Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 | /* * Copyright (c) 2018 Aurelien Jarno * Copyright (c) 2018 Yong Jin * * SPDX-License-Identifier: Apache-2.0 */ #include <zephyr/kernel.h> #include <zephyr/device.h> #include <string.h> #include <zephyr/drivers/flash.h> #include <zephyr/init.h> #include <zephyr/sys/barrier.h> #include <soc.h> #include "flash_stm32.h" bool flash_stm32_valid_range(const struct device *dev, off_t offset, uint32_t len, bool write) { ARG_UNUSED(write); return flash_stm32_range_exists(dev, offset, len); } static inline void flush_cache(FLASH_TypeDef *regs) { if (regs->ACR & FLASH_ACR_ARTEN) { regs->ACR &= ~FLASH_ACR_ARTEN; /* Reference manual: * The ART cache can be flushed only if the ART accelerator * is disabled (ARTEN = 0). */ regs->ACR |= FLASH_ACR_ARTRST; regs->ACR &= ~FLASH_ACR_ARTRST; regs->ACR |= FLASH_ACR_ARTEN; } } static int write_byte(const struct device *dev, off_t offset, uint8_t val) { FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); int rc; /* if the control register is locked, do not fail silently */ if (regs->CR & FLASH_CR_LOCK) { return -EIO; } rc = flash_stm32_wait_flash_idle(dev); if (rc < 0) { return rc; } /* prepare to write a single byte */ regs->CR = (regs->CR & CR_PSIZE_MASK) | FLASH_PSIZE_BYTE | FLASH_CR_PG; /* flush the register write */ barrier_dsync_fence_full(); /* write the data */ *((uint8_t *) offset + FLASH_STM32_BASE_ADDRESS) = val; /* flush the register write */ barrier_dsync_fence_full(); rc = flash_stm32_wait_flash_idle(dev); regs->CR &= (~FLASH_CR_PG); return rc; } static int erase_sector(const struct device *dev, uint32_t sector) { FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); int rc; /* if the control register is locked, do not fail silently */ if (regs->CR & FLASH_CR_LOCK) { return -EIO; } rc = flash_stm32_wait_flash_idle(dev); if (rc < 0) { return rc; } /* Dual bank mode, SNB MSB selects the bank2, * others select sector, so we remap sector number. */ #if defined(FLASH_OPTCR_nDBANK) && FLASH_SECTOR_TOTAL == 24 #if CONFIG_FLASH_SIZE == 2048 if (sector > 11) { sector += 4U; } #elif CONFIG_FLASH_SIZE == 1024 if (sector > 7) { sector += 8U; } #endif /* CONFIG_FLASH_SIZE */ #endif /* defined(FLASH_OPTCR_nDBANK) && FLASH_SECTOR_TOTAL == 24 */ regs->CR = (regs->CR & ~(FLASH_CR_PSIZE | FLASH_CR_SNB)) | FLASH_PSIZE_BYTE | FLASH_CR_SER | (sector << FLASH_CR_SNB_Pos) | FLASH_CR_STRT; /* flush the register write */ barrier_dsync_fence_full(); rc = flash_stm32_wait_flash_idle(dev); regs->CR &= ~(FLASH_CR_SER | FLASH_CR_SNB); return rc; } int flash_stm32_block_erase_loop(const struct device *dev, unsigned int offset, unsigned int len) { struct flash_pages_info info; uint32_t start_sector, end_sector; uint32_t i; int rc = 0; rc = flash_get_page_info_by_offs(dev, offset, &info); if (rc) { return rc; } start_sector = info.index; rc = flash_get_page_info_by_offs(dev, offset + len - 1, &info); if (rc) { return rc; } end_sector = info.index; for (i = start_sector; i <= end_sector; i++) { rc = erase_sector(dev, i); if (rc < 0) { break; } } return rc; } int flash_stm32_write_range(const struct device *dev, unsigned int offset, const void *data, unsigned int len) { int i, rc = 0; for (i = 0; i < len; i++, offset++) { rc = write_byte(dev, offset, ((const uint8_t *) data)[i]); if (rc < 0) { return rc; } } return rc; } static __unused int write_optb(const struct device *dev, uint32_t mask, uint32_t value) { FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); int rc; if (regs->OPTCR & FLASH_OPTCR_OPTLOCK) { return -EIO; } if ((regs->OPTCR & mask) == value) { return 0; } rc = flash_stm32_wait_flash_idle(dev); if (rc < 0) { return rc; } regs->OPTCR = (regs->OPTCR & ~mask) | value; regs->OPTCR |= FLASH_OPTCR_OPTSTRT; /* Make sure previous write is completed. */ barrier_dsync_fence_full(); return flash_stm32_wait_flash_idle(dev); } #if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION) uint8_t flash_stm32_get_rdp_level(const struct device *dev) { FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); return (regs->OPTCR & FLASH_OPTCR_RDP_Msk) >> FLASH_OPTCR_RDP_Pos; } void flash_stm32_set_rdp_level(const struct device *dev, uint8_t level) { write_optb(dev, FLASH_OPTCR_RDP_Msk, (uint32_t)level << FLASH_OPTCR_RDP_Pos); } #endif /* CONFIG_FLASH_STM32_READOUT_PROTECTION */ /* Some SoC can run in single or dual bank mode, others can't. * Different SoC flash layouts are specified in various reference * manuals, but the flash layout for a given number of sectors is * consistent across these manuals. The number of sectors is given * by the HAL as FLASH_SECTOR_TOTAL. And some SoC that with same * FLASH_SECTOR_TOTAL have different flash size. * * In case of 8 sectors and 24 sectors we need to differentiate * between two cases by using the memory size. * In case of 24 sectors we need to check if the SoC is running * in single or dual bank mode. */ #ifndef FLASH_SECTOR_TOTAL #error "Unknown flash layout" #elif FLASH_SECTOR_TOTAL == 2 static const struct flash_pages_layout stm32f7_flash_layout[] = { /* RM0385, table 4: STM32F750xx */ {.pages_count = 2, .pages_size = KB(32)}, }; #elif FLASH_SECTOR_TOTAL == 4 static const struct flash_pages_layout stm32f7_flash_layout[] = { /* RM0431, table 4: STM32F730xx */ {.pages_count = 4, .pages_size = KB(16)}, }; #elif FLASH_SECTOR_TOTAL == 8 #if CONFIG_FLASH_SIZE == 512 static const struct flash_pages_layout stm32f7_flash_layout[] = { /* RM0431, table 3: STM32F72xxx and STM32F732xx/F733xx */ {.pages_count = 4, .pages_size = KB(16)}, {.pages_count = 1, .pages_size = KB(64)}, {.pages_count = 3, .pages_size = KB(128)}, }; #elif CONFIG_FLASH_SIZE == 1024 static const struct flash_pages_layout stm32f7_flash_layout[] = { /* RM0385, table 3: STM32F756xx and STM32F74xxx */ {.pages_count = 4, .pages_size = KB(32)}, {.pages_count = 1, .pages_size = KB(128)}, {.pages_count = 3, .pages_size = KB(256)}, }; #endif /* CONFIG_FLASH_SIZE */ #elif FLASH_SECTOR_TOTAL == 24 static const struct flash_pages_layout stm32f7_flash_layout_single_bank[] = { /* RM0410, table 3: STM32F76xxx and STM32F77xxx in single bank */ {.pages_count = 4, .pages_size = KB(32)}, {.pages_count = 1, .pages_size = KB(128)}, {.pages_count = 7, .pages_size = KB(256)}, }; static const struct flash_pages_layout stm32f7_flash_layout_dual_bank[] = { /* RM0410, table 4: STM32F76xxx and STM32F77xxx in dual bank */ {.pages_count = 4, .pages_size = KB(16)}, {.pages_count = 1, .pages_size = KB(64)}, {.pages_count = 7, .pages_size = KB(128)}, {.pages_count = 4, .pages_size = KB(16)}, {.pages_count = 1, .pages_size = KB(64)}, {.pages_count = 7, .pages_size = KB(128)}, }; #else #error "Unknown flash layout" #endif/* !defined(FLASH_SECTOR_TOTAL) */ void flash_stm32_page_layout(const struct device *dev, const struct flash_pages_layout **layout, size_t *layout_size) { #if FLASH_OPTCR_nDBANK if (FLASH_STM32_REGS(dev)->OPTCR & FLASH_OPTCR_nDBANK) { *layout = stm32f7_flash_layout_single_bank; *layout_size = ARRAY_SIZE(stm32f7_flash_layout_single_bank); } else { *layout = stm32f7_flash_layout_dual_bank; *layout_size = ARRAY_SIZE(stm32f7_flash_layout_dual_bank); } #else ARG_UNUSED(dev); *layout = stm32f7_flash_layout; *layout_size = ARRAY_SIZE(stm32f7_flash_layout); #endif } |