}

static void *chained_read_setup(void)
{
	uart_async_test_init();

	uart_callback_set(uart_dev, test_chained_read_callback, NULL);

	return NULL;
}

ZTEST_USER(uart_async_chain_read, test_chained_read)
{
#if NOCACHE_MEM
	static __aligned(32) uint8_t tx_buf[10] __used __NOCACHE;
#else
	uint8_t tx_buf[10];
#endif /* NOCACHE_MEM */
	int iter = 6;
	uint32_t rx_timeout_ms = 50;
	int err;

	err = uart_rx_enable(uart_dev, chained_read_buf[rx_buf_idx++], sizeof(chained_read_buf_0),
			     rx_timeout_ms * USEC_PER_MSEC);
	zassert_equal(err, 0);
	rx_data_idx = 0;

	for (int i = 0; i < iter; i++) {
		zassert_not_equal(k_sem_take(&rx_disabled, K_MSEC(10)),
				  0,
				  "RX_DISABLED occurred");
		snprintf(tx_buf, sizeof(tx_buf), "Message %d", i);
		uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100 * USEC_PER_MSEC);
		zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0,
			      "TX_DONE timeout");
		k_msleep(rx_timeout_ms + 10);
		zassert_equal(rx_data_idx, sizeof(tx_buf),
				"Unexpected amount of data received %d exp:%d",
				rx_data_idx, sizeof(tx_buf));
		zassert_equal(memcmp(tx_buf, chained_cpy_buf, sizeof(tx_buf)), 0,
			      "Buffers not equal exp %s, real %s", tx_buf, chained_cpy_buf);
		rx_data_idx = 0;
	}
	uart_rx_disable(uart_dev);
	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
		      "RX_DISABLED timeout");
}

#if NOCACHE_MEM
static __aligned(32) uint8_t double_buffer[2][12] __used __NOCACHE;
#else
ZTEST_BMEM uint8_t double_buffer[2][12];
#endif /* NOCACHE_MEM */
ZTEST_DMEM uint8_t *next_buf = double_buffer[1];

static void test_double_buffer_callback(const struct device *dev,
				 struct uart_event *evt, void *user_data)
{
	switch (evt->type) {
	case UART_TX_DONE:
		k_sem_give(&tx_done);
		break;
	case UART_RX_RDY:
		read_ptr = evt->data.rx.buf + evt->data.rx.offset;
		k_sem_give(&rx_rdy);
		break;
	case UART_RX_BUF_REQUEST:
		uart_rx_buf_rsp(dev, next_buf, sizeof(double_buffer[0]));
		break;
	case UART_RX_BUF_RELEASED:
		next_buf = evt->data.rx_buf.buf;
		k_sem_give(&rx_buf_released);
		break;
	case UART_RX_DISABLED:
		k_sem_give(&rx_disabled);
		break;
	default:
		break;
	}

}

static void *double_buffer_setup(void)
{
	uart_async_test_init();

	uart_callback_set(uart_dev, test_double_buffer_callback, NULL);

	return NULL;
}

ZTEST_USER(uart_async_double_buf, test_double_buffer)
{
#if NOCACHE_MEM
	static __aligned(32) uint8_t tx_buf[4] __used __NOCACHE;
#else
	uint8_t tx_buf[4];
#endif /* NOCACHE_MEM */

	zassert_equal(uart_rx_enable(uart_dev,
				     double_buffer[0],
				     sizeof(double_buffer[0]),
				     50 * USEC_PER_MSEC),
		      0,
		      "Failed to enable receiving");

	for (int i = 0; i < 100; i++) {
		snprintf(tx_buf, sizeof(tx_buf), "%03d", i);
		uart_tx(uart_dev, tx_buf, sizeof(tx_buf), 100 * USEC_PER_MSEC);
		zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0,
			      "TX_DONE timeout");
		zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0,
			      "RX_RDY timeout");
		zassert_equal(memcmp(tx_buf, read_ptr, sizeof(tx_buf)),
			      0,
			      "Buffers not equal");
	}
	uart_rx_disable(uart_dev);
	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
		      "RX_DISABLED timeout");
}

#if NOCACHE_MEM
static __aligned(32) uint8_t test_read_abort_rx_buf[2][100] __used __NOCACHE;
static __aligned(32) uint8_t test_read_abort_read_buf[100] __used __NOCACHE;
#else
ZTEST_BMEM uint8_t test_read_abort_rx_buf[2][100];
ZTEST_BMEM uint8_t test_read_abort_read_buf[100];
#endif /* NOCACHE_MEM */
ZTEST_BMEM int test_read_abort_rx_cnt;

static void test_read_abort_callback(const struct device *dev,
			      struct uart_event *evt, void *user_data)
{
	int err;

	ARG_UNUSED(dev);

	switch (evt->type) {
	case UART_TX_DONE:
		k_sem_give(&tx_done);
		break;
	case UART_RX_BUF_REQUEST:
	{
		static bool once;

		if (!once) {
			k_sem_give(&rx_buf_coherency);
			uart_rx_buf_rsp(dev,
					test_read_abort_rx_buf[1],
					sizeof(test_read_abort_rx_buf[1]));
			once = true;
		}
		break;
	}
	case UART_RX_RDY:
		memcpy(&test_read_abort_read_buf[test_read_abort_rx_cnt],
		       &evt->data.rx.buf[evt->data.rx.offset],
		       evt->data.rx.len);
		test_read_abort_rx_cnt += evt->data.rx.len;
		k_sem_give(&rx_rdy);
		break;
	case UART_RX_BUF_RELEASED:
		k_sem_give(&rx_buf_released);
		err = k_sem_take(&rx_buf_coherency, K_NO_WAIT);
		failed_in_isr |= (err < 0);
		break;
	case UART_RX_DISABLED:
		err = k_sem_take(&rx_buf_released, K_NO_WAIT);
		failed_in_isr |= (err < 0);
		k_sem_give(&rx_disabled);
		break;
	default:
		break;
	}
}

static void read_abort_timeout(struct k_timer *timer)
{
	int err;

	err = uart_rx_disable(uart_dev);
	zassert_equal(err, 0, "Unexpected err:%d", err);
}

static void *read_abort_setup(void)
{
	uart_async_test_init();

	failed_in_isr = false;
	uart_callback_set(uart_dev, test_read_abort_callback, NULL);

	return NULL;
}

ZTEST_USER(uart_async_read_abort, test_read_abort)
{
#if NOCACHE_MEM
	static __aligned(32) uint8_t rx_buf[100] __used __NOCACHE;
	static __aligned(32) uint8_t tx_buf[100] __used __NOCACHE;
#else
	uint8_t rx_buf[100];
	uint8_t tx_buf[100];
#endif /* NOCACHE_MEM */

	memset(rx_buf, 0, sizeof(rx_buf));
	memset(tx_buf, 1, sizeof(tx_buf));

	uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), 50 * USEC_PER_MSEC);
	k_sem_give(&rx_buf_coherency);

	uart_tx(uart_dev, tx_buf, 5, 100 * USEC_PER_MSEC);
	zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
	zassert_equal(memcmp(tx_buf, rx_buf, 5), 0, "Buffers not equal");

	uart_tx(uart_dev, tx_buf, 95, 100 * USEC_PER_MSEC);

	k_timer_start(&read_abort_timer, K_USEC(300), K_NO_WAIT);

	/* RX will be aborted from k_timer timeout */

	zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
		      "RX_DISABLED timeout");
	zassert_false(failed_in_isr, "Unexpected order of uart events");
	zassert_not_equal(memcmp(tx_buf, test_read_abort_read_buf, 100), 0, "Buffers equal");

	/* Read out possible other RX bytes
	 * that may affect following test on RX
	 */
	uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), 50 * USEC_PER_MSEC);
	while (k_sem_take(&rx_rdy, K_MSEC(1000)) != -EAGAIN) {
		;
	}
	uart_rx_disable(uart_dev);
	k_msleep(10);
	zassert_not_equal(k_sem_take(&rx_buf_coherency, K_NO_WAIT), 0,
			"All provided buffers are released");

}

ZTEST_BMEM volatile size_t sent;
ZTEST_BMEM volatile size_t received;
#if NOCACHE_MEM
static __aligned(32) uint8_t test_rx_buf[2][100] __used __NOCACHE;
#else
ZTEST_BMEM uint8_t test_rx_buf[2][100];
#endif /* NOCACHE_MEM */

static void test_write_abort_callback(const struct device *dev,
			       struct uart_event *evt, void *user_data)
{
	ARG_UNUSED(dev);

	switch (evt->type) {
	case UART_TX_DONE:
		k_sem_give(&tx_done);
		break;
	case UART_TX_ABORTED:
		sent = evt->data.tx.len;
		k_sem_give(&tx_aborted);
		break;
	case UART_RX_RDY:
		received = evt->data.rx.len;
		k_sem_give(&rx_rdy);
		break;
	case UART_RX_BUF_REQUEST:
		uart_rx_buf_rsp(dev, test_rx_buf[1], sizeof(test_rx_buf[1]));
		break;
	case UART_RX_BUF_RELEASED:
		k_sem_give(&rx_buf_released);
		break;
	case UART_RX_DISABLED:
		k_sem_give(&rx_disabled);
		break;
	default:
		break;
	}
}

static void *write_abort_setup(void)
{
	uart_async_test_init();

	uart_callback_set(uart_dev, test_write_abort_callback, NULL);

	return NULL;
}

ZTEST_USER(uart_async_write_abort, test_write_abort)
{
#if NOCACHE_MEM
	static __aligned(32) uint8_t tx_buf[100] __used __NOCACHE;
#else
	uint8_t tx_buf[100];
#endif /* NOCACHE_MEM */

	memset(test_rx_buf, 0, sizeof(test_rx_buf));
	memset(tx_buf, 1, sizeof(tx_buf));

	uart_rx_enable(uart_dev, test_rx_buf[0], sizeof(test_rx_buf[0]), 50 * USEC_PER_MSEC);

	uart_tx(uart_dev, tx_buf, 5, 100 * USEC_PER_MSEC);
	zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
	zassert_equal(memcmp(tx_buf, test_rx_buf, 5), 0, "Buffers not equal");

	uart_tx(uart_dev, tx_buf, 95, 100 * USEC_PER_MSEC);
	uart_tx_abort(uart_dev);
	zassert_equal(k_sem_take(&tx_aborted, K_MSEC(100)), 0,
		      "TX_ABORTED timeout");
	if (sent != 0) {
		zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0,
			      "RX_RDY timeout");
		zassert_equal(sent, received, "Sent is not equal to received.");
	}
	uart_rx_disable(uart_dev);
	zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)),
		      0,
		      "RX_BUF_RELEASED timeout");
	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
		      "RX_DISABLED timeout");
}


static void test_forever_timeout_callback(const struct device *dev,
				   struct uart_event *evt, void *user_data)
{
	ARG_UNUSED(dev);

	switch (evt->type) {
	case UART_TX_DONE:
		k_sem_give(&tx_done);
		break;
	case UART_TX_ABORTED:
		sent = evt->data.tx.len;
		k_sem_give(&tx_aborted);
		break;
	case UART_RX_RDY:
		received = evt->data.rx.len;
		k_sem_give(&rx_rdy);
		break;
	case UART_RX_BUF_RELEASED:
		k_sem_give(&rx_buf_released);
		break;
	case UART_RX_DISABLED:
		k_sem_give(&rx_disabled);
		break;
	default:
		break;
	}
}

static void *forever_timeout_setup(void)
{
	uart_async_test_init();

	uart_callback_set(uart_dev, test_forever_timeout_callback, NULL);

	return NULL;
}

ZTEST_USER(uart_async_timeout, test_forever_timeout)
{
#if NOCACHE_MEM
	static __aligned(32) uint8_t rx_buf[100] __used __NOCACHE;
	static __aligned(32) uint8_t tx_buf[100] __used __NOCACHE;
#else
	uint8_t rx_buf[100];
	uint8_t tx_buf[100];
#endif /* NOCACHE_MEM */

	memset(rx_buf, 0, sizeof(rx_buf));
	memset(tx_buf, 1, sizeof(tx_buf));

	uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), SYS_FOREVER_US);

	uart_tx(uart_dev, tx_buf, 5, SYS_FOREVER_US);
	zassert_not_equal(k_sem_take(&tx_aborted, K_MSEC(1000)), 0,
			  "TX_ABORTED timeout");
	zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
	zassert_not_equal(k_sem_take(&rx_rdy, K_MSEC(1000)), 0,
			  "RX_RDY timeout");

	uart_tx(uart_dev, tx_buf, 95, SYS_FOREVER_US);

	zassert_not_equal(k_sem_take(&tx_aborted, K_MSEC(1000)), 0,
			  "TX_ABORTED timeout");
	zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");


	zassert_equal(memcmp(tx_buf, rx_buf, 100), 0, "Buffers not equal");

	uart_rx_disable(uart_dev);
	zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)),
		      0,
		      "RX_BUF_RELEASED timeout");
	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
		      "RX_DISABLED timeout");
}


#if NOCACHE_MEM
const uint8_t chained_write_tx_bufs[2][10] = {"Message 1", "Message 2"};
#else
ZTEST_DMEM uint8_t chained_write_tx_bufs[2][10] = {"Message 1", "Message 2"};
#endif /* NOCACHE_MEM */
ZTEST_DMEM bool chained_write_next_buf = true;
ZTEST_BMEM volatile uint8_t tx_sent;

static void test_chained_write_callback(const struct device *dev,
				 struct uart_event *evt, void *user_data)
{
	switch (evt->type) {
	case UART_TX_DONE:
		if (chained_write_next_buf) {
			uart_tx(dev, chained_write_tx_bufs[1], 10, 100 * USEC_PER_MSEC);
			chained_write_next_buf = false;
		}
		tx_sent = 1;
		k_sem_give(&tx_done);
		break;
	case UART_TX_ABORTED:
		sent = evt->data.tx.len;
		k_sem_give(&tx_aborted);
		break;
	case UART_RX_RDY:
		received = evt->data.rx.len;
		k_sem_give(&rx_rdy);
		break;
	case UART_RX_BUF_RELEASED:
		k_sem_give(&rx_buf_released);
		break;
	case UART_RX_DISABLED:
		k_sem_give(&rx_disabled);
		break;
	default:
		break;
	}
}

static void *chained_write_setup(void)
{
	uart_async_test_init();

	uart_callback_set(uart_dev, test_chained_write_callback, NULL);

	return NULL;
}

ZTEST_USER(uart_async_chain_write, test_chained_write)
{
#if NOCACHE_MEM
	static __aligned(32) uint8_t rx_buf[20] __used __NOCACHE;
#else
	uint8_t rx_buf[20];
#endif /* NOCACHE_MEM */

	memset(rx_buf, 0, sizeof(rx_buf));

	uart_rx_enable(uart_dev, rx_buf, sizeof(rx_buf), 50 * USEC_PER_MSEC);

	uart_tx(uart_dev, chained_write_tx_bufs[0], 10, 100 * USEC_PER_MSEC);
	zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
	zassert_equal(k_sem_take(&tx_done, K_MSEC(100)), 0, "TX_DONE timeout");
	zassert_equal(chained_write_next_buf, false, "Sent no message");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(100)), 0, "RX_RDY timeout");
	zassert_equal(memcmp(chained_write_tx_bufs[0], rx_buf, 10),
		      0,
		      "Buffers not equal");
	zassert_equal(memcmp(chained_write_tx_bufs[1], rx_buf + 10, 10),
		      0,
		      "Buffers not equal");

	uart_rx_disable(uart_dev);
	zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)),
		      0,
		      "RX_BUF_RELEASED timeout");
	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
		      "RX_DISABLED timeout");
}

#define RX_LONG_BUFFER CONFIG_TEST_LONG_BUFFER_SIZE
#define TX_LONG_BUFFER (CONFIG_TEST_LONG_BUFFER_SIZE - 8)

#if NOCACHE_MEM
static __aligned(32) uint8_t long_rx_buf[RX_LONG_BUFFER] __used __NOCACHE;
static __aligned(32) uint8_t long_rx_buf2[RX_LONG_BUFFER] __used __NOCACHE;
static __aligned(32) uint8_t long_tx_buf[TX_LONG_BUFFER] __used __NOCACHE;
#else
ZTEST_BMEM uint8_t long_rx_buf[RX_LONG_BUFFER];
ZTEST_BMEM uint8_t long_rx_buf2[RX_LONG_BUFFER];
ZTEST_BMEM uint8_t long_tx_buf[TX_LONG_BUFFER];
#endif /* NOCACHE_MEM */
ZTEST_BMEM volatile uint8_t evt_num;
ZTEST_BMEM size_t long_received[2];

static void test_long_buffers_callback(const struct device *dev,
				struct uart_event *evt, void *user_data)
{
	static uint8_t *next_buffer = long_rx_buf2;

	switch (evt->type) {
	case UART_TX_DONE:
		k_sem_give(&tx_done);
		break;
	case UART_TX_ABORTED:
		sent = evt->data.tx.len;
		k_sem_give(&tx_aborted);
		break;
	case UART_RX_RDY:
		long_received[evt_num] = evt->data.rx.len;
		evt_num++;
		k_sem_give(&rx_rdy);
		break;
	case UART_RX_BUF_RELEASED:
		k_sem_give(&rx_buf_released);
		break;
	case UART_RX_DISABLED:
		k_sem_give(&rx_disabled);
		break;
	case UART_RX_BUF_REQUEST:
		uart_rx_buf_rsp(dev, next_buffer, RX_LONG_BUFFER);
		next_buffer = (next_buffer == long_rx_buf2) ? long_rx_buf : long_rx_buf2;
		break;
	default:
		break;
	}
}

static void *long_buffers_setup(void)
{
	uart_async_test_init();

	uart_callback_set(uart_dev, test_long_buffers_callback, NULL);

	return NULL;
}

ZTEST_USER(uart_async_long_buf, test_long_buffers)
{
	size_t tx_len1 = TX_LONG_BUFFER / 2;
	size_t tx_len2 = TX_LONG_BUFFER;

	memset(long_rx_buf, 0, sizeof(long_rx_buf));
	memset(long_tx_buf, 1, sizeof(long_tx_buf));

	uart_rx_enable(uart_dev, long_rx_buf, sizeof(long_rx_buf), 10 * USEC_PER_MSEC);

	uart_tx(uart_dev, long_tx_buf, tx_len1, 200 * USEC_PER_MSEC);
	zassert_equal(k_sem_take(&tx_done, K_MSEC(200)), 0, "TX_DONE timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(200)), 0, "RX_RDY timeout");
	zassert_equal(long_received[0], tx_len1, "Wrong number of bytes received.");
	zassert_equal(memcmp(long_tx_buf, long_rx_buf, tx_len1),
		      0,
		      "Buffers not equal");
	k_msleep(10);
	/* Check if instance is releasing a buffer after the timeout. */
	bool release_on_timeout = k_sem_take(&rx_buf_released, K_NO_WAIT) == 0;

	evt_num = 0;
	uart_tx(uart_dev, long_tx_buf, tx_len2, 200 * USEC_PER_MSEC);
	zassert_equal(k_sem_take(&tx_done, K_MSEC(200)), 0, "TX_DONE timeout");
	zassert_equal(k_sem_take(&rx_rdy, K_MSEC(200)), 0, "RX_RDY timeout");

	if (release_on_timeout) {
		zassert_equal(long_received[0], tx_len2, "Wrong number of bytes received.");
		zassert_equal(memcmp(long_tx_buf, long_rx_buf2, long_received[0]), 0,
			      "Buffers not equal");
	} else {
		zassert_equal(k_sem_take(&rx_rdy, K_MSEC(200)), 0, "RX_RDY timeout");
		zassert_equal(long_received[0], RX_LONG_BUFFER - tx_len1,
				"Wrong number of bytes received.");
		zassert_equal(long_received[1], tx_len2 - (RX_LONG_BUFFER - tx_len1),
				"Wrong number of bytes received.");
		zassert_equal(memcmp(long_tx_buf, long_rx_buf + tx_len1, long_received[0]), 0,
			      "Buffers not equal");
		zassert_equal(memcmp(long_tx_buf, long_rx_buf2, long_received[1]), 0,
			      "Buffers not equal");
	}

	uart_rx_disable(uart_dev);
	zassert_equal(k_sem_take(&rx_buf_released, K_MSEC(100)),
		      0,
		      "RX_BUF_RELEASED timeout");
	zassert_equal(k_sem_take(&rx_disabled, K_MSEC(100)), 0,
		      "RX_DISABLED timeout");
}

ZTEST_SUITE(uart_async_single_read, NULL, single_read_setup,
		NULL, NULL, NULL);

ZTEST_SUITE(uart_async_multi_rx, NULL, multiple_rx_enable_setup,
		NULL, NULL, NULL);

ZTEST_SUITE(uart_async_chain_read, NULL, chained_read_setup,
		NULL, NULL, NULL);

ZTEST_SUITE(uart_async_double_buf, NULL, double_buffer_setup,
		NULL, NULL, NULL);

ZTEST_SUITE(uart_async_read_abort, NULL, read_abort_setup,
		NULL, NULL, NULL);

ZTEST_SUITE(uart_async_chain_write, NULL, chained_write_setup,
		NULL, NULL, NULL);

ZTEST_SUITE(uart_async_long_buf, NULL, long_buffers_setup,
		NULL, NULL, NULL);

ZTEST_SUITE(uart_async_write_abort, NULL, write_abort_setup,
		NULL, NULL, NULL);

ZTEST_SUITE(uart_async_timeout, NULL, forever_timeout_setup,
		NULL, NULL, NULL);