Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 | /* * Copyright (c) 2017 Linaro Limited * * SPDX-License-Identifier: Apache-2.0 */ #include <zephyr/init.h> #include <zephyr/kernel.h> #include <zephyr/kernel_structs.h> #include <kernel_internal.h> #include <zephyr/sys/__assert.h> #include <stdbool.h> #include <zephyr/spinlock.h> #include <zephyr/sys/check.h> #include <zephyr/sys/libc-hooks.h> #include <zephyr/logging/log.h> LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); struct k_spinlock z_mem_domain_lock; static uint8_t max_partitions; struct k_mem_domain k_mem_domain_default; static bool check_add_partition(struct k_mem_domain *domain, struct k_mem_partition *part) { int i; uintptr_t pstart, pend, dstart, dend; if (part == NULL) { LOG_ERR("NULL k_mem_partition provided"); return false; } #ifdef CONFIG_EXECUTE_XOR_WRITE /* Arches where execution cannot be disabled should always return * false to this check */ if (K_MEM_PARTITION_IS_EXECUTABLE(part->attr) && K_MEM_PARTITION_IS_WRITABLE(part->attr)) { LOG_ERR("partition is writable and executable <start %lx>", part->start); return false; } #endif /* CONFIG_EXECUTE_XOR_WRITE */ if (part->size == 0U) { LOG_ERR("zero sized partition at %p with base 0x%lx", part, part->start); return false; } pstart = part->start; pend = part->start + part->size; if (pend <= pstart) { LOG_ERR("invalid partition %p, wraparound detected. base 0x%lx size %zu", part, part->start, part->size); return false; } /* Check that this partition doesn't overlap any existing ones already * in the domain */ for (i = 0; i < domain->num_partitions; i++) { struct k_mem_partition *dpart = &domain->partitions[i]; if (dpart->size == 0U) { /* Unused slot */ continue; } dstart = dpart->start; dend = dstart + dpart->size; if (pend > dstart && dend > pstart) { LOG_ERR("partition %p base %lx (size %zu) overlaps existing base %lx (size %zu)", part, part->start, part->size, dpart->start, dpart->size); return false; } } return true; } int k_mem_domain_init(struct k_mem_domain *domain, uint8_t num_parts, struct k_mem_partition *parts[]) { k_spinlock_key_t key; int ret = 0; CHECKIF(domain == NULL) { ret = -EINVAL; goto out; } CHECKIF(!(num_parts == 0U || parts != NULL)) { LOG_ERR("parts array is NULL and num_parts is nonzero"); ret = -EINVAL; goto out; } CHECKIF(!(num_parts <= max_partitions)) { LOG_ERR("num_parts of %d exceeds maximum allowable partitions (%d)", num_parts, max_partitions); ret = -EINVAL; goto out; } key = k_spin_lock(&z_mem_domain_lock); domain->num_partitions = 0U; (void)memset(domain->partitions, 0, sizeof(domain->partitions)); sys_dlist_init(&domain->mem_domain_q); #ifdef CONFIG_ARCH_MEM_DOMAIN_DATA ret = arch_mem_domain_init(domain); if (ret != 0) { LOG_ERR("architecture-specific initialization failed for domain %p with %d", domain, ret); ret = -ENOMEM; goto unlock_out; } #endif /* CONFIG_ARCH_MEM_DOMAIN_DATA */ if (num_parts != 0U) { uint32_t i; for (i = 0U; i < num_parts; i++) { CHECKIF(!check_add_partition(domain, parts[i])) { LOG_ERR("invalid partition index %d (%p)", i, parts[i]); ret = -EINVAL; goto unlock_out; } domain->partitions[i] = *parts[i]; domain->num_partitions++; #ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API int ret2 = arch_mem_domain_partition_add(domain, i); ARG_UNUSED(ret2); CHECKIF(ret2 != 0) { ret = ret2; } #endif /* CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API */ } } unlock_out: k_spin_unlock(&z_mem_domain_lock, key); out: return ret; } int k_mem_domain_add_partition(struct k_mem_domain *domain, struct k_mem_partition *part) { int p_idx; k_spinlock_key_t key; int ret = 0; CHECKIF(domain == NULL) { ret = -EINVAL; goto out; } CHECKIF(!check_add_partition(domain, part)) { LOG_ERR("invalid partition %p", part); ret = -EINVAL; goto out; } key = k_spin_lock(&z_mem_domain_lock); for (p_idx = 0; p_idx < max_partitions; p_idx++) { /* A zero-sized partition denotes it's a free partition */ if (domain->partitions[p_idx].size == 0U) { break; } } CHECKIF(!(p_idx < max_partitions)) { LOG_ERR("no free partition slots available"); ret = -ENOSPC; goto unlock_out; } LOG_DBG("add partition base %lx size %zu to domain %p\n", part->start, part->size, domain); domain->partitions[p_idx].start = part->start; domain->partitions[p_idx].size = part->size; domain->partitions[p_idx].attr = part->attr; domain->num_partitions++; #ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API ret = arch_mem_domain_partition_add(domain, p_idx); #endif /* CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API */ unlock_out: k_spin_unlock(&z_mem_domain_lock, key); out: return ret; } int k_mem_domain_remove_partition(struct k_mem_domain *domain, struct k_mem_partition *part) { int p_idx; k_spinlock_key_t key; int ret = 0; CHECKIF((domain == NULL) || (part == NULL)) { ret = -EINVAL; goto out; } key = k_spin_lock(&z_mem_domain_lock); /* find a partition that matches the given start and size */ for (p_idx = 0; p_idx < max_partitions; p_idx++) { if ((domain->partitions[p_idx].start == part->start) && (domain->partitions[p_idx].size == part->size)) { break; } } CHECKIF(!(p_idx < max_partitions)) { LOG_ERR("no matching partition found"); ret = -ENOENT; goto unlock_out; } LOG_DBG("remove partition base %lx size %zu from domain %p\n", part->start, part->size, domain); #ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API ret = arch_mem_domain_partition_remove(domain, p_idx); #endif /* CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API */ /* A zero-sized partition denotes it's a free partition */ domain->partitions[p_idx].size = 0U; domain->num_partitions--; unlock_out: k_spin_unlock(&z_mem_domain_lock, key); out: return ret; } static int add_thread_locked(struct k_mem_domain *domain, k_tid_t thread) { int ret = 0; __ASSERT_NO_MSG(domain != NULL); __ASSERT_NO_MSG(thread != NULL); LOG_DBG("add thread %p to domain %p\n", thread, domain); sys_dlist_append(&domain->mem_domain_q, &thread->mem_domain_info.mem_domain_q_node); thread->mem_domain_info.mem_domain = domain; #ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API ret = arch_mem_domain_thread_add(thread); #endif /* CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API */ return ret; } static int remove_thread_locked(struct k_thread *thread) { int ret = 0; __ASSERT_NO_MSG(thread != NULL); LOG_DBG("remove thread %p from memory domain %p\n", thread, thread->mem_domain_info.mem_domain); sys_dlist_remove(&thread->mem_domain_info.mem_domain_q_node); #ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API ret = arch_mem_domain_thread_remove(thread); #endif /* CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API */ return ret; } /* Called from thread object initialization */ void z_mem_domain_init_thread(struct k_thread *thread) { int ret; k_spinlock_key_t key = k_spin_lock(&z_mem_domain_lock); /* New threads inherit memory domain configuration from parent */ ret = add_thread_locked(_current->mem_domain_info.mem_domain, thread); __ASSERT_NO_MSG(ret == 0); ARG_UNUSED(ret); k_spin_unlock(&z_mem_domain_lock, key); } /* Called when thread aborts during teardown tasks. _sched_spinlock is held */ void z_mem_domain_exit_thread(struct k_thread *thread) { int ret; k_spinlock_key_t key = k_spin_lock(&z_mem_domain_lock); ret = remove_thread_locked(thread); __ASSERT_NO_MSG(ret == 0); ARG_UNUSED(ret); k_spin_unlock(&z_mem_domain_lock, key); } int k_mem_domain_add_thread(struct k_mem_domain *domain, k_tid_t thread) { int ret = 0; k_spinlock_key_t key; key = k_spin_lock(&z_mem_domain_lock); if (thread->mem_domain_info.mem_domain != domain) { ret = remove_thread_locked(thread); if (ret == 0) { ret = add_thread_locked(domain, thread); } } k_spin_unlock(&z_mem_domain_lock, key); return ret; } static int init_mem_domain_module(void) { int ret; ARG_UNUSED(ret); max_partitions = arch_mem_domain_max_partitions_get(); /* * max_partitions must be less than or equal to * CONFIG_MAX_DOMAIN_PARTITIONS, or would encounter array index * out of bounds error. */ __ASSERT(max_partitions <= CONFIG_MAX_DOMAIN_PARTITIONS, ""); ret = k_mem_domain_init(&k_mem_domain_default, 0, NULL); __ASSERT(ret == 0, "failed to init default mem domain"); #ifdef Z_LIBC_PARTITION_EXISTS ret = k_mem_domain_add_partition(&k_mem_domain_default, &z_libc_partition); __ASSERT(ret == 0, "failed to add default libc mem partition"); #endif /* Z_LIBC_PARTITION_EXISTS */ return 0; } SYS_INIT(init_mem_domain_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT); |