Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
/*
 * Copyright (c) 2010-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Kernel thread support
 *
 * This module provides general purpose thread support.
 */

#include <zephyr/kernel.h>
#include <zephyr/spinlock.h>
#include <zephyr/sys/math_extras.h>
#include <zephyr/sys_clock.h>
#include <ksched.h>
#include <kthread.h>
#include <wait_q.h>
#include <zephyr/internal/syscall_handler.h>
#include <kernel_internal.h>
#include <kswap.h>
#include <zephyr/init.h>
#include <zephyr/tracing/tracing.h>
#include <string.h>
#include <stdbool.h>
#include <zephyr/sys/check.h>
#include <zephyr/random/random.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/logging/log.h>
#include <zephyr/llext/symbol.h>
#include <zephyr/sys/iterable_sections.h>

LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);

#ifdef CONFIG_OBJ_CORE_THREAD
static struct k_obj_type  obj_type_thread;

#ifdef CONFIG_OBJ_CORE_STATS_THREAD
static struct k_obj_core_stats_desc  thread_stats_desc = {
	.raw_size = sizeof(struct k_cycle_stats),
	.query_size = sizeof(struct k_thread_runtime_stats),
	.raw   = z_thread_stats_raw,
	.query = z_thread_stats_query,
	.reset = z_thread_stats_reset,
	.disable = z_thread_stats_disable,
	.enable  = z_thread_stats_enable,
};
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */

static int init_thread_obj_core_list(void)
{
	/* Initialize mem_slab object type */

#ifdef CONFIG_OBJ_CORE_THREAD
	z_obj_type_init(&obj_type_thread, K_OBJ_TYPE_THREAD_ID,
			offsetof(struct k_thread, obj_core));
#endif /* CONFIG_OBJ_CORE_THREAD */

#ifdef CONFIG_OBJ_CORE_STATS_THREAD
	k_obj_type_stats_init(&obj_type_thread, &thread_stats_desc);
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */

	return 0;
}

SYS_INIT(init_thread_obj_core_list, PRE_KERNEL_1,
	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
#endif /* CONFIG_OBJ_CORE_THREAD */


#define _FOREACH_STATIC_THREAD(thread_data)              \
	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data)

bool k_is_in_isr(void)
{
	return arch_is_in_isr();
}
EXPORT_SYMBOL(k_is_in_isr);

#ifdef CONFIG_THREAD_CUSTOM_DATA
void z_impl_k_thread_custom_data_set(void *value)
{
	_current->custom_data = value;
}

#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_custom_data_set(void *data)
{
	z_impl_k_thread_custom_data_set(data);
}
#include <zephyr/syscalls/k_thread_custom_data_set_mrsh.c>
#endif /* CONFIG_USERSPACE */

void *z_impl_k_thread_custom_data_get(void)
{
	return _current->custom_data;
}

#ifdef CONFIG_USERSPACE
static inline void *z_vrfy_k_thread_custom_data_get(void)
{
	return z_impl_k_thread_custom_data_get();
}
#include <zephyr/syscalls/k_thread_custom_data_get_mrsh.c>

#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_THREAD_CUSTOM_DATA */

int z_impl_k_is_preempt_thread(void)
{
	return !arch_is_in_isr() && thread_is_preemptible(_current);
}

#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_is_preempt_thread(void)
{
	return z_impl_k_is_preempt_thread();
}
#include <zephyr/syscalls/k_is_preempt_thread_mrsh.c>
#endif /* CONFIG_USERSPACE */

int z_impl_k_thread_priority_get(k_tid_t thread)
{
	return thread->base.prio;
}

#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_thread_priority_get(k_tid_t thread)
{
	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	return z_impl_k_thread_priority_get(thread);
}
#include <zephyr/syscalls/k_thread_priority_get_mrsh.c>
#endif /* CONFIG_USERSPACE */

int z_impl_k_thread_name_set(k_tid_t thread, const char *str)
{
#ifdef CONFIG_THREAD_NAME
	if (thread == NULL) {
		thread = _current;
	}

	strncpy(thread->name, str, CONFIG_THREAD_MAX_NAME_LEN - 1);
	thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';

	SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, 0);

	return 0;
#else
	ARG_UNUSED(thread);
	ARG_UNUSED(str);

	SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, -ENOSYS);

	return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}

#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_thread_name_set(k_tid_t thread, const char *str)
{
#ifdef CONFIG_THREAD_NAME
	char name[CONFIG_THREAD_MAX_NAME_LEN];

	if (thread != NULL) {
		if (K_SYSCALL_OBJ(thread, K_OBJ_THREAD) != 0) {
			return -EINVAL;
		}
	}

	/* In theory we could copy directly into thread->name, but
	 * the current z_vrfy / z_impl split does not provide a
	 * means of doing so.
	 */
	if (k_usermode_string_copy(name, str, sizeof(name)) != 0) {
		return -EFAULT;
	}

	return z_impl_k_thread_name_set(thread, name);
#else
	return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
#include <zephyr/syscalls/k_thread_name_set_mrsh.c>
#endif /* CONFIG_USERSPACE */

const char *k_thread_name_get(k_tid_t thread)
{
#ifdef CONFIG_THREAD_NAME
	return (const char *)thread->name;
#else
	ARG_UNUSED(thread);
	return NULL;
#endif /* CONFIG_THREAD_NAME */
}

int z_impl_k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
{
#ifdef CONFIG_THREAD_NAME
	strncpy(buf, thread->name, size);
	return 0;
#else
	ARG_UNUSED(thread);
	ARG_UNUSED(buf);
	ARG_UNUSED(size);
	return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}

static size_t copy_bytes(char *dest, size_t dest_size, const char *src, size_t src_size)
{
	size_t  bytes_to_copy;

	bytes_to_copy = MIN(dest_size, src_size);
	memcpy(dest, src, bytes_to_copy);

	return bytes_to_copy;
}

const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
{
	size_t      off = 0;
	uint8_t     bit;
	uint8_t     thread_state = thread_id->base.thread_state;
	static const struct {
		const char *str;
		size_t      len;
	} state_string[] = {
		{ Z_STATE_STR_DUMMY, sizeof(Z_STATE_STR_DUMMY) - 1},
		{ Z_STATE_STR_PENDING, sizeof(Z_STATE_STR_PENDING) - 1},
		{ Z_STATE_STR_PRESTART, sizeof(Z_STATE_STR_PRESTART) - 1},
		{ Z_STATE_STR_DEAD, sizeof(Z_STATE_STR_DEAD) - 1},
		{ Z_STATE_STR_SUSPENDED, sizeof(Z_STATE_STR_SUSPENDED) - 1},
		{ Z_STATE_STR_ABORTING, sizeof(Z_STATE_STR_ABORTING) - 1},
		{ Z_STATE_STR_SUSPENDING, sizeof(Z_STATE_STR_SUSPENDING) - 1},
		{ Z_STATE_STR_QUEUED, sizeof(Z_STATE_STR_QUEUED) - 1},
	};

	if ((buf == NULL) || (buf_size == 0)) {
		return "";
	}

	buf_size--;   /* Reserve 1 byte for end-of-string character */

	/*
	 * Loop through each bit in the thread_state. Stop once all have
	 * been processed. If more than one thread_state bit is set, then
	 * separate the descriptive strings with a '+'.
	 */


	for (unsigned int index = 0; thread_state != 0; index++) {
		bit = BIT(index);
		if ((thread_state & bit) == 0) {
			continue;
		}

		off += copy_bytes(buf + off, buf_size - off,
				  state_string[index].str,
				  state_string[index].len);

		thread_state &= ~bit;

		if (thread_state != 0) {
			off += copy_bytes(buf + off, buf_size - off, "+", 1);
		}
	}

	buf[off] = '\0';

	return (const char *)buf;
}

#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_thread_name_copy(k_tid_t thread,
					    char *buf, size_t size)
{
#ifdef CONFIG_THREAD_NAME
	size_t len;
	struct k_object *ko = k_object_find(thread);

	/* Special case: we allow reading the names of initialized threads
	 * even if we don't have permission on them
	 */
	if ((thread == NULL) || (ko->type != K_OBJ_THREAD) ||
		((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0)) {
		return -EINVAL;
	}
	if (K_SYSCALL_MEMORY_WRITE(buf, size) != 0) {
		return -EFAULT;
	}
	len = strlen(thread->name);
	if ((len + 1) > size) {
		return -ENOSPC;
	}

	return k_usermode_to_copy((void *)buf, thread->name, len + 1);
#else
	ARG_UNUSED(thread);
	ARG_UNUSED(buf);
	ARG_UNUSED(size);
	return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
#include <zephyr/syscalls/k_thread_name_copy_mrsh.c>
#endif /* CONFIG_USERSPACE */

#ifdef CONFIG_STACK_SENTINEL
/* Check that the stack sentinel is still present
 *
 * The stack sentinel feature writes a magic value to the lowest 4 bytes of
 * the thread's stack when the thread is initialized. This value gets checked
 * in a few places:
 *
 * 1) In k_yield() if the current thread is not swapped out
 * 2) After servicing a non-nested interrupt
 * 3) In z_swap(), check the sentinel in the outgoing thread
 *
 * Item 2 requires support in arch/ code.
 *
 * If the check fails, the thread will be terminated appropriately through
 * the system fatal error handler.
 */
void z_check_stack_sentinel(void)
{
	uint32_t *stack;

	if ((_current->base.thread_state & _THREAD_DUMMY) != 0) {
		return;
	}

	stack = (uint32_t *)_current->stack_info.start;
	if (*stack != STACK_SENTINEL) {
		/* Restore it so further checks don't trigger this same error */
		*stack = STACK_SENTINEL;
		z_except_reason(K_ERR_STACK_CHK_FAIL);
	}
}
#endif /* CONFIG_STACK_SENTINEL */

void z_impl_k_thread_start(k_tid_t thread)
{
	SYS_PORT_TRACING_OBJ_FUNC(k_thread, start, thread);

	z_sched_start(thread);
}

#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_start(k_tid_t thread)
{
	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	return z_impl_k_thread_start(thread);
}
#include <zephyr/syscalls/k_thread_start_mrsh.c>
#endif /* CONFIG_USERSPACE */

#if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
int z_stack_adjust_initialized;

static size_t random_offset(size_t stack_size)
{
	size_t random_val;

	if (!z_stack_adjust_initialized) {
		z_early_rand_get((uint8_t *)&random_val, sizeof(random_val));
	} else {
		sys_rand_get((uint8_t *)&random_val, sizeof(random_val));
	}

	/* Don't need to worry about alignment of the size here,
	 * arch_new_thread() is required to do it.
	 *
	 * FIXME: Not the best way to get a random number in a range.
	 * See #6493
	 */
	const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM;

	if (unlikely(fuzz * 2 > stack_size)) {
		return 0;
	}

	return fuzz;
}
#if defined(CONFIG_STACK_GROWS_UP)
	/* This is so rare not bothering for now */
#error "Stack pointer randomization not implemented for upward growing stacks"
#endif /* CONFIG_STACK_GROWS_UP */
#endif /* CONFIG_STACK_POINTER_RANDOM */

static char *setup_thread_stack(struct k_thread *new_thread,
				k_thread_stack_t *stack, size_t stack_size)
{
	size_t stack_obj_size, stack_buf_size;
	char *stack_ptr, *stack_buf_start;
	size_t delta = 0;

#ifdef CONFIG_USERSPACE
	if (z_stack_is_user_capable(stack)) {
		stack_obj_size = K_THREAD_STACK_LEN(stack_size);
		stack_buf_start = K_THREAD_STACK_BUFFER(stack);
		stack_buf_size = stack_obj_size - K_THREAD_STACK_RESERVED;
	} else
#endif /* CONFIG_USERSPACE */
	{
		/* Object cannot host a user mode thread */
		stack_obj_size = K_KERNEL_STACK_LEN(stack_size);
		stack_buf_start = K_KERNEL_STACK_BUFFER(stack);
		stack_buf_size = stack_obj_size - K_KERNEL_STACK_RESERVED;

		/* Zephyr treats stack overflow as an app bug.  But
		 * this particular overflow can be seen by static
		 * analysis so needs to be handled somehow.
		 */
		if (K_KERNEL_STACK_RESERVED > stack_obj_size) {
			k_panic();
		}

	}

#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
	/* Map the stack into virtual memory and use that as the base to
	 * calculate the initial stack pointer at the high end of the stack
	 * object. The stack pointer may be reduced later in this function
	 * by TLS or random offset.
	 *
	 * K_MEM_MAP_UNINIT is used to mimic the behavior of non-mapped
	 * stack. If CONFIG_INIT_STACKS is enabled, the stack will be
	 * cleared below.
	 */
	void *stack_mapped = k_mem_map_phys_guard((uintptr_t)stack, stack_obj_size,
				K_MEM_PERM_RW | K_MEM_CACHE_WB | K_MEM_MAP_UNINIT,
				false);

	__ASSERT_NO_MSG((uintptr_t)stack_mapped != 0);

#ifdef CONFIG_USERSPACE
	if (z_stack_is_user_capable(stack)) {
		stack_buf_start = K_THREAD_STACK_BUFFER(stack_mapped);
	} else
#endif /* CONFIG_USERSPACE */
	{
		stack_buf_start = K_KERNEL_STACK_BUFFER(stack_mapped);
	}

	stack_ptr = (char *)stack_mapped + stack_obj_size;

	/* Need to store the info on mapped stack so we can remove the mappings
	 * when the thread ends.
	 */
	new_thread->stack_info.mapped.addr = stack_mapped;
	new_thread->stack_info.mapped.sz = stack_obj_size;

#else /* CONFIG_THREAD_STACK_MEM_MAPPED */

	/* Initial stack pointer at the high end of the stack object, may
	 * be reduced later in this function by TLS or random offset
	 */
	stack_ptr = (char *)stack + stack_obj_size;

#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */

	LOG_DBG("stack %p for thread %p: obj_size=%zu buf_start=%p "
		" buf_size %zu stack_ptr=%p",
		stack, new_thread, stack_obj_size, (void *)stack_buf_start,
		stack_buf_size, (void *)stack_ptr);

#ifdef CONFIG_INIT_STACKS
	memset(stack_buf_start, 0xaa, stack_buf_size);
#endif /* CONFIG_INIT_STACKS */
#ifdef CONFIG_STACK_SENTINEL
	/* Put the stack sentinel at the lowest 4 bytes of the stack area.
	 * We periodically check that it's still present and kill the thread
	 * if it isn't.
	 */
	*((uint32_t *)stack_buf_start) = STACK_SENTINEL;
#endif /* CONFIG_STACK_SENTINEL */
#ifdef CONFIG_THREAD_LOCAL_STORAGE
	/* TLS is always last within the stack buffer */
	delta += arch_tls_stack_setup(new_thread, stack_ptr);
#endif /* CONFIG_THREAD_LOCAL_STORAGE */
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
	size_t tls_size = sizeof(struct _thread_userspace_local_data);

	/* reserve space on highest memory of stack buffer for local data */
	delta += tls_size;
	new_thread->userspace_local_data =
		(struct _thread_userspace_local_data *)(stack_ptr - delta);
#endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */
#if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
	delta += random_offset(stack_buf_size);
#endif /* CONFIG_STACK_POINTER_RANDOM */
	delta = ROUND_UP(delta, ARCH_STACK_PTR_ALIGN);
#ifdef CONFIG_THREAD_STACK_INFO
	/* Initial values. Arches which implement MPU guards that "borrow"
	 * memory from the stack buffer (not tracked in K_THREAD_STACK_RESERVED)
	 * will need to appropriately update this.
	 *
	 * The bounds tracked here correspond to the area of the stack object
	 * that the thread can access, which includes TLS.
	 */
	new_thread->stack_info.start = (uintptr_t)stack_buf_start;
	new_thread->stack_info.size = stack_buf_size;
	new_thread->stack_info.delta = delta;
#endif /* CONFIG_THREAD_STACK_INFO */
	stack_ptr -= delta;

	return stack_ptr;
}

/*
 * The provided stack_size value is presumed to be either the result of
 * K_THREAD_STACK_SIZEOF(stack), or the size value passed to the instance
 * of K_THREAD_STACK_DEFINE() which defined 'stack'.
 */
char *z_setup_new_thread(struct k_thread *new_thread,
			 k_thread_stack_t *stack, size_t stack_size,
			 k_thread_entry_t entry,
			 void *p1, void *p2, void *p3,
			 int prio, uint32_t options, const char *name)
{
	char *stack_ptr;

	Z_ASSERT_VALID_PRIO(prio, entry);

#ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP
	k_thread_abort_cleanup_check_reuse(new_thread);
#endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */

#ifdef CONFIG_OBJ_CORE_THREAD
	k_obj_core_init_and_link(K_OBJ_CORE(new_thread), &obj_type_thread);
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
	k_obj_core_stats_register(K_OBJ_CORE(new_thread),
				  &new_thread->base.usage,
				  sizeof(new_thread->base.usage));
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */
#endif /* CONFIG_OBJ_CORE_THREAD */

#ifdef CONFIG_USERSPACE
	__ASSERT((options & K_USER) == 0U || z_stack_is_user_capable(stack),
		 "user thread %p with kernel-only stack %p",
		 new_thread, stack);
	k_object_init(new_thread);
	k_object_init(stack);
	new_thread->stack_obj = stack;
	new_thread->syscall_frame = NULL;

	/* Any given thread has access to itself */
	k_object_access_grant(new_thread, new_thread);
#endif /* CONFIG_USERSPACE */
	z_waitq_init(&new_thread->join_queue);

	/* Initialize various struct k_thread members */
	z_init_thread_base(&new_thread->base, prio, _THREAD_PRESTART, options);
	stack_ptr = setup_thread_stack(new_thread, stack, stack_size);

#ifdef CONFIG_KERNEL_COHERENCE
	/* Check that the thread object is safe, but that the stack is
	 * still cached!
	 */
	__ASSERT_NO_MSG(arch_mem_coherent(new_thread));

	/* When dynamic thread stack is available, the stack may come from
	 * uncached area.
	 */
#ifndef CONFIG_DYNAMIC_THREAD
	__ASSERT_NO_MSG(!arch_mem_coherent(stack));
#endif  /* CONFIG_DYNAMIC_THREAD */

#endif /* CONFIG_KERNEL_COHERENCE */

	arch_new_thread(new_thread, stack, stack_ptr, entry, p1, p2, p3);

	/* static threads overwrite it afterwards with real value */
	new_thread->init_data = NULL;

#ifdef CONFIG_USE_SWITCH
	/* switch_handle must be non-null except when inside z_swap()
	 * for synchronization reasons.  Historically some notional
	 * USE_SWITCH architectures have actually ignored the field
	 */
	__ASSERT(new_thread->switch_handle != NULL,
		 "arch layer failed to initialize switch_handle");
#endif /* CONFIG_USE_SWITCH */
#ifdef CONFIG_THREAD_CUSTOM_DATA
	/* Initialize custom data field (value is opaque to kernel) */
	new_thread->custom_data = NULL;
#endif /* CONFIG_THREAD_CUSTOM_DATA */
#ifdef CONFIG_EVENTS
	new_thread->no_wake_on_timeout = false;
#endif /* CONFIG_EVENTS */
#ifdef CONFIG_THREAD_MONITOR
	new_thread->entry.pEntry = entry;
	new_thread->entry.parameter1 = p1;
	new_thread->entry.parameter2 = p2;
	new_thread->entry.parameter3 = p3;

	k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock);

	new_thread->next_thread = _kernel.threads;
	_kernel.threads = new_thread;
	k_spin_unlock(&z_thread_monitor_lock, key);
#endif /* CONFIG_THREAD_MONITOR */
#ifdef CONFIG_THREAD_NAME
	if (name != NULL) {
		strncpy(new_thread->name, name,
			CONFIG_THREAD_MAX_NAME_LEN - 1);
		/* Ensure NULL termination, truncate if longer */
		new_thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
	} else {
		new_thread->name[0] = '\0';
	}
#endif /* CONFIG_THREAD_NAME */
#ifdef CONFIG_SCHED_CPU_MASK
	if (IS_ENABLED(CONFIG_SCHED_CPU_MASK_PIN_ONLY)) {
		new_thread->base.cpu_mask = 1; /* must specify only one cpu */
	} else {
		new_thread->base.cpu_mask = -1; /* allow all cpus */
	}
#endif /* CONFIG_SCHED_CPU_MASK */
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
	/* _current may be null if the dummy thread is not used */
	if (!_current) {
		new_thread->resource_pool = NULL;
		return stack_ptr;
	}
#endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */
#ifdef CONFIG_USERSPACE
	z_mem_domain_init_thread(new_thread);

	if ((options & K_INHERIT_PERMS) != 0U) {
		k_thread_perms_inherit(_current, new_thread);
	}
#endif /* CONFIG_USERSPACE */
#ifdef CONFIG_SCHED_DEADLINE
	new_thread->base.prio_deadline = 0;
#endif /* CONFIG_SCHED_DEADLINE */
	new_thread->resource_pool = _current->resource_pool;

#ifdef CONFIG_SMP
	z_waitq_init(&new_thread->halt_queue);
#endif /* CONFIG_SMP */

#ifdef CONFIG_SCHED_THREAD_USAGE
	new_thread->base.usage = (struct k_cycle_stats) {};
	new_thread->base.usage.track_usage =
		CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE;
#endif /* CONFIG_SCHED_THREAD_USAGE */

	SYS_PORT_TRACING_OBJ_FUNC(k_thread, create, new_thread);

	return stack_ptr;
}


k_tid_t z_impl_k_thread_create(struct k_thread *new_thread,
			      k_thread_stack_t *stack,
			      size_t stack_size, k_thread_entry_t entry,
			      void *p1, void *p2, void *p3,
			      int prio, uint32_t options, k_timeout_t delay)
{
	__ASSERT(!arch_is_in_isr(), "Threads may not be created in ISRs");

	z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
			  prio, options, NULL);

	if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
		thread_schedule_new(new_thread, delay);
	}

	return new_thread;
}

#ifdef CONFIG_USERSPACE
bool z_stack_is_user_capable(k_thread_stack_t *stack)
{
	return k_object_find(stack) != NULL;
}

k_tid_t z_vrfy_k_thread_create(struct k_thread *new_thread,
			       k_thread_stack_t *stack,
			       size_t stack_size, k_thread_entry_t entry,
			       void *p1, void *p2, void *p3,
			       int prio, uint32_t options, k_timeout_t delay)
{
	size_t total_size, stack_obj_size;
	struct k_object *stack_object;

	/* The thread and stack objects *must* be in an uninitialized state */
	K_OOPS(K_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD));

	/* No need to check z_stack_is_user_capable(), it won't be in the
	 * object table if it isn't
	 */
	stack_object = k_object_find(stack);
	K_OOPS(K_SYSCALL_VERIFY_MSG(k_object_validation_check(stack_object, stack,
						K_OBJ_THREAD_STACK_ELEMENT,
						_OBJ_INIT_FALSE) == 0,
				    "bad stack object"));

	/* Verify that the stack size passed in is OK by computing the total
	 * size and comparing it with the size value in the object metadata
	 */
	K_OOPS(K_SYSCALL_VERIFY_MSG(!size_add_overflow(K_THREAD_STACK_RESERVED,
						       stack_size, &total_size),
				    "stack size overflow (%zu+%zu)",
				    stack_size,
				    K_THREAD_STACK_RESERVED));

	/* Testing less-than-or-equal since additional room may have been
	 * allocated for alignment constraints
	 */
#ifdef CONFIG_GEN_PRIV_STACKS
	stack_obj_size = stack_object->data.stack_data->size;
#else
	stack_obj_size = stack_object->data.stack_size;
#endif /* CONFIG_GEN_PRIV_STACKS */
	K_OOPS(K_SYSCALL_VERIFY_MSG(total_size <= stack_obj_size,
				    "stack size %zu is too big, max is %zu",
				    total_size, stack_obj_size));

	/* User threads may only create other user threads and they can't
	 * be marked as essential
	 */
	K_OOPS(K_SYSCALL_VERIFY(options & K_USER));
	K_OOPS(K_SYSCALL_VERIFY(!(options & K_ESSENTIAL)));

	/* Check validity of prio argument; must be the same or worse priority
	 * than the caller
	 */
	K_OOPS(K_SYSCALL_VERIFY(_is_valid_prio(prio, NULL)));
	K_OOPS(K_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio,
							_current->base.prio)));

	z_setup_new_thread(new_thread, stack, stack_size,
			   entry, p1, p2, p3, prio, options, NULL);

	if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
		thread_schedule_new(new_thread, delay);
	}

	return new_thread;
}
#include <zephyr/syscalls/k_thread_create_mrsh.c>
#endif /* CONFIG_USERSPACE */

void z_init_thread_base(struct _thread_base *thread_base, int priority,
		       uint32_t initial_state, unsigned int options)
{
	/* k_q_node is initialized upon first insertion in a list */
	thread_base->pended_on = NULL;
	thread_base->user_options = (uint8_t)options;
	thread_base->thread_state = (uint8_t)initial_state;

	thread_base->prio = priority;

	thread_base->sched_locked = 0U;

#ifdef CONFIG_SMP
	thread_base->is_idle = 0;
#endif /* CONFIG_SMP */

#ifdef CONFIG_TIMESLICE_PER_THREAD
	thread_base->slice_ticks = 0;
	thread_base->slice_expired = NULL;
#endif /* CONFIG_TIMESLICE_PER_THREAD */

	/* swap_data does not need to be initialized */

	z_init_thread_timeout(thread_base);
}

FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
					    void *p1, void *p2, void *p3)
{
	SYS_PORT_TRACING_FUNC(k_thread, user_mode_enter);

	_current->base.user_options |= K_USER;
	z_thread_essential_clear(_current);
#ifdef CONFIG_THREAD_MONITOR
	_current->entry.pEntry = entry;
	_current->entry.parameter1 = p1;
	_current->entry.parameter2 = p2;
	_current->entry.parameter3 = p3;
#endif /* CONFIG_THREAD_MONITOR */
#ifdef CONFIG_USERSPACE
	__ASSERT(z_stack_is_user_capable(_current->stack_obj),
		 "dropping to user mode with kernel-only stack object");
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
	memset(_current->userspace_local_data, 0,
	       sizeof(struct _thread_userspace_local_data));
#endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */
#ifdef CONFIG_THREAD_LOCAL_STORAGE
	arch_tls_stack_setup(_current,
			     (char *)(_current->stack_info.start +
				      _current->stack_info.size));
#endif /* CONFIG_THREAD_LOCAL_STORAGE */
	arch_user_mode_enter(entry, p1, p2, p3);
#else
	/* XXX In this case we do not reset the stack */
	z_thread_entry(entry, p1, p2, p3);
#endif /* CONFIG_USERSPACE */
}

#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
#ifdef CONFIG_STACK_GROWS_UP
#error "Unsupported configuration for stack analysis"
#endif /* CONFIG_STACK_GROWS_UP */

int z_stack_space_get(const uint8_t *stack_start, size_t size, size_t *unused_ptr)
{
	size_t unused = 0;
	const uint8_t *checked_stack = stack_start;
	/* Take the address of any local variable as a shallow bound for the
	 * stack pointer.  Addresses above it are guaranteed to be
	 * accessible.
	 */
	const uint8_t *stack_pointer = (const uint8_t *)&stack_start;

	/* If we are currently running on the stack being analyzed, some
	 * memory management hardware will generate an exception if we
	 * read unused stack memory.
	 *
	 * This never happens when invoked from user mode, as user mode
	 * will always run this function on the privilege elevation stack.
	 */
	if ((stack_pointer > stack_start) && (stack_pointer <= (stack_start + size)) &&
	    IS_ENABLED(CONFIG_NO_UNUSED_STACK_INSPECTION)) {
		/* TODO: We could add an arch_ API call to temporarily
		 * disable the stack checking in the CPU, but this would
		 * need to be properly managed wrt context switches/interrupts
		 */
		return -ENOTSUP;
	}

	if (IS_ENABLED(CONFIG_STACK_SENTINEL)) {
		/* First 4 bytes of the stack buffer reserved for the
		 * sentinel value, it won't be 0xAAAAAAAA for thread
		 * stacks.
		 *
		 * FIXME: thread->stack_info.start ought to reflect
		 * this!
		 */
		checked_stack += 4;
		size -= 4;
	}

	for (size_t i = 0; i < size; i++) {
		if ((checked_stack[i]) == 0xaaU) {
			unused++;
		} else {
			break;
		}
	}

	*unused_ptr = unused;

	return 0;
}

int z_impl_k_thread_stack_space_get(const struct k_thread *thread,
				    size_t *unused_ptr)
{
#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
	if (thread->stack_info.mapped.addr == NULL) {
		return -EINVAL;
	}
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */

	return z_stack_space_get((const uint8_t *)thread->stack_info.start,
				 thread->stack_info.size, unused_ptr);
}

#ifdef CONFIG_USERSPACE
int z_vrfy_k_thread_stack_space_get(const struct k_thread *thread,
				    size_t *unused_ptr)
{
	size_t unused;
	int ret;

	ret = K_SYSCALL_OBJ(thread, K_OBJ_THREAD);
	CHECKIF(ret != 0) {
		return ret;
	}

	ret = z_impl_k_thread_stack_space_get(thread, &unused);
	CHECKIF(ret != 0) {
		return ret;
	}

	ret = k_usermode_to_copy(unused_ptr, &unused, sizeof(size_t));
	CHECKIF(ret != 0) {
		return ret;
	}

	return 0;
}
#include <zephyr/syscalls/k_thread_stack_space_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_INIT_STACKS && CONFIG_THREAD_STACK_INFO */

#ifdef CONFIG_USERSPACE
static inline k_ticks_t z_vrfy_k_thread_timeout_remaining_ticks(
						    const struct k_thread *thread)
{
	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	return z_impl_k_thread_timeout_remaining_ticks(thread);
}
#include <zephyr/syscalls/k_thread_timeout_remaining_ticks_mrsh.c>

static inline k_ticks_t z_vrfy_k_thread_timeout_expires_ticks(
						  const struct k_thread *thread)
{
	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	return z_impl_k_thread_timeout_expires_ticks(thread);
}
#include <zephyr/syscalls/k_thread_timeout_expires_ticks_mrsh.c>
#endif /* CONFIG_USERSPACE */

#ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING
void z_thread_mark_switched_in(void)
{
#if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH)
	z_sched_usage_start(_current);
#endif /* CONFIG_SCHED_THREAD_USAGE && !CONFIG_USE_SWITCH */

#ifdef CONFIG_TRACING
	SYS_PORT_TRACING_FUNC(k_thread, switched_in);
#endif /* CONFIG_TRACING */
}

void z_thread_mark_switched_out(void)
{
#if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH)
	z_sched_usage_stop();
#endif /*CONFIG_SCHED_THREAD_USAGE && !CONFIG_USE_SWITCH */

#ifdef CONFIG_TRACING
#ifdef CONFIG_THREAD_LOCAL_STORAGE
	/* Dummy thread won't have TLS set up to run arbitrary code */
	if (!_current_cpu->current ||
	    (_current_cpu->current->base.thread_state & _THREAD_DUMMY) != 0)
		return;
#endif /* CONFIG_THREAD_LOCAL_STORAGE */
	SYS_PORT_TRACING_FUNC(k_thread, switched_out);
#endif /* CONFIG_TRACING */
}
#endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */

int k_thread_runtime_stats_get(k_tid_t thread,
			       k_thread_runtime_stats_t *stats)
{
	if ((thread == NULL) || (stats == NULL)) {
		return -EINVAL;
	}

#ifdef CONFIG_SCHED_THREAD_USAGE
	z_sched_thread_usage(thread, stats);
#else
	*stats = (k_thread_runtime_stats_t) {};
#endif /* CONFIG_SCHED_THREAD_USAGE */

	return 0;
}

int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
{
#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
	k_thread_runtime_stats_t  tmp_stats;
#endif /* CONFIG_SCHED_THREAD_USAGE_ALL */

	if (stats == NULL) {
		return -EINVAL;
	}

	*stats = (k_thread_runtime_stats_t) {};

#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
	/* Retrieve the usage stats for each core and amalgamate them. */

	unsigned int num_cpus = arch_num_cpus();

	for (uint8_t i = 0; i < num_cpus; i++) {
		z_sched_cpu_usage(i, &tmp_stats);

		stats->execution_cycles += tmp_stats.execution_cycles;
		stats->total_cycles     += tmp_stats.total_cycles;
#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
		stats->current_cycles   += tmp_stats.current_cycles;
		stats->peak_cycles      += tmp_stats.peak_cycles;
		stats->average_cycles   += tmp_stats.average_cycles;
#endif /* CONFIG_SCHED_THREAD_USAGE_ANALYSIS */
		stats->idle_cycles      += tmp_stats.idle_cycles;
	}
#endif /* CONFIG_SCHED_THREAD_USAGE_ALL */

	return 0;
}

#ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP
/** Pointer to thread which needs to be cleaned up. */
static struct k_thread *thread_to_cleanup;

/** Spinlock for thread abort cleanup. */
static struct k_spinlock thread_cleanup_lock;

#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
static void *thread_cleanup_stack_addr;
static size_t thread_cleanup_stack_sz;
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */

void defer_thread_cleanup(struct k_thread *thread)
{
	/* Note when adding new deferred cleanup steps:
	 * - The thread object may have been overwritten by the time
	 *   the actual cleanup is being done (e.g. thread object
	 *   allocated on a stack). So stash any necessary data here
	 *   that will be used in the actual cleanup steps.
	 */
	thread_to_cleanup = thread;

#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
	/* Note that the permission of the stack should have been
	 * stripped of user thread access due to the thread having
	 * already exited from a memory domain. That is done via
	 * k_thread_abort().
	 */

	/* Stash the address and size so the region can be unmapped
	 * later.
	 */
	thread_cleanup_stack_addr = thread->stack_info.mapped.addr;
	thread_cleanup_stack_sz = thread->stack_info.mapped.sz;

	/* The stack is now considered un-usable. This should prevent any functions
	 * from looking directly into the mapped stack if they are made to be aware
	 * of memory mapped stacks, e.g., z_stack_space_get().
	 */
	thread->stack_info.mapped.addr = NULL;
	thread->stack_info.mapped.sz = 0;
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
}

void do_thread_cleanup(struct k_thread *thread)
{
	/* Note when adding new actual cleanup steps:
	 * - The thread object may have been overwritten when this is
	 *   called. So avoid using any data from the thread object.
	 */
	ARG_UNUSED(thread);

#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
	if (thread_cleanup_stack_addr != NULL) {
		k_mem_unmap_phys_guard(thread_cleanup_stack_addr,
				       thread_cleanup_stack_sz, false);

		thread_cleanup_stack_addr = NULL;
	}
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
}

void k_thread_abort_cleanup(struct k_thread *thread)
{
	K_SPINLOCK(&thread_cleanup_lock) {
		if (thread_to_cleanup != NULL) {
			/* Finish the pending one first. */
			do_thread_cleanup(thread_to_cleanup);
			thread_to_cleanup = NULL;
		}

		if (thread == _current) {
			/* Need to defer for current running thread as the cleanup
			 * might result in exception. Actual cleanup will be done
			 * at the next time k_thread_abort() is called, or at thread
			 * creation if the same thread object is being reused. This
			 * is to make sure the cleanup code no longer needs this
			 * thread's stack. This is not exactly ideal as the stack
			 * may still be memory mapped for a while. However, this is
			 * a simple solution without a) the need to workaround
			 * the schedule lock during k_thread_abort(), b) creating
			 * another thread to perform the cleanup, and c) does not
			 * require architecture code support (e.g. via exception).
			 */
			defer_thread_cleanup(thread);
		} else {
			/* Not the current running thread, so we are safe to do
			 * cleanups.
			 */
			do_thread_cleanup(thread);
		}
	}
}

void k_thread_abort_cleanup_check_reuse(struct k_thread *thread)
{
	K_SPINLOCK(&thread_cleanup_lock) {
		/* This is to guard reuse of the same thread object and make sure
		 * any pending cleanups of it needs to be finished before the thread
		 * object can be reused.
		 */
		if (thread_to_cleanup == thread) {
			do_thread_cleanup(thread_to_cleanup);
			thread_to_cleanup = NULL;
		}
	}
}

#endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */