Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*
 * Copyright (c) 2024 Analog Devices Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr/logging/log.h>
#include <zephyr/drivers/sensor.h>

#include "adxl362.h"

LOG_MODULE_DECLARE(ADXL362, CONFIG_SENSOR_LOG_LEVEL);

static void adxl362_irq_en_cb(struct rtio *r, const struct rtio_sqe *sqr, void *arg)
{
	const struct device *dev = (const struct device *)arg;
	const struct adxl362_config *cfg = dev->config;

	gpio_pin_interrupt_configure_dt(&cfg->interrupt, GPIO_INT_EDGE_TO_ACTIVE);
}

static void adxl362_fifo_flush_rtio(const struct device *dev)
{
	struct adxl362_data *data = dev->data;

	uint8_t fifo_config = ADXL362_FIFO_CTL_FIFO_MODE(ADXL362_FIFO_DISABLE);
	struct rtio_sqe *write_fifo_addr = rtio_sqe_acquire(data->rtio_ctx);
	const uint8_t reg_addr_w[3] = {ADXL362_WRITE_REG, ADXL362_REG_FIFO_CTL, fifo_config};

	rtio_sqe_prep_tiny_write(write_fifo_addr, data->iodev, RTIO_PRIO_NORM, reg_addr_w, 3, NULL);

	fifo_config = ADXL362_FIFO_CTL_FIFO_MODE(data->fifo_mode) |
		   (data->en_temp_read * ADXL362_FIFO_CTL_FIFO_TEMP);
	if (data->water_mark_lvl & 0x100) {
		fifo_config |= ADXL362_FIFO_CTL_AH;
	}
	write_fifo_addr = rtio_sqe_acquire(data->rtio_ctx);
	const uint8_t reg_addr_w2[3] = {ADXL362_WRITE_REG, ADXL362_REG_FIFO_CTL, fifo_config};

	rtio_sqe_prep_tiny_write(write_fifo_addr, data->iodev, RTIO_PRIO_NORM,
		reg_addr_w2, 3, NULL);
	write_fifo_addr->flags |= RTIO_SQE_CHAINED;

	struct rtio_sqe *complete_op = rtio_sqe_acquire(data->rtio_ctx);

	rtio_sqe_prep_callback(complete_op, adxl362_irq_en_cb, (void *)dev, NULL);
	rtio_submit(data->rtio_ctx, 0);
}

void adxl362_submit_stream(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe)
{
	const struct sensor_read_config *cfg =
			(const struct sensor_read_config *)iodev_sqe->sqe.iodev->data;
	struct adxl362_data *data = (struct adxl362_data *)dev->data;
	const struct adxl362_config *cfg_362 = dev->config;
	uint8_t int_mask = 0;
	uint8_t int_value = 0;
	uint8_t fifo_wmark_irq = 0;
	uint8_t fifo_full_irq = 0;

	int rc = gpio_pin_interrupt_configure_dt(&cfg_362->interrupt,
					      GPIO_INT_DISABLE);
	if (rc < 0) {
		return;
	}

	for (size_t i = 0; i < cfg->count; i++) {
		if (cfg->triggers[i].trigger == SENSOR_TRIG_FIFO_WATERMARK) {
			int_mask |= ADXL362_INTMAP1_FIFO_WATERMARK;
			int_value |= ADXL362_INTMAP1_FIFO_WATERMARK;
			fifo_wmark_irq = 1;
		}

		if (cfg->triggers[i].trigger == SENSOR_TRIG_FIFO_FULL) {
			int_mask |= ADXL362_INTMAP1_FIFO_OVERRUN;
			int_value |= ADXL362_INTMAP1_FIFO_OVERRUN;
			fifo_full_irq = 1;
		}
	}

	if (data->fifo_wmark_irq && (fifo_wmark_irq == 0)) {
		int_mask |= ADXL362_INTMAP1_FIFO_WATERMARK;
	}

	if (data->fifo_full_irq && (fifo_full_irq == 0)) {
		int_mask |= ADXL362_INTMAP1_FIFO_OVERRUN;
	}

	/* Do not flush the FIFO if interrupts are already enabled. */
	if ((fifo_wmark_irq != data->fifo_wmark_irq) || (fifo_full_irq != data->fifo_full_irq)) {
		data->fifo_wmark_irq = fifo_wmark_irq;
		data->fifo_full_irq = fifo_full_irq;

		rc = adxl362_reg_write_mask(dev, ADXL362_REG_INTMAP1, int_mask, int_value);
		if (rc < 0) {
			return;
		}

		/* Flush the FIFO by disabling it. Save current mode for after the reset. */
		uint8_t fifo_mode = data->fifo_mode;
		uint8_t en_temp_read = data->en_temp_read;
		uint16_t water_mark_lvl = data->water_mark_lvl;

		rc = adxl362_fifo_setup(dev, ADXL362_FIFO_DISABLE, 0, 0);
		if (rc < 0) {
			return;
		}

		if (fifo_mode == ADXL362_FIFO_DISABLE) {
			fifo_mode = ADXL362_FIFO_STREAM;
		}

		if (en_temp_read == 0) {
			en_temp_read = 1;
		}

		if (water_mark_lvl == 0) {
			water_mark_lvl = 0x80;
		}

		rc = adxl362_fifo_setup(dev, fifo_mode, water_mark_lvl, en_temp_read);
		if (rc < 0) {
			return;
		}
	}

	rc = gpio_pin_interrupt_configure_dt(&cfg_362->interrupt,
					      GPIO_INT_EDGE_TO_ACTIVE);
	if (rc < 0) {
		return;
	}

	data->sqe = iodev_sqe;
}

static void adxl362_fifo_read_cb(struct rtio *rtio_ctx, const struct rtio_sqe *sqe, void *arg)
{
	const struct device *dev = (const struct device *)arg;
	const struct adxl362_config *cfg = (const struct adxl362_config *)dev->config;
	struct rtio_iodev_sqe *iodev_sqe = sqe->userdata;

	rtio_iodev_sqe_ok(iodev_sqe, 0);

	gpio_pin_interrupt_configure_dt(&cfg->interrupt, GPIO_INT_EDGE_TO_ACTIVE);
}

static void adxl362_process_fifo_samples_cb(struct rtio *r, const struct rtio_sqe *sqr, void *arg)
{
	const struct device *dev = (const struct device *)arg;
	struct adxl362_data *data = (struct adxl362_data *)dev->data;
	const struct adxl362_config *cfg = (const struct adxl362_config *)dev->config;
	struct rtio_iodev_sqe *current_sqe = data->sqe;
	uint16_t fifo_samples = ((data->fifo_ent[0]) | ((data->fifo_ent[1] & 0x3) << 8));
	size_t sample_set_size = 6;

	if (data->en_temp_read) {
		sample_set_size += 2;
	}

	uint16_t fifo_bytes = fifo_samples * 2 /*sample size*/;

	data->sqe = NULL;

	/* Not inherently an underrun/overrun as we may have a buffer to fill next time */
	if (current_sqe == NULL) {
		LOG_ERR("No pending SQE");
		gpio_pin_interrupt_configure_dt(&cfg->interrupt, GPIO_INT_EDGE_TO_ACTIVE);
		return;
	}

	const size_t min_read_size = sizeof(struct adxl362_fifo_data) + sample_set_size;
	const size_t ideal_read_size = sizeof(struct adxl362_fifo_data) + fifo_bytes;

	uint8_t *buf;
	uint32_t buf_len;

	if (rtio_sqe_rx_buf(current_sqe, min_read_size, ideal_read_size, &buf, &buf_len) != 0) {
		LOG_ERR("Failed to get buffer");
		rtio_iodev_sqe_err(current_sqe, -ENOMEM);
		gpio_pin_interrupt_configure_dt(&cfg->interrupt, GPIO_INT_EDGE_TO_ACTIVE);
		return;
	}
	LOG_DBG("Requesting buffer [%u, %u] got %u", (unsigned int)min_read_size,
		(unsigned int)ideal_read_size, buf_len);

	/* Read FIFO and call back to rtio with rtio_sqe completion */
	struct adxl362_fifo_data *hdr = (struct adxl362_fifo_data *) buf;

	hdr->is_fifo = 1;
	hdr->timestamp = data->timestamp;
	hdr->int_status = data->status;
	hdr->selected_range = data->selected_range;
	hdr->has_tmp = data->en_temp_read;

	uint32_t buf_avail = buf_len;

	buf_avail -= sizeof(*hdr);

	uint32_t read_len = MIN(fifo_bytes, buf_avail);
	uint32_t pkts = read_len / sample_set_size;

	read_len = pkts * sample_set_size;

	((struct adxl362_fifo_data *)buf)->fifo_byte_count = read_len;

	__ASSERT_NO_MSG(read_len % sample_set_size == 0);

	uint8_t *read_buf = buf + sizeof(*hdr);

	/* Flush completions */
	struct rtio_cqe *cqe;
	int res = 0;

	do {
		cqe = rtio_cqe_consume(data->rtio_ctx);
		if (cqe != NULL) {
			if ((cqe->result < 0 && res == 0)) {
				LOG_ERR("Bus error: %d", cqe->result);
				res = cqe->result;
			}
			rtio_cqe_release(data->rtio_ctx, cqe);
		}
	} while (cqe != NULL);

	/* Bail/cancel attempt to read sensor on any error */
	if (res != 0) {
		rtio_iodev_sqe_err(current_sqe, res);
		return;
	}

	/* Setup new rtio chain to read the fifo data and report then check the
	 * result
	 */
	struct rtio_sqe *write_fifo_addr = rtio_sqe_acquire(data->rtio_ctx);
	struct rtio_sqe *read_fifo_data = rtio_sqe_acquire(data->rtio_ctx);
	struct rtio_sqe *complete_op = rtio_sqe_acquire(data->rtio_ctx);
	const uint8_t reg_addr = ADXL362_READ_FIFO;

	rtio_sqe_prep_tiny_write(write_fifo_addr, data->iodev, RTIO_PRIO_NORM, &reg_addr, 1, NULL);
	write_fifo_addr->flags = RTIO_SQE_TRANSACTION;
	rtio_sqe_prep_read(read_fifo_data, data->iodev, RTIO_PRIO_NORM, read_buf, read_len,
			   current_sqe);
	read_fifo_data->flags = RTIO_SQE_CHAINED;
	rtio_sqe_prep_callback(complete_op, adxl362_fifo_read_cb, (void *)dev, current_sqe);

	rtio_submit(data->rtio_ctx, 0);
}

static void adxl362_process_status_cb(struct rtio *r, const struct rtio_sqe *sqr, void *arg)
{
	const struct device *dev = (const struct device *)arg;
	struct adxl362_data *data = (struct adxl362_data *) dev->data;
	const struct adxl362_config *cfg = (const struct adxl362_config *) dev->config;
	struct rtio_iodev_sqe *current_sqe = data->sqe;
	struct sensor_read_config *read_config;
	uint8_t status = data->status;

	if (data->sqe == NULL) {
		return;
	}

	read_config = (struct sensor_read_config *)data->sqe->sqe.iodev->data;

	if (read_config == NULL) {
		return;
	}

	if (read_config->is_streaming == false) {
		return;
	}

	gpio_pin_interrupt_configure_dt(&cfg->interrupt, GPIO_INT_DISABLE);

	struct sensor_stream_trigger *fifo_wmark_cfg = NULL;
	struct sensor_stream_trigger *fifo_full_cfg = NULL;

	for (int i = 0; i < read_config->count; ++i) {
		if (read_config->triggers[i].trigger == SENSOR_TRIG_FIFO_WATERMARK) {
			fifo_wmark_cfg = &read_config->triggers[i];
			continue;
		}

		if (read_config->triggers[i].trigger == SENSOR_TRIG_FIFO_FULL) {
			fifo_full_cfg = &read_config->triggers[i];
			continue;
		}
	}

	bool fifo_full_irq = false;
	bool fifo_wmark_irq = false;

	if ((fifo_wmark_cfg != NULL) && ADXL362_STATUS_CHECK_FIFO_WTR(status)) {
		fifo_wmark_irq = true;
	}

	if ((fifo_full_cfg != NULL) && ADXL362_STATUS_CHECK_FIFO_OVR(status)) {
		fifo_full_irq = true;
	}

	if (!fifo_full_irq && !fifo_wmark_irq) {
		gpio_pin_interrupt_configure_dt(&cfg->interrupt, GPIO_INT_EDGE_TO_ACTIVE);
		return;
	}

	/* Flush completions */
	struct rtio_cqe *cqe;
	int res = 0;

	do {
		cqe = rtio_cqe_consume(data->rtio_ctx);
		if (cqe != NULL) {
			if ((cqe->result < 0 && res == 0)) {
				LOG_ERR("Bus error: %d", cqe->result);
				res = cqe->result;
			}
			rtio_cqe_release(data->rtio_ctx, cqe);
		}
	} while (cqe != NULL);

	/* Bail/cancel attempt to read sensor on any error */
	if (res != 0) {
		rtio_iodev_sqe_err(current_sqe, res);
		return;
	}

	enum sensor_stream_data_opt data_opt;

	if ((fifo_wmark_cfg != NULL) && (fifo_full_cfg == NULL)) {
		data_opt = fifo_wmark_cfg->opt;
	} else if ((fifo_wmark_cfg == NULL) && (fifo_full_cfg != NULL)) {
		data_opt = fifo_full_cfg->opt;
	} else {
		data_opt = MIN(fifo_wmark_cfg->opt, fifo_full_cfg->opt);
	}

	if (data_opt == SENSOR_STREAM_DATA_NOP || data_opt == SENSOR_STREAM_DATA_DROP) {
		uint8_t *buf;
		uint32_t buf_len;

		/* Clear streaming_sqe since we're done with the call */
		data->sqe = NULL;
		if (rtio_sqe_rx_buf(current_sqe, sizeof(struct adxl362_fifo_data),
				    sizeof(struct adxl362_fifo_data), &buf, &buf_len) != 0) {
			rtio_iodev_sqe_err(current_sqe, -ENOMEM);
			gpio_pin_interrupt_configure_dt(&cfg->interrupt, GPIO_INT_EDGE_TO_ACTIVE);
			return;
		}

		struct adxl362_fifo_data *rx_data = (struct adxl362_fifo_data *)buf;

		memset(buf, 0, buf_len);
		rx_data->is_fifo = 1;
		rx_data->timestamp = data->timestamp;
		rx_data->int_status = status;
		rx_data->fifo_byte_count = 0;
		rtio_iodev_sqe_ok(current_sqe, 0);

		if (data_opt == SENSOR_STREAM_DATA_DROP) {
			/* Flush the FIFO by disabling it. Save current mode for after the reset. */
			adxl362_fifo_flush_rtio(dev);
			return;
		}

		gpio_pin_interrupt_configure_dt(&cfg->interrupt, GPIO_INT_EDGE_TO_ACTIVE);
		return;
	}

	struct rtio_sqe *write_fifo_addr = rtio_sqe_acquire(data->rtio_ctx);
	struct rtio_sqe *read_fifo_data = rtio_sqe_acquire(data->rtio_ctx);
	struct rtio_sqe *complete_op = rtio_sqe_acquire(data->rtio_ctx);
	const uint8_t reg[2] = {ADXL362_READ_REG, ADXL362_REG_FIFO_L};

	rtio_sqe_prep_tiny_write(write_fifo_addr, data->iodev, RTIO_PRIO_NORM, reg, 2, NULL);
	write_fifo_addr->flags = RTIO_SQE_TRANSACTION;
	rtio_sqe_prep_read(read_fifo_data, data->iodev, RTIO_PRIO_NORM, data->fifo_ent, 2,
						current_sqe);
	read_fifo_data->flags = RTIO_SQE_CHAINED;
	rtio_sqe_prep_callback(complete_op, adxl362_process_fifo_samples_cb, (void *)dev,
							current_sqe);

	rtio_submit(data->rtio_ctx, 0);
}

void adxl362_stream_irq_handler(const struct device *dev)
{
	struct adxl362_data *data = (struct adxl362_data *) dev->data;

	if (data->sqe == NULL) {
		return;
	}

	data->timestamp = k_ticks_to_ns_floor64(k_uptime_ticks());

	struct rtio_sqe *write_status_addr = rtio_sqe_acquire(data->rtio_ctx);
	struct rtio_sqe *read_status_reg = rtio_sqe_acquire(data->rtio_ctx);
	struct rtio_sqe *check_status_reg = rtio_sqe_acquire(data->rtio_ctx);
	const uint8_t reg[2] = {ADXL362_READ_REG, ADXL362_REG_STATUS};

	rtio_sqe_prep_tiny_write(write_status_addr, data->iodev, RTIO_PRIO_NORM, reg, 2, NULL);
	write_status_addr->flags = RTIO_SQE_TRANSACTION;
	rtio_sqe_prep_read(read_status_reg, data->iodev, RTIO_PRIO_NORM, &data->status, 1, NULL);
	read_status_reg->flags = RTIO_SQE_CHAINED;
	rtio_sqe_prep_callback(check_status_reg, adxl362_process_status_cb, (void *)dev, NULL);
	rtio_submit(data->rtio_ctx, 0);
}