Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/*
 * Copyright 2023 NXP
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Driver for NXP's IRQ_STEER IP.
 *
 * Below you may find some useful information that will help you better understand how the
 * driver works. The ">" sign is used to mark ideas that are considered important and should
 * be taken note of.
 *
 * 1) What is the IRQ_STEER IP?
 *	- in Zephyr terminology, the IRQ_STEER can be considered an interrupt aggregator. As such,
 *	its main goal is to multiplex multiple interrupt lines into a single/multiple ones.
 *
 * 2) How does the IRQ_STEER IP work?
 *	- below you may find a diagram meant to give you an intuition regarding the IP's structure
 *	and how it works (all of the information below is applicable to i.MX8MP but it can be
 *	extended to any NXP SoC using the IRQ_STEER IP):
 *
 *                 SYSTEM_INTID[0:159]
 *                        |
 *      MASK[0:4]------   |
 *                    |   |
 *                  +------+
 *                  |      |
 *                  |32 AND|
 *                  |      |
 *                  +------+
 *                        |
 *      SET[0:4]------    |
 *                   |    |
 *                  +------+
 *                  |      |
 *                  |32 OR |
 *                  |      |
 *                  +------+
 *                     |__________ STATUS[0:4]
 *                     |
 *                  +------+
 *                  |GROUP |
 *                  |  BY  |
 *                  |  64  |
 *                  +------+
 *                   |  | |
 *      _____________|  | |________________
 *      |               |                 |
 * MASTER_IN[0]    MASTER_IN[1]      MASTER_IN[2]
 *      |               |                 |
 *      |               |                 |
 *      |_____________  |  _______________|
 *                   |  | |
 *                  +------+
 *                  |      |
 *                  | AND  | ---------- MINTDIS[0:2]
 *                  |      |
 *                  +------+
 *                   |  | |
 *      _____________|  | |________________
 *      |               |                 |
 * MASTER_OUT[0]  MASTER_OUT[1]      MASTER_OUT[2]
 *
 *	- initially, all SYSTEM_INTID are grouped by 32 => 5 groups.
 *
 *	> each of these groups is controlled by a MASK, SET and STATUS index as follows:
 *
 *		MASK/SET/STATUS[0] => SYSTEM_INTID[159:128]
 *		MASK/SET/STATUS[1] => SYSTEM_INTID[127:96]
 *		MASK/SET/STATUS[2] => SYSTEM_INTID[95:64]
 *		MASK/SET/STATUS[3] => SYSTEM_INTID[63:32]
 *		MASK/SET/STATUS[4] => SYSTEM_INTID[31:0]
 *
 *      > after that, all SYSTEM_INTID are grouped by 64 as follows:
 *
 *		SYSTEM_INTID[159:96] => MASTER_IN[2]
 *              SYSTEM_INTID[95:32] => MASTER_IN[1]
 *              SYSTEM_INTID[31:0] => MASTER_IN[0]
 *
 *      note: MASTER_IN[0] is only responsible for 32 interrupts
 *
 *      > the value of MASTER_IN[x] is obtained by OR'ing the input interrupt lines.
 *
 *      > the value of MASTER_OUT[x] is obtained by AND'ing MASTER_IN[x] with !MINTDIS[x].
 *
 *      - whenever a SYSTEM_INTID is asserted, its corresponding MASTER_OUT signal will also
 *	be asserted, thus signaling the target processor.
 *
 *	> please note the difference between an IRQ_STEER channel and an IRQ_STEER master output.
 *	An IRQ_STEER channel refers to an IRQ_STEER instance (e.g: the DSP uses IRQ_STEER channel
 *	0 a.k.a instance 0). An IRQ_STEER channel has multiple master outputs. For example, in
 *	the case of i.MX8MP each IRQ_STEER channel has 3 master outputs since an IRQ_STEER channel
 *	routes 160 interrupts (32 for first master output, 64 for second master output, and 64 for
 *	the third master output).
 *
 * 3) Using Zephyr's multi-level interrupt support
 *	- since Zephyr supports organizing interrupts on multiple levels, we can use this to
 *	separate the interrupts in 2 levels:
 *		1) LEVEL 1 INTERRUPTS
 *			- these are the interrupts that go directly to the processor (for example,
 *			on i.MX8MP the MU can directly assert the DSP's interrupt line 7)
 *
 *		2) LEVEL 2 INTERRUPTS
 *			- these interrupts go through IRQ_STEER and are signaled by a single
 *			processor interrupt line.
 *			- e.g: for i.MX8MP, INTID 34 (SDMA3) goes through IRQ_STEER and is signaled
 *			to the DSP by INTID 20 which is a direct interrupt (or LEVEL 1 interrupt).
 *
 *	- the following diagram (1) shows the interrupt organization on i.MX8MP:
 *	                                                        +------------+
 *								|            |
 *	      SYSTEM_INTID[31:0] ------ IRQ_STEER_MASTER_0 ----	| 19         |
 *								|            |
 *	      SYSTEM_INTID[95:32] ----- IRQ_STEER_MASTER_1 ----	| 20  DSP    |
 *								|            |
 *	      SYSTEM_INTID[159:96] ---- IRQ_STEER_MASTER_2 ----	| 21         |
 *								|            |
 *								+------------+
 *
 *	- as such, asserting a system interrupt will lead to asserting its corresponding DSP
 *	interrupt line (for example, if system interrupt 34 is asserted, that would lead to
 *	interrupt 20 being asserted)
 *
 *	- in the above diagram, SYSTEM_INTID[x] are LEVEL 2 interrupts, while 19, 20, and 21 are
 *	LEVEL 1 interrupts.
 *
 *	- INTID 19 is the parent of SYSTEM_INTID[31:0] and so on.
 *
 *	> before going into how the INTIDs are encoded, we need to distinguish between 3 types of
 *	INTIDs:
 *		1) System INTIDs
 *			- these are the values that can be found in NXP's TRMs for different
 *			SoCs (usually they have the same IDs as the GIC SPIs)
 *			- for example, INTID 34 is a system INTID for SDMA3 (i.MX8MP).
 *
 *		2) Zephyr INTIDs
 *			- these are the Zephyr-specific encodings of the system INTIDs.
 *			- these are used to encode multi-level interrupts (for more information
 *			please see [1])
 *			> if you need to register an interrupt dynamically, you need to use this
 *			encoding when specifying the interrupt.
 *
 *		3) DTS INTIDs
 *			- these are the encodings of the system INTIDs used in the DTS.
 *			- all of these INTIDs are relative to IRQ_STEER's MASTER_OUTs.
 *
 *	> encoding an INTID:
 *		1) SYSTEM INTID => ZEPHYR INTID
 *			- the following steps need to be performed:
 *
 *				a) Find out which IRQ_STEER MASTER
 *				is in charge of aggregating this interrupt.
 *					* for instance, SYSTEM_INTID 34 (SDMA3 on i.MX8MP) is
 *					aggregated by MASTER 1 as depicted in diagram (1).
 *
 *				b) After finding the MASTER aggregator, you need
 *				to find the corresponding parent interrupt.
 *					* for example, SYSTEM_INTID 34 (SDMA3 on i.MX8MP) is
 *					aggregated by MASTER 1, which has the parent INTID 20
 *					as depicted in diagram (1) => PARENT_INTID(34) = 20.
 *
 *				c) Find the INTID relative to the MASTER aggregator. This is done
 *				by subtracting the number of interrupts each of the previous
 *				master aggregators is in charge of. If the master aggregator is
 *				MASTER 0 then RELATIVE_INTID=SYSTEM_INTID.
 *					* for example, SYSTEM_ID 34 is aggregated by MASTER 1.
 *					As such, we need to subtract 32 from 34 (because the
 *					previous master - MASTER 0 - is in charge of aggregating
 *					32 interrupts) => RELATIVE_INTID(34) = 2.
 *
 *					* generally speaking, RELATIVE_INTID can be computed using
 *					the following formula (assuming SYSTEM_INTID belongs to
 *					MASTER y):
 *						RELATIVE_INTID(x) = x -
 *							\sum{i=0}^{y - 1} GET_MASTER_INT_NUM(i)
 *					where:
 *						1) GET_MASTER_INT_NUM(x) computes the number of
 *						interrupts master x aggregates
 *						2) x is the system interrupt
 *
 *					* to make sure your computation is correct use the
 *					following restriction:
 *						0 <= RELATIVE_INTID(x) < GET_MASTER_INT_NUM(y)
 *
 *				d) To the obtained RELATIVE_INTID you need to add the value of 1,
 *				left shift the result by the number of bits used to encode the
 *				level 1 interrupts (see [1] for details) and OR the parent ID.
 *					* for example, RELATIVE_INTID(34) = 2 (i.MX8MP),
 *					PARENT_INTID(34) = 20 => ZEPHYR_INTID = ((2 + 1) << 8) | 20
 *
 *					* generally speaking, ZEPHYR_INTID can be computed using
 *					the following formula:
 *						ZEPHYR_INTID(x) = ((RELATIVE_INTID(x) + 1) <<
 *						NUM_LVL1_BITS) | PARENT_INTID(x)
 *					where:
 *						1) RELATIVE_INTID(x) computes the relative INTID
 *						of system interrupt x (step c).
 *
 *						2) NUM_LVL1_BITS is the number of bits used to
 *						encode level 1 interrupts.
 *
 *						3) PARENT_INTID(x) computes the parent INTID of a
 *						system interrupt x (step b)
 *
 *			- all of these steps are performed by to_zephyr_irq().
 *			> for interrupts aggregated by MASTER 0 you may skip step c) as
 *			RELATIVE_INTID(x) = x.
 *
 *		2) SYSTEM INTID => DTS INTID
 *			- for this you just have to compute RELATIVE_INTID as described above in
 *			step c).
 *			- for example, if an IP uses INTID 34 you'd write its interrupts property
 *			as follows (i.MX8MP):
 *				interrupts = <&master1 2>;
 *
 * 4) Notes and comments
 *	> PLEASE DON'T MISTAKE THE ZEPHYR MULTI-LEVEL INTERRUPT ORGANIZATION WITH THE XTENSA ONE.
 *	THEY ARE DIFFERENT THINGS.
 *
 * [1]: https://docs.zephyrproject.org/latest/kernel/services/interrupts.html#multi-level-interrupt-handling
 */

#include <zephyr/device.h>
#include <zephyr/devicetree/interrupt_controller.h>
#include <zephyr/irq.h>
#include <fsl_irqsteer.h>
#include <zephyr/cache.h>
#include <zephyr/sw_isr_table.h>
#include <zephyr/logging/log.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/pm/device.h>

#include "sw_isr_common.h"

LOG_MODULE_REGISTER(nxp_irqstr);

/* used for driver binding */
#define DT_DRV_COMPAT nxp_irqsteer_intc

/* macros used for DTS parsing */
#define _IRQSTEER_REGISTER_DISPATCHER(node_id)				\
	IRQ_CONNECT(DT_IRQN(node_id),					\
		    DT_IRQ(node_id, priority),				\
		    irqsteer_isr_dispatcher,				\
		    &dispatchers[DT_REG_ADDR(node_id)],			\
		    0)

#define _IRQSTEER_DECLARE_DISPATCHER(node_id)				\
{									\
	.dev = DEVICE_DT_GET(DT_PARENT(node_id)),			\
	.master_index = DT_REG_ADDR(node_id),				\
	.irq = DT_IRQN(node_id),					\
}

#define IRQSTEER_DECLARE_DISPATCHERS(parent_id)\
	DT_FOREACH_CHILD_STATUS_OKAY_SEP(parent_id, _IRQSTEER_DECLARE_DISPATCHER, (,))

#define IRQSTEER_REGISTER_DISPATCHERS(parent_id)\
	DT_FOREACH_CHILD_STATUS_OKAY_SEP(parent_id, _IRQSTEER_REGISTER_DISPATCHER, (;))

/* utility macros */
#define UINT_TO_IRQSTEER(x) ((IRQSTEER_Type *)(x))
#define DISPATCHER_REGMAP(disp) \
	(((const struct irqsteer_config *)disp->dev->config)->regmap_phys)

struct irqsteer_config {
	uint32_t regmap_phys;
	uint32_t regmap_size;
	struct irqsteer_dispatcher *dispatchers;
};

struct irqsteer_dispatcher {
	const struct device *dev;
	/* which set of interrupts is the dispatcher in charge of? */
	uint32_t master_index;
	/* which interrupt line is the dispatcher tied to? */
	uint32_t irq;
	/* reference count for all IRQs aggregated by dispatcher */
	uint8_t irq_refcnt[CONFIG_MAX_IRQ_PER_AGGREGATOR];
	/* dispatcher lock */
	struct k_spinlock lock;
	/* reference count for dispatcher */
	uint8_t refcnt;
};

static struct irqsteer_dispatcher dispatchers[] = {
	IRQSTEER_DECLARE_DISPATCHERS(DT_NODELABEL(irqsteer))
};

/* used to convert system INTID to zephyr INTID */
static int to_zephyr_irq(uint32_t regmap, uint32_t irq,
			 struct irqsteer_dispatcher *dispatcher)
{
	int i, idx;

	idx = irq;

	for (i = dispatcher->master_index - 1; i >= 0; i--) {
		idx -= IRQSTEER_GetMasterIrqCount(UINT_TO_IRQSTEER(regmap), i);
	}

	return irq_to_level_2(idx) | dispatcher->irq;
}

/* used to convert master-relative INTID to system INTID */
static int to_system_irq(uint32_t regmap, int irq, int master_index)
{
	int i;

	for (i = master_index - 1; i >= 0; i--) {
		irq += IRQSTEER_GetMasterIrqCount(UINT_TO_IRQSTEER(regmap), i);
	}

	return irq;
}

/* used to convert zephyr INTID to system INTID */
static int from_zephyr_irq(uint32_t regmap, uint32_t irq, uint32_t master_index)
{
	int i, idx;

	idx = irq;

	for (i = 0; i < master_index; i++) {
		idx += IRQSTEER_GetMasterIrqCount(UINT_TO_IRQSTEER(regmap), i);
	}

	return idx;
}

static void _irqstr_disp_enable_disable(struct irqsteer_dispatcher *disp,
					bool enable)
{
	uint32_t regmap = DISPATCHER_REGMAP(disp);

	if (enable) {
		xtensa_irq_enable(XTENSA_IRQ_NUMBER(disp->irq));

		IRQSTEER_EnableMasterInterrupt(UINT_TO_IRQSTEER(regmap), disp->irq);
	} else {
		IRQSTEER_DisableMasterInterrupt(UINT_TO_IRQSTEER(regmap), disp->irq);

		xtensa_irq_disable(XTENSA_IRQ_NUMBER(disp->irq));
	}
}

static void _irqstr_disp_get_unlocked(struct irqsteer_dispatcher *disp)
{
	int ret;

	if (disp->refcnt == UINT8_MAX) {
		LOG_WRN("disp for irq %d reference count reached limit", disp->irq);
		return;
	}

	if (!disp->refcnt) {
		ret = pm_device_runtime_get(disp->dev);
		if (ret < 0) {
			LOG_ERR("failed to enable PM resources: %d", ret);
			return;
		}

		_irqstr_disp_enable_disable(disp, true);
	}

	disp->refcnt++;

	LOG_DBG("get on disp for irq %d results in refcnt: %d",
		disp->irq, disp->refcnt);
}

static void _irqstr_disp_put_unlocked(struct irqsteer_dispatcher *disp)
{
	int ret;

	if (!disp->refcnt) {
		LOG_WRN("disp for irq %d already put", disp->irq);
		return;
	}

	disp->refcnt--;

	if (!disp->refcnt) {
		_irqstr_disp_enable_disable(disp, false);

		ret = pm_device_runtime_put(disp->dev);
		if (ret < 0) {
			LOG_ERR("failed to disable PM resources: %d", ret);
			return;
		}
	}

	LOG_DBG("put on disp for irq %d results in refcnt: %d",
		disp->irq, disp->refcnt);
}

static void _irqstr_enable_disable_irq(struct irqsteer_dispatcher *disp,
				       uint32_t system_irq, bool enable)
{
	uint32_t regmap = DISPATCHER_REGMAP(disp);

	if (enable) {
		IRQSTEER_EnableInterrupt(UINT_TO_IRQSTEER(regmap), system_irq);
	} else {
		IRQSTEER_DisableInterrupt(UINT_TO_IRQSTEER(regmap), system_irq);
	}
}

static void irqstr_request_irq_unlocked(struct irqsteer_dispatcher *disp,
					uint32_t zephyr_irq)
{
	uint32_t system_irq = from_zephyr_irq(DISPATCHER_REGMAP(disp),
					      zephyr_irq, disp->master_index);

#ifndef CONFIG_SHARED_INTERRUPTS
	if (disp->irq_refcnt[zephyr_irq]) {
		LOG_WRN("irq %d already requested", system_irq);
		return;
	}
#endif /* CONFIG_SHARED_INTERRUPTS */

	if (disp->irq_refcnt[zephyr_irq] == UINT8_MAX) {
		LOG_WRN("irq %d reference count reached limit", system_irq);
		return;
	}

	if (!disp->irq_refcnt[zephyr_irq]) {
		_irqstr_disp_get_unlocked(disp);
		_irqstr_enable_disable_irq(disp, system_irq, true);
	}

	disp->irq_refcnt[zephyr_irq]++;

	LOG_DBG("requested irq %d has refcount %d",
		system_irq, disp->irq_refcnt[zephyr_irq]);
}

static void irqstr_release_irq_unlocked(struct irqsteer_dispatcher *disp,
					uint32_t zephyr_irq)
{
	uint32_t system_irq = from_zephyr_irq(DISPATCHER_REGMAP(disp),
					      zephyr_irq, disp->master_index);

	if (!disp->irq_refcnt[zephyr_irq]) {
		LOG_WRN("irq %d already released", system_irq);
		return;
	}

	disp->irq_refcnt[zephyr_irq]--;

	if (!disp->irq_refcnt[zephyr_irq]) {
		_irqstr_enable_disable_irq(disp, system_irq, false);
		_irqstr_disp_put_unlocked(disp);
	}

	LOG_DBG("released irq %d has refcount %d",
		system_irq, disp->irq_refcnt[zephyr_irq]);
}

void z_soc_irq_enable_disable(uint32_t irq, bool enable)
{
	uint32_t parent_irq;
	int i, level2_irq;

	if (irq_get_level(irq) == 1) {
		/* LEVEL 1 interrupts are DSP direct */
		if (enable) {
			xtensa_irq_enable(XTENSA_IRQ_NUMBER(irq));
		} else {
			xtensa_irq_disable(XTENSA_IRQ_NUMBER(irq));
		}
		return;
	}

	parent_irq = irq_parent_level_2(irq);
	level2_irq = irq_from_level_2(irq);

	/* find dispatcher responsible for this interrupt */
	for (i = 0; i < ARRAY_SIZE(dispatchers); i++) {
		if (dispatchers[i].irq != parent_irq) {
			continue;
		}

		K_SPINLOCK(&dispatchers[i].lock) {
			if (enable) {
				irqstr_request_irq_unlocked(&dispatchers[i], level2_irq);
			} else {
				irqstr_release_irq_unlocked(&dispatchers[i], level2_irq);
			}
		}

		return;
	}
}

void z_soc_irq_enable(uint32_t irq)
{
	z_soc_irq_enable_disable(irq, true);
}

void z_soc_irq_disable(uint32_t irq)
{
	z_soc_irq_enable_disable(irq, false);
}

int z_soc_irq_is_enabled(unsigned int irq)
{
	uint32_t parent_irq;
	int i;
	const struct irqsteer_config *cfg;
	bool enabled;

	if (irq_get_level(irq) == 1) {
		/* LEVEL 1 interrupts are DSP direct */
		return xtensa_irq_is_enabled(XTENSA_IRQ_NUMBER(irq));
	}

	parent_irq = irq_parent_level_2(irq);
	enabled = false;

	/* find dispatcher responsible for this interrupt */
	for (i = 0; i < ARRAY_SIZE(dispatchers); i++) {
		if (dispatchers[i].irq != parent_irq) {
			continue;
		}

		cfg = dispatchers[i].dev->config;

		K_SPINLOCK(&dispatchers[i].lock) {
			enabled = dispatchers[i].irq_refcnt[irq_from_level_2(irq)];
		}

		return enabled;
	}

	return false;
}


static void irqsteer_isr_dispatcher(const void *data)
{
	struct irqsteer_dispatcher *dispatcher;
	const struct irqsteer_config *cfg;
	uint32_t table_idx;
	int system_irq, zephyr_irq, i;
	uint64_t status;

	dispatcher = (struct irqsteer_dispatcher *)data;
	cfg = dispatcher->dev->config;

	/* fetch master interrupts status */
	status = IRQSTEER_GetMasterInterruptsStatus(UINT_TO_IRQSTEER(cfg->regmap_phys),
						    dispatcher->master_index);

	for (i = 0; status; i++) {
		/* if bit 0 is set then that means relative INTID i is asserted */
		if (status & 1) {
			/* convert master-relative INTID to a system INTID */
			system_irq = to_system_irq(cfg->regmap_phys, i,
						   dispatcher->master_index);

			/* convert system INTID to a Zephyr INTID */
			zephyr_irq = to_zephyr_irq(cfg->regmap_phys, system_irq, dispatcher);

			/* compute index in the SW ISR table */
			table_idx = z_get_sw_isr_table_idx(zephyr_irq);

			/* call child's ISR */
			_sw_isr_table[table_idx].isr(_sw_isr_table[table_idx].arg);
		}

		status >>= 1;
	}
}

__maybe_unused static int irqstr_pm_action(const struct device *dev,
					   enum pm_device_action action)
{
	/* nothing to be done here */
	return 0;
}

static int irqsteer_init(const struct device *dev)
{
	IRQSTEER_REGISTER_DISPATCHERS(DT_NODELABEL(irqsteer));

	return pm_device_runtime_enable(dev);
}


/* TODO: do we need to add support for MMU-based SoCs? */
static struct irqsteer_config irqsteer_config = {
	.regmap_phys = DT_REG_ADDR(DT_NODELABEL(irqsteer)),
	.regmap_size = DT_REG_SIZE(DT_NODELABEL(irqsteer)),
	.dispatchers = dispatchers,
};

/* assumption: only 1 IRQ_STEER instance */
PM_DEVICE_DT_INST_DEFINE(0, irqstr_pm_action);
DEVICE_DT_INST_DEFINE(0,
		      &irqsteer_init,
		      PM_DEVICE_DT_INST_GET(0),
		      NULL, &irqsteer_config,
		      PRE_KERNEL_1, CONFIG_INTC_INIT_PRIORITY,
		      NULL);

#define NXP_IRQSTEER_MASTER_IRQ_ENTRY_DEF(node_id)                                                 \
	IRQ_PARENT_ENTRY_DEFINE(CONCAT(nxp_irqsteer_master_, DT_NODE_CHILD_IDX(node_id)), NULL,    \
				DT_IRQN(node_id), INTC_CHILD_ISR_TBL_OFFSET(node_id),              \
				DT_INTC_GET_AGGREGATOR_LEVEL(node_id));

DT_INST_FOREACH_CHILD_STATUS_OKAY(0, NXP_IRQSTEER_MASTER_IRQ_ENTRY_DEF);