Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
/*
 * Copyright (c) 2010-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Kernel initialization module
 *
 * This module contains routines that are used to initialize the kernel.
 */

#include <ctype.h>
#include <stdbool.h>
#include <string.h>
#include <offsets_short.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/printk.h>
#include <zephyr/debug/stack.h>
#include <zephyr/random/random.h>
#include <zephyr/linker/sections.h>
#include <zephyr/toolchain.h>
#include <zephyr/kernel_structs.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/linker/linker-defs.h>
#include <zephyr/platform/hooks.h>
#include <ksched.h>
#include <kthread.h>
#include <zephyr/sys/dlist.h>
#include <kernel_internal.h>
#include <zephyr/drivers/entropy.h>
#include <zephyr/logging/log_ctrl.h>
#include <zephyr/tracing/tracing.h>
#include <zephyr/debug/gcov.h>
#include <kswap.h>
#include <zephyr/timing/timing.h>
#include <zephyr/logging/log.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/internal/syscall_handler.h>
LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL);

/* the only struct z_kernel instance */
__pinned_bss
struct z_kernel _kernel;

#ifdef CONFIG_PM
__pinned_bss atomic_t _cpus_active;
#endif

/* init/main and idle threads */
K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE);
struct k_thread z_main_thread;

#ifdef CONFIG_MULTITHREADING
__pinned_bss
struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS];

static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks,
					  CONFIG_MP_MAX_NUM_CPUS,
					  CONFIG_IDLE_STACK_SIZE);

static void z_init_static_threads(void)
{
	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) {
		z_setup_new_thread(
			thread_data->init_thread,
			thread_data->init_stack,
			thread_data->init_stack_size,
			thread_data->init_entry,
			thread_data->init_p1,
			thread_data->init_p2,
			thread_data->init_p3,
			thread_data->init_prio,
			thread_data->init_options,
			thread_data->init_name);

		thread_data->init_thread->init_data = thread_data;
	}

#ifdef CONFIG_USERSPACE
	STRUCT_SECTION_FOREACH(k_object_assignment, pos) {
		for (int i = 0; pos->objects[i] != NULL; i++) {
			k_object_access_grant(pos->objects[i],
					      pos->thread);
		}
	}
#endif /* CONFIG_USERSPACE */

	/*
	 * Non-legacy static threads may be started immediately or
	 * after a previously specified delay. Even though the
	 * scheduler is locked, ticks can still be delivered and
	 * processed. Take a sched lock to prevent them from running
	 * until they are all started.
	 *
	 * Note that static threads defined using the legacy API have a
	 * delay of K_FOREVER.
	 */
	k_sched_lock();
	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) {
		k_timeout_t init_delay = Z_THREAD_INIT_DELAY(thread_data);

		if (!K_TIMEOUT_EQ(init_delay, K_FOREVER)) {
			thread_schedule_new(thread_data->init_thread,
					    init_delay);
		}
	}
	k_sched_unlock();
}
#else
#define z_init_static_threads() do { } while (false)
#endif /* CONFIG_MULTITHREADING */

extern const struct init_entry __init_start[];
extern const struct init_entry __init_EARLY_start[];
extern const struct init_entry __init_PRE_KERNEL_1_start[];
extern const struct init_entry __init_PRE_KERNEL_2_start[];
extern const struct init_entry __init_POST_KERNEL_start[];
extern const struct init_entry __init_APPLICATION_start[];
extern const struct init_entry __init_end[];

enum init_level {
	INIT_LEVEL_EARLY = 0,
	INIT_LEVEL_PRE_KERNEL_1,
	INIT_LEVEL_PRE_KERNEL_2,
	INIT_LEVEL_POST_KERNEL,
	INIT_LEVEL_APPLICATION,
#ifdef CONFIG_SMP
	INIT_LEVEL_SMP,
#endif /* CONFIG_SMP */
};

#ifdef CONFIG_SMP
extern const struct init_entry __init_SMP_start[];
#endif /* CONFIG_SMP */

/*
 * storage space for the interrupt stack
 *
 * Note: This area is used as the system stack during kernel initialization,
 * since the kernel hasn't yet set up its own stack areas. The dual purposing
 * of this area is safe since interrupts are disabled until the kernel context
 * switches to the init thread.
 */
K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks,
				   CONFIG_MP_MAX_NUM_CPUS,
				   CONFIG_ISR_STACK_SIZE);

extern void idle(void *unused1, void *unused2, void *unused3);

#ifdef CONFIG_OBJ_CORE_SYSTEM
static struct k_obj_type obj_type_cpu;
static struct k_obj_type obj_type_kernel;

#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
static struct k_obj_core_stats_desc  cpu_stats_desc = {
	.raw_size = sizeof(struct k_cycle_stats),
	.query_size = sizeof(struct k_thread_runtime_stats),
	.raw   = z_cpu_stats_raw,
	.query = z_cpu_stats_query,
	.reset = NULL,
	.disable = NULL,
	.enable  = NULL,
};

static struct k_obj_core_stats_desc  kernel_stats_desc = {
	.raw_size = sizeof(struct k_cycle_stats) * CONFIG_MP_MAX_NUM_CPUS,
	.query_size = sizeof(struct k_thread_runtime_stats),
	.raw   = z_kernel_stats_raw,
	.query = z_kernel_stats_query,
	.reset = NULL,
	.disable = NULL,
	.enable  = NULL,
};
#endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
#endif /* CONFIG_OBJ_CORE_SYSTEM */

/* LCOV_EXCL_START
 *
 * This code is called so early in the boot process that code coverage
 * doesn't work properly. In addition, not all arches call this code,
 * some like x86 do this with optimized assembly
 */

/**
 * @brief equivalent of memset() for early boot usage
 *
 * Architectures that can't safely use the regular (optimized) memset very
 * early during boot because e.g. hardware isn't yet sufficiently initialized
 * may override this with their own safe implementation.
 */
__boot_func
void __weak z_early_memset(void *dst, int c, size_t n)
{
	(void) memset(dst, c, n);
}

/**
 * @brief equivalent of memcpy() for early boot usage
 *
 * Architectures that can't safely use the regular (optimized) memcpy very
 * early during boot because e.g. hardware isn't yet sufficiently initialized
 * may override this with their own safe implementation.
 */
__boot_func
void __weak z_early_memcpy(void *dst, const void *src, size_t n)
{
	(void) memcpy(dst, src, n);
}

/**
 * @brief Clear BSS
 *
 * This routine clears the BSS region, so all bytes are 0.
 */
__boot_func
void z_bss_zero(void)
{
	if (IS_ENABLED(CONFIG_SKIP_BSS_CLEAR)) {
		return;
	}

	z_early_memset(__bss_start, 0, __bss_end - __bss_start);
#if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_ccm))
	z_early_memset(&__ccm_bss_start, 0,
		       (uintptr_t) &__ccm_bss_end
		       - (uintptr_t) &__ccm_bss_start);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_dtcm))
	z_early_memset(&__dtcm_bss_start, 0,
		       (uintptr_t) &__dtcm_bss_end
		       - (uintptr_t) &__dtcm_bss_start);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_ocm))
	z_early_memset(&__ocm_bss_start, 0,
		       (uintptr_t) &__ocm_bss_end
		       - (uintptr_t) &__ocm_bss_start);
#endif
#ifdef CONFIG_CODE_DATA_RELOCATION
	extern void bss_zeroing_relocation(void);

	bss_zeroing_relocation();
#endif	/* CONFIG_CODE_DATA_RELOCATION */
#ifdef CONFIG_COVERAGE_GCOV
	z_early_memset(&__gcov_bss_start, 0,
		       ((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start));
#endif /* CONFIG_COVERAGE_GCOV */
}

#ifdef CONFIG_LINKER_USE_BOOT_SECTION
/**
 * @brief Clear BSS within the bot region
 *
 * This routine clears the BSS within the boot region.
 * This is separate from z_bss_zero() as boot region may
 * contain symbols required for the boot process before
 * paging is initialized.
 */
__boot_func
void z_bss_zero_boot(void)
{
	z_early_memset(&lnkr_boot_bss_start, 0,
		       (uintptr_t)&lnkr_boot_bss_end
		       - (uintptr_t)&lnkr_boot_bss_start);
}
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */

#ifdef CONFIG_LINKER_USE_PINNED_SECTION
/**
 * @brief Clear BSS within the pinned region
 *
 * This routine clears the BSS within the pinned region.
 * This is separate from z_bss_zero() as pinned region may
 * contain symbols required for the boot process before
 * paging is initialized.
 */
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
__boot_func
#else
__pinned_func
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */
void z_bss_zero_pinned(void)
{
	z_early_memset(&lnkr_pinned_bss_start, 0,
		       (uintptr_t)&lnkr_pinned_bss_end
		       - (uintptr_t)&lnkr_pinned_bss_start);
}
#endif /* CONFIG_LINKER_USE_PINNED_SECTION */

#ifdef CONFIG_STACK_CANARIES
#ifdef CONFIG_STACK_CANARIES_TLS
extern Z_THREAD_LOCAL volatile uintptr_t __stack_chk_guard;
#else
extern volatile uintptr_t __stack_chk_guard;
#endif /* CONFIG_STACK_CANARIES_TLS */
#endif /* CONFIG_STACK_CANARIES */

/* LCOV_EXCL_STOP */

__pinned_bss
bool z_sys_post_kernel;

static int do_device_init(const struct init_entry *entry)
{
	const struct device *dev = entry->dev;
	int rc = 0;

	if (entry->init_fn.dev != NULL) {
		rc = entry->init_fn.dev(dev);
		/* Mark device initialized. If initialization
		 * failed, record the error condition.
		 */
		if (rc != 0) {
			if (rc < 0) {
				rc = -rc;
			}
			if (rc > UINT8_MAX) {
				rc = UINT8_MAX;
			}
			dev->state->init_res = rc;
		}
	}

	dev->state->initialized = true;

	if (rc == 0) {
		/* Run automatic device runtime enablement */
		(void)pm_device_runtime_auto_enable(dev);
	}

	return rc;
}

/**
 * @brief Execute all the init entry initialization functions at a given level
 *
 * @details Invokes the initialization routine for each init entry object
 * created by the INIT_ENTRY_DEFINE() macro using the specified level.
 * The linker script places the init entry objects in memory in the order
 * they need to be invoked, with symbols indicating where one level leaves
 * off and the next one begins.
 *
 * @param level init level to run.
 */
static void z_sys_init_run_level(enum init_level level)
{
	static const struct init_entry *levels[] = {
		__init_EARLY_start,
		__init_PRE_KERNEL_1_start,
		__init_PRE_KERNEL_2_start,
		__init_POST_KERNEL_start,
		__init_APPLICATION_start,
#ifdef CONFIG_SMP
		__init_SMP_start,
#endif /* CONFIG_SMP */
		/* End marker */
		__init_end,
	};
	const struct init_entry *entry;

	for (entry = levels[level]; entry < levels[level+1]; entry++) {
		const struct device *dev = entry->dev;
		int result;

		sys_trace_sys_init_enter(entry, level);
		if (dev != NULL) {
			result = do_device_init(entry);
		} else {
			result = entry->init_fn.sys();
		}
		sys_trace_sys_init_exit(entry, level, result);
	}
}


int z_impl_device_init(const struct device *dev)
{
	if (dev == NULL) {
		return -ENOENT;
	}

	STRUCT_SECTION_FOREACH_ALTERNATE(_deferred_init, init_entry, entry) {
		if (entry->dev == dev) {
			return do_device_init(entry);
		}
	}

	return -ENOENT;
}

#ifdef CONFIG_USERSPACE
static inline int z_vrfy_device_init(const struct device *dev)
{
	K_OOPS(K_SYSCALL_OBJ_INIT(dev, K_OBJ_ANY));

	return z_impl_device_init(dev);
}
#include <zephyr/syscalls/device_init_mrsh.c>
#endif

extern void boot_banner(void);

#ifdef CONFIG_BOOTARGS
extern const char *get_bootargs(void);
static char **prepare_main_args(int *argc)
{
#ifdef CONFIG_DYNAMIC_BOOTARGS
	const char *bootargs = get_bootargs();
#else
	const char bootargs[] = CONFIG_BOOTARGS_STRING;
#endif

	/* beginning of the buffer contains argument's strings, end of it contains argvs */
	static char args_buf[CONFIG_BOOTARGS_ARGS_BUFFER_SIZE];
	char *strings_end = (char *)args_buf;
	char **argv_begin = (char **)WB_DN(
		args_buf + CONFIG_BOOTARGS_ARGS_BUFFER_SIZE - sizeof(char *));
	int i = 0;

	*argc = 0;
	*argv_begin = NULL;

#ifdef CONFIG_DYNAMIC_BOOTARGS
	if (!bootargs) {
		return argv_begin;
	}
#endif

	while (1) {
		while (isspace(bootargs[i])) {
			i++;
		}

		if (bootargs[i] == '\0') {
			return argv_begin;
		}

		if (strings_end + sizeof(char *) >= (char *)argv_begin) {
			LOG_WRN("not enough space in args buffer to accommodate all bootargs"
				" - bootargs truncated");
			return argv_begin;
		}

		argv_begin--;
		memmove(argv_begin, argv_begin + 1, *argc * sizeof(char *));
		argv_begin[*argc] = strings_end;

		bool quoted = false;

		if (bootargs[i] == '\"' || bootargs[i] == '\'') {
			char delimiter = bootargs[i];

			for (int j = i + 1; bootargs[j] != '\0'; j++) {
				if (bootargs[j] == delimiter) {
					quoted = true;
					break;
				}
			}
		}

		if (quoted) {
			char delimiter  = bootargs[i];

			i++; /* strip quotes */
			while (bootargs[i] != delimiter
				&& strings_end < (char *)argv_begin) {
				*strings_end++ = bootargs[i++];
			}
			i++; /* strip quotes */
		} else {
			while (!isspace(bootargs[i])
				&& bootargs[i] != '\0'
				&& strings_end < (char *)argv_begin) {
				*strings_end++ = bootargs[i++];
			}
		}

		if (strings_end < (char *)argv_begin) {
			*strings_end++ = '\0';
		} else {
			LOG_WRN("not enough space in args buffer to accommodate all bootargs"
				" - bootargs truncated");
			argv_begin[*argc] = NULL;
			return argv_begin;
		}
		(*argc)++;
	}
}
#endif

/**
 * @brief Mainline for kernel's background thread
 *
 * This routine completes kernel initialization by invoking the remaining
 * init functions, then invokes application's main() routine.
 */
__boot_func
static void bg_thread_main(void *unused1, void *unused2, void *unused3)
{
	ARG_UNUSED(unused1);
	ARG_UNUSED(unused2);
	ARG_UNUSED(unused3);

#ifdef CONFIG_MMU
	/* Invoked here such that backing store or eviction algorithms may
	 * initialize kernel objects, and that all POST_KERNEL and later tasks
	 * may perform memory management tasks (except for
	 * k_mem_map_phys_bare() which is allowed at any time)
	 */
	z_mem_manage_init();
#endif /* CONFIG_MMU */
	z_sys_post_kernel = true;

#if CONFIG_IRQ_OFFLOAD
	arch_irq_offload_init();
#endif
	z_sys_init_run_level(INIT_LEVEL_POST_KERNEL);
#if CONFIG_SOC_LATE_INIT_HOOK
	soc_late_init_hook();
#endif
#if CONFIG_BOARD_LATE_INIT_HOOK
	board_late_init_hook();
#endif

#if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
	z_stack_adjust_initialized = 1;
#endif /* CONFIG_STACK_POINTER_RANDOM */
	boot_banner();

	void z_init_static(void);
	z_init_static();

	/* Final init level before app starts */
	z_sys_init_run_level(INIT_LEVEL_APPLICATION);

	z_init_static_threads();

#ifdef CONFIG_KERNEL_COHERENCE
	__ASSERT_NO_MSG(arch_mem_coherent(&_kernel));
#endif /* CONFIG_KERNEL_COHERENCE */

#ifdef CONFIG_SMP
	if (!IS_ENABLED(CONFIG_SMP_BOOT_DELAY)) {
		z_smp_init();
	}
	z_sys_init_run_level(INIT_LEVEL_SMP);
#endif /* CONFIG_SMP */

#ifdef CONFIG_MMU
	z_mem_manage_boot_finish();
#endif /* CONFIG_MMU */

#ifdef CONFIG_BOOTARGS
	extern int main(int, char **);

	int argc = 0;
	char **argv = prepare_main_args(&argc);
	(void)main(argc, argv);
#else
	extern int main(void);

	(void)main();
#endif /* CONFIG_BOOTARGS */

	/* Mark non-essential since main() has no more work to do */
	z_thread_essential_clear(&z_main_thread);

#ifdef CONFIG_COVERAGE_DUMP
	/* Dump coverage data once the main() has exited. */
	gcov_coverage_dump();
#endif /* CONFIG_COVERAGE_DUMP */
} /* LCOV_EXCL_LINE ... because we just dumped final coverage data */

#if defined(CONFIG_MULTITHREADING)
__boot_func
static void init_idle_thread(int i)
{
	struct k_thread *thread = &z_idle_threads[i];
	k_thread_stack_t *stack = z_idle_stacks[i];
	size_t stack_size = K_KERNEL_STACK_SIZEOF(z_idle_stacks[i]);

#ifdef CONFIG_THREAD_NAME

#if CONFIG_MP_MAX_NUM_CPUS > 1
	char tname[8];
	snprintk(tname, 8, "idle %02d", i);
#else
	char *tname = "idle";
#endif /* CONFIG_MP_MAX_NUM_CPUS */

#else
	char *tname = NULL;
#endif /* CONFIG_THREAD_NAME */

	z_setup_new_thread(thread, stack,
			  stack_size, idle, &_kernel.cpus[i],
			  NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL,
			  tname);
	z_mark_thread_as_started(thread);

#ifdef CONFIG_SMP
	thread->base.is_idle = 1U;
#endif /* CONFIG_SMP */
}

void z_init_cpu(int id)
{
	init_idle_thread(id);
	_kernel.cpus[id].idle_thread = &z_idle_threads[id];
	_kernel.cpus[id].id = id;
	_kernel.cpus[id].irq_stack =
		(K_KERNEL_STACK_BUFFER(z_interrupt_stacks[id]) +
		 K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[id]));
#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
	_kernel.cpus[id].usage = &_kernel.usage[id];
	_kernel.cpus[id].usage->track_usage =
		CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE;
#endif

#ifdef CONFIG_PM
	/*
	 * Increment number of CPUs active. The pm subsystem
	 * will keep track of this from here.
	 */
	atomic_inc(&_cpus_active);
#endif

#ifdef CONFIG_OBJ_CORE_SYSTEM
	k_obj_core_init_and_link(K_OBJ_CORE(&_kernel.cpus[id]), &obj_type_cpu);
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
	k_obj_core_stats_register(K_OBJ_CORE(&_kernel.cpus[id]),
				  _kernel.cpus[id].usage,
				  sizeof(struct k_cycle_stats));
#endif
#endif
}

/**
 *
 * @brief Initializes kernel data structures
 *
 * This routine initializes various kernel data structures, including
 * the init and idle threads and any architecture-specific initialization.
 *
 * Note that all fields of "_kernel" are set to zero on entry, which may
 * be all the initialization many of them require.
 *
 * @return initial stack pointer for the main thread
 */
__boot_func
static char *prepare_multithreading(void)
{
	char *stack_ptr;

	/* _kernel.ready_q is all zeroes */
	z_sched_init();

#ifndef CONFIG_SMP
	/*
	 * prime the cache with the main thread since:
	 *
	 * - the cache can never be NULL
	 * - the main thread will be the one to run first
	 * - no other thread is initialized yet and thus their priority fields
	 *   contain garbage, which would prevent the cache loading algorithm
	 *   to work as intended
	 */
	_kernel.ready_q.cache = &z_main_thread;
#endif /* CONFIG_SMP */
	stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack,
				       K_THREAD_STACK_SIZEOF(z_main_stack),
				       bg_thread_main,
				       NULL, NULL, NULL,
				       CONFIG_MAIN_THREAD_PRIORITY,
				       K_ESSENTIAL, "main");
	z_mark_thread_as_started(&z_main_thread);
	z_ready_thread(&z_main_thread);

	z_init_cpu(0);

	return stack_ptr;
}

__boot_func
static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr)
{
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
	arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main);
#else
	ARG_UNUSED(stack_ptr);
	/*
	 * Context switch to main task (entry function is _main()): the
	 * current fake thread is not on a wait queue or ready queue, so it
	 * will never be rescheduled in.
	 */
	z_swap_unlocked();
#endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */
	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}
#endif /* CONFIG_MULTITHREADING */

__boot_func
void __weak z_early_rand_get(uint8_t *buf, size_t length)
{
	static uint64_t state = (uint64_t)CONFIG_TIMER_RANDOM_INITIAL_STATE;
	int rc;

#ifdef CONFIG_ENTROPY_HAS_DRIVER
	const struct device *const entropy = DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_entropy));

	if ((entropy != NULL) && device_is_ready(entropy)) {
		/* Try to see if driver provides an ISR-specific API */
		rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT);
		if (rc > 0) {
			length -= rc;
			buf += rc;
		}
	}
#endif /* CONFIG_ENTROPY_HAS_DRIVER */

	while (length > 0) {
		uint32_t val;

		state = state + k_cycle_get_32();
		state = state * 2862933555777941757ULL + 3037000493ULL;
		val = (uint32_t)(state >> 32);
		rc = MIN(length, sizeof(val));
		z_early_memcpy((void *)buf, &val, rc);

		length -= rc;
		buf += rc;
	}
}

/**
 *
 * @brief Initialize kernel
 *
 * This routine is invoked when the system is ready to run C code. The
 * processor must be running in 32-bit mode, and the BSS must have been
 * cleared/zeroed.
 *
 * @return Does not return
 */
__boot_func
FUNC_NO_STACK_PROTECTOR
FUNC_NORETURN void z_cstart(void)
{
	/* gcov hook needed to get the coverage report.*/
	gcov_static_init();

	/* initialize early init calls */
	z_sys_init_run_level(INIT_LEVEL_EARLY);

	/* perform any architecture-specific initialization */
	arch_kernel_init();

	LOG_CORE_INIT();

#if defined(CONFIG_MULTITHREADING)
	z_dummy_thread_init(&_thread_dummy);
#endif /* CONFIG_MULTITHREADING */
	/* do any necessary initialization of static devices */
	z_device_state_init();

#if CONFIG_SOC_EARLY_INIT_HOOK
	soc_early_init_hook();
#endif
#if CONFIG_BOARD_EARLY_INIT_HOOK
	board_early_init_hook();
#endif
	/* perform basic hardware initialization */
	z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_1);
#if defined(CONFIG_SMP)
	arch_smp_init();
#endif
	z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_2);

#ifdef CONFIG_STACK_CANARIES
	uintptr_t stack_guard;

	z_early_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard));
	__stack_chk_guard = stack_guard;
	__stack_chk_guard <<= 8;
#endif	/* CONFIG_STACK_CANARIES */

#ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT
	timing_init();
	timing_start();
#endif /* CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT */

#ifdef CONFIG_MULTITHREADING
	switch_to_main_thread(prepare_multithreading());
#else
#ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING
	/* Custom ARCH-specific routine to switch to main()
	 * in the case of no multi-threading.
	 */
	ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main,
		NULL, NULL, NULL);
#else
	bg_thread_main(NULL, NULL, NULL);

	/* LCOV_EXCL_START
	 * We've already dumped coverage data at this point.
	 */
	irq_lock();
	while (true) {
	}
	/* LCOV_EXCL_STOP */
#endif /* ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING */
#endif /* CONFIG_MULTITHREADING */

	/*
	 * Compiler can't tell that the above routines won't return and issues
	 * a warning unless we explicitly tell it that control never gets this
	 * far.
	 */

	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}

#ifdef CONFIG_OBJ_CORE_SYSTEM
static int init_cpu_obj_core_list(void)
{
	/* Initialize CPU object type */

	z_obj_type_init(&obj_type_cpu, K_OBJ_TYPE_CPU_ID,
			offsetof(struct _cpu, obj_core));

#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
	k_obj_type_stats_init(&obj_type_cpu, &cpu_stats_desc);
#endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */

	return 0;
}

static int init_kernel_obj_core_list(void)
{
	/* Initialize kernel object type */

	z_obj_type_init(&obj_type_kernel, K_OBJ_TYPE_KERNEL_ID,
			offsetof(struct z_kernel, obj_core));

#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
	k_obj_type_stats_init(&obj_type_kernel, &kernel_stats_desc);
#endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */

	k_obj_core_init_and_link(K_OBJ_CORE(&_kernel), &obj_type_kernel);
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
	k_obj_core_stats_register(K_OBJ_CORE(&_kernel), _kernel.usage,
				  sizeof(_kernel.usage));
#endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */

	return 0;
}

SYS_INIT(init_cpu_obj_core_list, PRE_KERNEL_1,
	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);

SYS_INIT(init_kernel_obj_core_list, PRE_KERNEL_1,
	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
#endif /* CONFIG_OBJ_CORE_SYSTEM */