Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
/*
 *
 * Copyright (c) 2019 Linaro Limited.
 * Copyright (c) 2020 Jeremy LOCHE
 * Copyright (c) 2021 Electrolance Solutions
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_utils.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include "clock_stm32_ll_mco.h"
#include "stm32_hsem.h"


/* Macros to fill up prescaler values */
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
#define z_hsi_divider(v) LL_RCC_HSI_DIV_ ## v
#else
#define z_hsi_divider(v) LL_RCC_HSI_DIV ## v
#endif
#define hsi_divider(v) z_hsi_divider(v)

#define z_sysclk_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define sysclk_prescaler(v) z_sysclk_prescaler(v)

#define z_ahb_prescaler(v) LL_RCC_AHB_DIV_ ## v
#define ahb_prescaler(v) z_ahb_prescaler(v)

#define z_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) z_apb1_prescaler(v)

#define z_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) z_apb2_prescaler(v)

#define z_apb3_prescaler(v) LL_RCC_APB3_DIV_ ## v
#define apb3_prescaler(v) z_apb3_prescaler(v)

#define z_apb4_prescaler(v) LL_RCC_APB4_DIV_ ## v
#define apb4_prescaler(v) z_apb4_prescaler(v)

#define z_apb5_prescaler(v) LL_RCC_APB5_DIV_ ## v
#define apb5_prescaler(v) z_apb5_prescaler(v)

/* Macro to check for clock feasibility */
/* It is Cortex M7's responsibility to setup clock tree */
/* This check should only be performed for the M7 core code */
#ifdef CONFIG_CPU_CORTEX_M7

/* Choose PLL SRC */
#if defined(STM32_PLL_SRC_HSI)
#define PLLSRC_FREQ  ((STM32_HSI_FREQ)/(STM32_HSI_DIVISOR))
#elif defined(STM32_PLL_SRC_CSI)
#define PLLSRC_FREQ  STM32_CSI_FREQ
#elif defined(STM32_PLL_SRC_HSE)
#define PLLSRC_FREQ  STM32_HSE_FREQ
#else
#define PLLSRC_FREQ 0
#endif

/* Given source clock and dividers, computed the output frequency of PLLP */
#define PLLP_FREQ(pllsrc_freq, divm, divn, divp)	(((pllsrc_freq)*\
							(divn))/((divm)*(divp)))

/* PLL P output frequency value */
#define PLLP_VALUE	PLLP_FREQ(\
				PLLSRC_FREQ,\
				STM32_PLL_M_DIVISOR,\
				STM32_PLL_N_MULTIPLIER,\
				STM32_PLL_P_DIVISOR)

/* SYSCLKSRC before the D1CPRE prescaler */
#if defined(STM32_SYSCLK_SRC_PLL)
#define SYSCLKSRC_FREQ	PLLP_VALUE
#elif defined(STM32_SYSCLK_SRC_HSI)
#define SYSCLKSRC_FREQ	((STM32_HSI_FREQ)/(STM32_HSI_DIVISOR))
#elif defined(STM32_SYSCLK_SRC_CSI)
#define SYSCLKSRC_FREQ	STM32_CSI_FREQ
#elif defined(STM32_SYSCLK_SRC_HSE)
#define SYSCLKSRC_FREQ	STM32_HSE_FREQ
#endif

/* ARM Sys CPU Clock before HPRE prescaler */
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
#define SYSCLK_FREQ	((SYSCLKSRC_FREQ)/(STM32_D1CPRE))
#define AHB_FREQ	((SYSCLK_FREQ)/(STM32_HPRE))
#define APB1_FREQ	((AHB_FREQ)/(STM32_PPRE1))
#define APB2_FREQ	((AHB_FREQ)/(STM32_PPRE2))
#define APB4_FREQ	((AHB_FREQ)/(STM32_PPRE4))
#define APB5_FREQ	((AHB_FREQ)/(STM32_PPRE5))
#else
#define SYSCLK_FREQ	((SYSCLKSRC_FREQ)/(STM32_D1CPRE))
#define AHB_FREQ	((SYSCLK_FREQ)/(STM32_HPRE))
#define APB1_FREQ	((AHB_FREQ)/(STM32_D2PPRE1))
#define APB2_FREQ	((AHB_FREQ)/(STM32_D2PPRE2))
#define APB3_FREQ	((AHB_FREQ)/(STM32_D1PPRE))
#define APB4_FREQ	((AHB_FREQ)/(STM32_D3PPRE))
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */

/* Datasheet maximum frequency definitions */
#if defined(CONFIG_SOC_STM32H743XX) ||\
	defined(CONFIG_SOC_STM32H745XX_M7) || defined(CONFIG_SOC_STM32H745XX_M4) ||\
	defined(CONFIG_SOC_STM32H747XX_M7) || defined(CONFIG_SOC_STM32H747XX_M4) ||\
	defined(CONFIG_SOC_STM32H750XX) ||\
	defined(CONFIG_SOC_STM32H753XX)
/* All h7 SoC with maximum 480MHz SYSCLK */
#define SYSCLK_FREQ_MAX		480000000UL
#define AHB_FREQ_MAX		240000000UL
#define APBx_FREQ_MAX		120000000UL
#elif defined(CONFIG_SOC_STM32H723XX) ||\
	  defined(CONFIG_SOC_STM32H725XX) ||\
	  defined(CONFIG_SOC_STM32H730XX) || defined(CONFIG_SOC_STM32H730XXQ) ||\
	  defined(CONFIG_SOC_STM32H735XX)
/* All h7 SoC with maximum 550MHz SYSCLK */
#define SYSCLK_FREQ_MAX		550000000UL
#define AHB_FREQ_MAX		275000000UL
#define APBx_FREQ_MAX		137500000UL
#elif defined(CONFIG_SOC_STM32H7A3XX) || defined(CONFIG_SOC_STM32H7A3XXQ) ||\
	  defined(CONFIG_SOC_STM32H7B0XX) || defined(CONFIG_SOC_STM32H7B0XXQ) ||\
	  defined(CONFIG_SOC_STM32H7B3XX) || defined(CONFIG_SOC_STM32H7B3XXQ)
#define SYSCLK_FREQ_MAX		280000000UL
#define AHB_FREQ_MAX		280000000UL
#define APBx_FREQ_MAX		140000000UL
#elif defined(CONFIG_SOC_SERIES_STM32H7RSX)
/* All h7RS SoC with maximum 500MHz SYSCLK (refer to Datasheet DS14359 rev 1) */
#define SYSCLK_FREQ_MAX		500000000UL
#define AHB_FREQ_MAX		250000000UL
#define APBx_FREQ_MAX		125000000UL
#else
/* Default: All h7 SoC with maximum 280MHz SYSCLK */
#define SYSCLK_FREQ_MAX		280000000UL
#define AHB_FREQ_MAX		140000000UL
#define APBx_FREQ_MAX		70000000UL
#endif

#if SYSCLK_FREQ > SYSCLK_FREQ_MAX
#error "SYSCLK frequency is too high!"
#endif
#if AHB_FREQ > AHB_FREQ_MAX
#error "AHB frequency is too high!"
#endif
#if APB1_FREQ > APBx_FREQ_MAX
#error "APB1 frequency is too high!"
#endif
#if APB2_FREQ > APBx_FREQ_MAX
#error "APB2 frequency is too high!"
#endif
#if APB3_FREQ > APBx_FREQ_MAX
#error "APB3 frequency is too high!"
#endif
#if APB4_FREQ > APBx_FREQ_MAX
#error "APB4 frequency is too high!"
#endif

#if SYSCLK_FREQ != CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
#error "SYS clock frequency for M7 core doesn't match CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC"
#endif

/* end of clock feasibility check */
#endif /* CONFIG_CPU_CORTEX_M7 */


#if defined(CONFIG_CPU_CORTEX_M7)
#if STM32_D1CPRE > 1
/*
 * D1CPRE prescaler allows to set a HCLK frequency lower than SYSCLK frequency.
 * Though, zephyr doesn't make a difference today between these two clocks.
 * So, changing this prescaler is not allowed until it is made possible to
 * use them independently in zephyr clock subsystem.
 */
#error "D1CPRE prescaler can't be higher than 1"
#endif
#endif /* CONFIG_CPU_CORTEX_M7 */

#if defined(CONFIG_CPU_CORTEX_M7)
/* Offset to access bus clock registers from M7 (or only) core */
#define STM32H7_BUS_CLK_REG	DT_REG_ADDR(DT_NODELABEL(rcc))
#elif defined(CONFIG_CPU_CORTEX_M4)
/* Offset to access bus clock registers from M4 core */
#define STM32H7_BUS_CLK_REG	DT_REG_ADDR(DT_NODELABEL(rcc)) + 0x60
#endif

static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
	return clock / prescaler;
}

__unused
static uint32_t get_pllout_frequency(uint32_t pllsrc_freq,
				     int pllm_div,
				     int plln_mul,
				     int pllout_div)
{
	__ASSERT_NO_MSG(pllm_div && pllout_div);

	return (pllsrc_freq / pllm_div) * plln_mul / pllout_div;
}

__unused
static uint32_t get_pllsrc_frequency(void)
{
	switch (LL_RCC_PLL_GetSource()) {
	case LL_RCC_PLLSOURCE_HSI:
		return STM32_HSI_FREQ;
	case LL_RCC_PLLSOURCE_CSI:
		return STM32_CSI_FREQ;
	case LL_RCC_PLLSOURCE_HSE:
		return STM32_HSE_FREQ;
	case LL_RCC_PLLSOURCE_NONE:
	default:
		return 0;
	}
}

__unused
static uint32_t get_hclk_frequency(void)
{
	uint32_t sysclk = 0;

	/* Get the current system clock source */
	switch (LL_RCC_GetSysClkSource()) {
	case LL_RCC_SYS_CLKSOURCE_STATUS_HSI:
		sysclk = STM32_HSI_FREQ/STM32_HSI_DIVISOR;
		break;
	case LL_RCC_SYS_CLKSOURCE_STATUS_CSI:
		sysclk = STM32_CSI_FREQ;
		break;
	case LL_RCC_SYS_CLKSOURCE_STATUS_HSE:
		sysclk = STM32_HSE_FREQ;
		break;
#if defined(STM32_PLL_ENABLED)
	case LL_RCC_SYS_CLKSOURCE_STATUS_PLL1:
		sysclk = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_P_DIVISOR);
		break;
#endif /* STM32_PLL_ENABLED */
	}

	return get_bus_clock(sysclk, STM32_HPRE);
}

#if !defined(CONFIG_CPU_CORTEX_M4)

static int32_t prepare_regulator_voltage_scale(void)
{
	/* Apply system power supply configuration */
#if defined(SMPS) && defined(CONFIG_POWER_SUPPLY_DIRECT_SMPS)
	LL_PWR_ConfigSupply(LL_PWR_DIRECT_SMPS_SUPPLY);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT_AND_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT_AND_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT);
#elif defined(CONFIG_POWER_SUPPLY_EXTERNAL_SOURCE)
	LL_PWR_ConfigSupply(LL_PWR_EXTERNAL_SOURCE_SUPPLY);
#else
	LL_PWR_ConfigSupply(LL_PWR_LDO_SUPPLY);
#endif

	/* Make sure to put the CPU in highest Voltage scale during clock configuration */
	/* Highest voltage is SCALE0 */
	LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	while (LL_PWR_IsActiveFlag_VOSRDY() == 0) {
#else
	while (LL_PWR_IsActiveFlag_VOS() == 0) {
#endif
	}
	return 0;
}

static int32_t optimize_regulator_voltage_scale(uint32_t sysclk_freq)
{

	/* After sysclock is configured, tweak the voltage scale down */
	/* to reduce power consumption */

	/* Needs some smart work to configure properly */
	/* LL_PWR_REGULATOR_SCALE3 is lowest power consumption */
	/* Must be done in accordance to the Maximum allowed frequency vs VOS*/
	/* See RM0433 page 352 for more details */
#if defined(SMPS) && defined(CONFIG_POWER_SUPPLY_DIRECT_SMPS)
	LL_PWR_ConfigSupply(LL_PWR_DIRECT_SMPS_SUPPLY);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT_AND_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT_AND_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT);
#elif defined(CONFIG_POWER_SUPPLY_EXTERNAL_SOURCE)
	LL_PWR_ConfigSupply(LL_PWR_EXTERNAL_SOURCE_SUPPLY);
#else
	LL_PWR_ConfigSupply(LL_PWR_LDO_SUPPLY);
#endif
	LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	while (LL_PWR_IsActiveFlag_VOSRDY() == 0) {
#else
	while (LL_PWR_IsActiveFlag_VOS() == 0) {
#endif
	};
	return 0;
}

__unused
static int get_vco_input_range(uint32_t m_div, uint32_t *range)
{
	uint32_t vco_freq;

	vco_freq = PLLSRC_FREQ / m_div;

	if (MHZ(1) <= vco_freq && vco_freq <= MHZ(2)) {
		*range = LL_RCC_PLLINPUTRANGE_1_2;
	} else if (MHZ(2) < vco_freq && vco_freq <= MHZ(4)) {
		*range = LL_RCC_PLLINPUTRANGE_2_4;
	} else if (MHZ(4) < vco_freq && vco_freq <= MHZ(8)) {
		*range = LL_RCC_PLLINPUTRANGE_4_8;
	} else if (MHZ(8) < vco_freq && vco_freq <= MHZ(16)) {
		*range = LL_RCC_PLLINPUTRANGE_8_16;
	} else {
		return -ERANGE;
	}

	return 0;
}

__unused
static uint32_t get_vco_output_range(uint32_t vco_input_range)
{
	if (vco_input_range == LL_RCC_PLLINPUTRANGE_1_2) {
		return LL_RCC_PLLVCORANGE_MEDIUM;
	}

	return LL_RCC_PLLVCORANGE_WIDE;
}

#endif /* ! CONFIG_CPU_CORTEX_M4 */

/** @brief Verifies clock is part of active clock configuration */
static int enabled_clock(uint32_t src_clk)
{

	if ((src_clk == STM32_SRC_SYSCLK) ||
	    ((src_clk == STM32_SRC_CKPER) && IS_ENABLED(STM32_CKPER_ENABLED)) ||
	    ((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) ||
	    ((src_clk == STM32_SRC_HSI_KER) && IS_ENABLED(STM32_HSI_ENABLED)) ||
	    ((src_clk == STM32_SRC_CSI_KER) && IS_ENABLED(STM32_CSI_ENABLED)) ||
	    ((src_clk == STM32_SRC_HSI48) && IS_ENABLED(STM32_HSI48_ENABLED)) ||
	    ((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) ||
	    ((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL1_P) && IS_ENABLED(STM32_PLL_P_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL1_Q) && IS_ENABLED(STM32_PLL_Q_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL1_R) && IS_ENABLED(STM32_PLL_R_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL2_P) && IS_ENABLED(STM32_PLL2_P_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL2_Q) && IS_ENABLED(STM32_PLL2_Q_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL2_R) && IS_ENABLED(STM32_PLL2_R_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL3_P) && IS_ENABLED(STM32_PLL3_P_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL3_Q) && IS_ENABLED(STM32_PLL3_Q_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL3_R) && IS_ENABLED(STM32_PLL3_R_ENABLED))) {
		return 0;
	}

	return -ENOTSUP;
}

static inline int stm32_clock_control_on(const struct device *dev,
					 clock_control_subsys_t sub_system)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
	volatile int temp;

	ARG_UNUSED(dev);

	if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
		/* Attempt to toggle a wrong periph clock bit */
		return -ENOTSUP;
	}

	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);

	sys_set_bits(STM32H7_BUS_CLK_REG + pclken->bus, pclken->enr);
	/* Delay after enabling the clock, to allow it to become active.
	 * See RM0433 8.5.10 "Clock enabling delays"
	 */
	temp = sys_read32(STM32H7_BUS_CLK_REG + pclken->bus);
	UNUSED(temp);

	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);

	return 0;
}

static inline int stm32_clock_control_off(const struct device *dev,
					  clock_control_subsys_t sub_system)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);

	ARG_UNUSED(dev);

	if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
		/* Attempt to toggle a wrong periph clock bit */
		return -ENOTSUP;
	}

	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);

	sys_clear_bits(STM32H7_BUS_CLK_REG + pclken->bus, pclken->enr);

	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);

	return 0;
}

static inline int stm32_clock_control_configure(const struct device *dev,
						clock_control_subsys_t sub_system,
						void *data)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
	int err;

	ARG_UNUSED(dev);
	ARG_UNUSED(data);

	err = enabled_clock(pclken->bus);
	if (err < 0) {
		/* Attempt to configure a src clock not available or not valid */
		return err;
	}

	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);

	sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
		       STM32_CLOCK_MASK_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
	sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
		     STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));

	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);

	return 0;
}

static int stm32_clock_control_get_subsys_rate(const struct device *clock,
					       clock_control_subsys_t sub_system,
					       uint32_t *rate)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
	/*
	 * Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
	 * SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
	 * since it will be updated after clock configuration and hence
	 * more likely to contain actual clock speed
	 */
#if defined(CONFIG_CPU_CORTEX_M4)
	uint32_t ahb_clock = SystemCoreClock;
#else
	uint32_t ahb_clock = get_bus_clock(SystemCoreClock, STM32_HPRE);
#endif
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_PPRE1);
	uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_PPRE2);
	uint32_t apb4_clock = get_bus_clock(ahb_clock, STM32_PPRE4);
	uint32_t apb5_clock = get_bus_clock(ahb_clock, STM32_PPRE5);
#else
	uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_D2PPRE1);
	uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_D2PPRE2);
	uint32_t apb3_clock = get_bus_clock(ahb_clock, STM32_D1PPRE);
	uint32_t apb4_clock = get_bus_clock(ahb_clock, STM32_D3PPRE);
#endif

	ARG_UNUSED(clock);

	switch (pclken->bus) {
	case STM32_CLOCK_BUS_AHB1:
	case STM32_CLOCK_BUS_AHB2:
	case STM32_CLOCK_BUS_AHB3:
	case STM32_CLOCK_BUS_AHB4:
		*rate = ahb_clock;
		break;
	case STM32_CLOCK_BUS_APB1:
	case STM32_CLOCK_BUS_APB1_2:
		*rate = apb1_clock;
		break;
	case STM32_CLOCK_BUS_APB2:
		*rate = apb2_clock;
		break;
#if !defined(CONFIG_SOC_SERIES_STM32H7RSX)
	case STM32_CLOCK_BUS_APB3:
		*rate = apb3_clock;
		break;
#endif /* !CONFIG_SOC_SERIES_STM32H7RSX */
	case STM32_CLOCK_BUS_APB4:
		*rate = apb4_clock;
		break;
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	case STM32_CLOCK_BUS_APB5:
		*rate = apb5_clock;
		break;
	case STM32_CLOCK_BUS_AHB5:
		*rate = ahb_clock;
		break;
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
	case STM32_SRC_SYSCLK:
		*rate = get_hclk_frequency();
		break;
#if defined(STM32_CKPER_ENABLED)
	case STM32_SRC_CKPER:
		*rate = LL_RCC_GetCLKPClockFreq(LL_RCC_CLKP_CLKSOURCE);
		break;
#endif /* STM32_CKPER_ENABLED */
#if defined(STM32_HSE_ENABLED)
	case STM32_SRC_HSE:
		*rate = STM32_HSE_FREQ;
		break;
#endif /* STM32_HSE_ENABLED */
#if defined(STM32_LSE_ENABLED)
	case STM32_SRC_LSE:
		*rate = STM32_LSE_FREQ;
		break;
#endif /* STM32_LSE_ENABLED */
#if defined(STM32_LSI_ENABLED)
	case STM32_SRC_LSI:
		*rate = STM32_LSI_FREQ;
		break;
#endif /* STM32_LSI_ENABLED */
#if defined(STM32_HSI48_ENABLED)
	case STM32_SRC_HSI48:
		*rate = STM32_HSI48_FREQ;
		break;
#endif /* STM32_HSI48_ENABLED */
#if defined(STM32_PLL_ENABLED)
	case STM32_SRC_PLL1_P:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_P_DIVISOR);
		break;
	case STM32_SRC_PLL1_Q:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_Q_DIVISOR);
		break;
	case STM32_SRC_PLL1_R:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_R_DIVISOR);
		break;
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	case STM32_SRC_PLL1_S:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_S_DIVISOR);
		break;
	/* PLL 1  has no T-divider */
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLL2_ENABLED)
	case STM32_SRC_PLL2_P:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL2_M_DIVISOR,
					      STM32_PLL2_N_MULTIPLIER,
					      STM32_PLL2_P_DIVISOR);
		break;
	case STM32_SRC_PLL2_Q:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL2_M_DIVISOR,
					      STM32_PLL2_N_MULTIPLIER,
					      STM32_PLL2_Q_DIVISOR);
		break;
	case STM32_SRC_PLL2_R:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL2_M_DIVISOR,
					      STM32_PLL2_N_MULTIPLIER,
					      STM32_PLL2_R_DIVISOR);
		break;
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	case STM32_SRC_PLL2_S:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL2_M_DIVISOR,
					      STM32_PLL2_N_MULTIPLIER,
					      STM32_PLL2_S_DIVISOR);
		break;
	case STM32_SRC_PLL2_T:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL2_M_DIVISOR,
					      STM32_PLL2_N_MULTIPLIER,
					      STM32_PLL2_T_DIVISOR);
		break;
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL3_ENABLED)
	case STM32_SRC_PLL3_P:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL3_M_DIVISOR,
					      STM32_PLL3_N_MULTIPLIER,
					      STM32_PLL3_P_DIVISOR);
		break;
	case STM32_SRC_PLL3_Q:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL3_M_DIVISOR,
					      STM32_PLL3_N_MULTIPLIER,
					      STM32_PLL3_Q_DIVISOR);
		break;
	case STM32_SRC_PLL3_R:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL3_M_DIVISOR,
					      STM32_PLL3_N_MULTIPLIER,
					      STM32_PLL3_R_DIVISOR);
		break;
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	case STM32_SRC_PLL3_S:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL3_M_DIVISOR,
					      STM32_PLL3_N_MULTIPLIER,
					      STM32_PLL3_S_DIVISOR);
		break;
	/* PLL 3  has no T-divider */
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
#endif /* STM32_PLL3_ENABLED */
	default:
		return -ENOTSUP;
	}

	return 0;
}

static const struct clock_control_driver_api stm32_clock_control_api = {
	.on = stm32_clock_control_on,
	.off = stm32_clock_control_off,
	.get_rate = stm32_clock_control_get_subsys_rate,
	.configure = stm32_clock_control_configure,
};

__unused
static void set_up_fixed_clock_sources(void)
{

	if (IS_ENABLED(STM32_HSE_ENABLED)) {
		/* Enable HSE oscillator */
		if (IS_ENABLED(STM32_HSE_BYPASS)) {
			LL_RCC_HSE_EnableBypass();
		} else {
			LL_RCC_HSE_DisableBypass();
		}

		LL_RCC_HSE_Enable();
		while (LL_RCC_HSE_IsReady() != 1) {
		}
		/* Check if we need to enable HSE clock security system or not */
#if STM32_HSE_CSS
		z_arm_nmi_set_handler(HAL_RCC_NMI_IRQHandler);
		LL_RCC_HSE_EnableCSS();
#endif /* STM32_HSE_CSS */
	}

	if (IS_ENABLED(STM32_HSI_ENABLED)) {
		/* Enable HSI oscillator */
		LL_RCC_HSI_Enable();
		while (LL_RCC_HSI_IsReady() != 1) {
		}
		/* HSI divider configuration */
		LL_RCC_HSI_SetDivider(hsi_divider(STM32_HSI_DIVISOR));
	}

	if (IS_ENABLED(STM32_CSI_ENABLED)) {
		/* Enable CSI oscillator */
		LL_RCC_CSI_Enable();
		while (LL_RCC_CSI_IsReady() != 1) {
		}
	}

	if (IS_ENABLED(STM32_LSI_ENABLED)) {
		/* Enable LSI oscillator */
		LL_RCC_LSI_Enable();
		while (LL_RCC_LSI_IsReady() != 1) {
		}
	}

	if (IS_ENABLED(STM32_LSE_ENABLED)) {
		/* Enable backup domain */
		LL_PWR_EnableBkUpAccess();

		/* Configure driving capability */
		LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos);

		if (IS_ENABLED(STM32_LSE_BYPASS)) {
			/* Configure LSE bypass */
			LL_RCC_LSE_EnableBypass();
		}

		/* Enable LSE oscillator */
		LL_RCC_LSE_Enable();
		while (LL_RCC_LSE_IsReady() != 1) {
		}
	}

	if (IS_ENABLED(STM32_HSI48_ENABLED)) {
		LL_RCC_HSI48_Enable();
		while (LL_RCC_HSI48_IsReady() != 1) {
		}
	}
}

/*
 * Unconditionally switch the system clock source to HSI.
 */
__unused
static void stm32_clock_switch_to_hsi(void)
{
	/* Enable HSI if not enabled */
	if (LL_RCC_HSI_IsReady() != 1) {
		/* Enable HSI */
		LL_RCC_HSI_Enable();
		while (LL_RCC_HSI_IsReady() != 1) {
			/* Wait for HSI ready */
		}
	}

	/* Set HSI as SYSCLCK source */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
	}
}

__unused
static int set_up_plls(void)
{
#if defined(STM32_PLL_ENABLED) || defined(STM32_PLL2_ENABLED) || defined(STM32_PLL3_ENABLED)
	int r;
	uint32_t vco_input_range;
	uint32_t vco_output_range;

	/*
	 * Case of chain-loaded applications:
	 * Switch to HSI and disable the PLL before configuration.
	 * (Switching to HSI makes sure we have a SYSCLK source in
	 * case we're currently running from the PLL we're about to
	 * turn off and reconfigure.)
	 *
	 */
	if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
		stm32_clock_switch_to_hsi();
		LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
	}
	LL_RCC_PLL1_Disable();

	/* Configure PLL source */

	/* Can be HSE , HSI 64Mhz/HSIDIV, CSI 4MHz*/
	if (IS_ENABLED(STM32_PLL_SRC_HSE)) {
		/* Main PLL configuration and activation */
		LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSE);
	} else if (IS_ENABLED(STM32_PLL_SRC_CSI)) {
		/* Main PLL configuration and activation */
		LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_CSI);
	} else if (IS_ENABLED(STM32_PLL_SRC_HSI)) {
		/* Main PLL configuration and activation */
		LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSI);
	} else {
		return -ENOTSUP;
	}

#if defined(STM32_PLL_ENABLED)
	r = get_vco_input_range(STM32_PLL_M_DIVISOR, &vco_input_range);
	if (r < 0) {
		return r;
	}

	vco_output_range = get_vco_output_range(vco_input_range);

	LL_RCC_PLL1_SetM(STM32_PLL_M_DIVISOR);

	LL_RCC_PLL1_SetVCOInputRange(vco_input_range);
	LL_RCC_PLL1_SetVCOOutputRange(vco_output_range);

	LL_RCC_PLL1_SetN(STM32_PLL_N_MULTIPLIER);

	/* FRACN disable DIVP,DIVQ,DIVR enable*/
	LL_RCC_PLL1FRACN_Disable();

	if (IS_ENABLED(STM32_PLL_P_ENABLED)) {
		LL_RCC_PLL1_SetP(STM32_PLL_P_DIVISOR);
		LL_RCC_PLL1P_Enable();
	}

	if (IS_ENABLED(STM32_PLL_Q_ENABLED)) {
		LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR);
		LL_RCC_PLL1Q_Enable();
	}

	if (IS_ENABLED(STM32_PLL_R_ENABLED)) {
		LL_RCC_PLL1_SetR(STM32_PLL_R_DIVISOR);
		LL_RCC_PLL1R_Enable();
	}

#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	if (IS_ENABLED(STM32_PLL_S_ENABLED)) {
		LL_RCC_PLL1_SetS(STM32_PLL_S_DIVISOR);
		LL_RCC_PLL1S_Enable();
	}
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
	LL_RCC_PLL1_Enable();
	while (LL_RCC_PLL1_IsReady() != 1U) {
	}

#endif /* STM32_PLL_ENABLED */

#if defined(STM32_PLL2_ENABLED)
	r = get_vco_input_range(STM32_PLL2_M_DIVISOR, &vco_input_range);
	if (r < 0) {
		return r;
	}

	vco_output_range = get_vco_output_range(vco_input_range);

	LL_RCC_PLL2_SetM(STM32_PLL2_M_DIVISOR);

	LL_RCC_PLL2_SetVCOInputRange(vco_input_range);
	LL_RCC_PLL2_SetVCOOutputRange(vco_output_range);

	LL_RCC_PLL2_SetN(STM32_PLL2_N_MULTIPLIER);

	LL_RCC_PLL2FRACN_Disable();

	if (IS_ENABLED(STM32_PLL2_P_ENABLED)) {
		LL_RCC_PLL2_SetP(STM32_PLL2_P_DIVISOR);
		LL_RCC_PLL2P_Enable();
	}

	if (IS_ENABLED(STM32_PLL2_Q_ENABLED)) {
		LL_RCC_PLL2_SetQ(STM32_PLL2_Q_DIVISOR);
		LL_RCC_PLL2Q_Enable();
	}

	if (IS_ENABLED(STM32_PLL2_R_ENABLED)) {
		LL_RCC_PLL2_SetR(STM32_PLL2_R_DIVISOR);
		LL_RCC_PLL2R_Enable();
	}

#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	if (IS_ENABLED(STM32_PLL2_S_ENABLED)) {
		LL_RCC_PLL2_SetS(STM32_PLL2_S_DIVISOR);
		LL_RCC_PLL2S_Enable();
	}

	if (IS_ENABLED(STM32_PLL2_T_ENABLED)) {
		LL_RCC_PLL2_SetT(STM32_PLL2_T_DIVISOR);
		LL_RCC_PLL2T_Enable();
	}

#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
	LL_RCC_PLL2_Enable();
	while (LL_RCC_PLL2_IsReady() != 1U) {
	}

#endif /* STM32_PLL2_ENABLED */

#if defined(STM32_PLL3_ENABLED)
	r = get_vco_input_range(STM32_PLL3_M_DIVISOR, &vco_input_range);
	if (r < 0) {
		return r;
	}

	vco_output_range = get_vco_output_range(vco_input_range);

	LL_RCC_PLL3_SetM(STM32_PLL3_M_DIVISOR);

	LL_RCC_PLL3_SetVCOInputRange(vco_input_range);
	LL_RCC_PLL3_SetVCOOutputRange(vco_output_range);

	LL_RCC_PLL3_SetN(STM32_PLL3_N_MULTIPLIER);

	LL_RCC_PLL3FRACN_Disable();

	if (IS_ENABLED(STM32_PLL3_P_ENABLED)) {
		LL_RCC_PLL3_SetP(STM32_PLL3_P_DIVISOR);
		LL_RCC_PLL3P_Enable();
	}

	if (IS_ENABLED(STM32_PLL3_Q_ENABLED)) {
		LL_RCC_PLL3_SetQ(STM32_PLL3_Q_DIVISOR);
		LL_RCC_PLL3Q_Enable();
	}

	if (IS_ENABLED(STM32_PLL3_R_ENABLED)) {
		LL_RCC_PLL3_SetR(STM32_PLL3_R_DIVISOR);
		LL_RCC_PLL3R_Enable();
	}

#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	if (IS_ENABLED(STM32_PLL3_S_ENABLED)) {
		LL_RCC_PLL3_SetS(STM32_PLL3_S_DIVISOR);
		LL_RCC_PLL3S_Enable();
	}

#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
	LL_RCC_PLL3_Enable();
	while (LL_RCC_PLL3_IsReady() != 1U) {
	}

#endif /* STM32_PLL3_ENABLED */

#else
	/* Init PLL source to None */
	LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_NONE);

#endif /* STM32_PLL_ENABLED || STM32_PLL2_ENABLED || STM32_PLL3_ENABLED */

	return 0;
}

#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
/*  adapted from the stm32cube SystemCoreClockUpdate*/
void stm32_system_clock_update(void)
{
	uint32_t sysclk, hsivalue, pllsource, pllm, pllp, core_presc;
	float_t pllfracn, pllvco;

	/* Get SYSCLK source */
	switch (RCC->CFGR & RCC_CFGR_SWS) {
	case 0x00: /* HSI used as system clock source (default after reset) */
		sysclk = (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV)
			>> RCC_CR_HSIDIV_Pos));
		break;

	case 0x08: /* CSI used as system clock source */
		sysclk = CSI_VALUE;
		break;

	case 0x10: /* HSE used as system clock source */
		sysclk = HSE_VALUE;
		break;

	case 0x18:  /* PLL1 used as system clock  source */
		/*
		 * PLL1_VCO = (HSE_VALUE or HSI_VALUE or CSI_VALUE/ PLLM) * PLLN
		 * SYSCLK = PLL1_VCO / PLL1R
		 */
		pllsource = (RCC->PLLCKSELR & RCC_PLLCKSELR_PLLSRC);
		pllm = ((RCC->PLLCKSELR & RCC_PLLCKSELR_DIVM1) >> RCC_PLLCKSELR_DIVM1_Pos);

		if ((RCC->PLLCFGR & RCC_PLLCFGR_PLL1FRACEN) != 0U) {
			pllfracn = (float_t)(uint32_t)(((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN)
			>> RCC_PLL1FRACR_FRACN_Pos));
		} else {
			pllfracn = (float_t)0U;
		}

		if (pllm != 0U) {
			switch (pllsource) {
			case 0x02: /* HSE used as PLL1 clock source */
				pllvco = ((float_t)HSE_VALUE / (float_t)pllm) *
					((float_t)(uint32_t)(RCC->PLL1DIVR1 & RCC_PLL1DIVR1_DIVN) +
					(pllfracn/(float_t)0x2000) + (float_t)1);
				break;

			case 0x01: /* CSI used as PLL1 clock source */
				pllvco = ((float_t)CSI_VALUE / (float_t)pllm) *
				((float_t)(uint32_t)(RCC->PLL1DIVR1 & RCC_PLL1DIVR1_DIVN) +
				(pllfracn/(float_t)0x2000) + (float_t)1);
				break;

			case 0x00: /* HSI used as PLL1 clock source */
			default:
				hsivalue = (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV) >>
					RCC_CR_HSIDIV_Pos));
				pllvco = ((float_t)hsivalue / (float_t)pllm) *
					((float_t)(uint32_t)(RCC->PLL1DIVR1 & RCC_PLL1DIVR1_DIVN) +
					(pllfracn/(float_t)0x2000) + (float_t)1);
				break;
			}

			pllp = (((RCC->PLL1DIVR1 & RCC_PLL1DIVR1_DIVP) >>
				RCC_PLL1DIVR1_DIVP_Pos) + 1U);
			sysclk =  (uint32_t)(float_t)(pllvco/(float_t)pllp);
		} else {
			sysclk = 0U;
		}
		break;

	default: /* Unexpected, default to HSI used as system clk source (default after reset) */
		sysclk = (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV) >> RCC_CR_HSIDIV_Pos));
		break;
	}

	/* system clock frequency : CM7 CPU frequency  */
	core_presc = (RCC->CDCFGR & RCC_CDCFGR_CPRE);

	if (core_presc >= 8U) {
		SystemCoreClock = (sysclk >> (core_presc - RCC_CDCFGR_CPRE_3 + 1U));
	} else {
		SystemCoreClock = sysclk;
	}
}
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */

int stm32_clock_control_init(const struct device *dev)
{
	int r = 0;

#if defined(CONFIG_CPU_CORTEX_M7)
	uint32_t old_hclk_freq;
	uint32_t new_hclk_freq;

	/* HW semaphore Clock enable */
#if defined(CONFIG_SOC_STM32H7A3XX) || defined(CONFIG_SOC_STM32H7A3XXQ) || \
	defined(CONFIG_SOC_STM32H7B0XX) || defined(CONFIG_SOC_STM32H7B0XXQ) || \
	defined(CONFIG_SOC_STM32H7B3XX) || defined(CONFIG_SOC_STM32H7B3XXQ)
	LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_HSEM);
#elif !defined(CONFIG_SOC_SERIES_STM32H7RSX)
	/* The stm32h7RS serie has no HSEM peripheral */
	LL_AHB4_GRP1_EnableClock(LL_AHB4_GRP1_PERIPH_HSEM);
#endif
	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);

	/* Configure MCO1/MCO2 based on Kconfig */
	stm32_clock_control_mco_init();

	/* Set up individual enabled clocks */
	set_up_fixed_clock_sources();

	/* Set up PLLs */
	r = set_up_plls();
	if (r < 0) {
		return r;
	}

	/* Configure Voltage scale to comply with the desired system frequency */
	prepare_regulator_voltage_scale();

	/* Current hclk value */
	old_hclk_freq = get_hclk_frequency();
	/* AHB is HCLK clock to configure */
	new_hclk_freq = get_bus_clock(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
				      STM32_HPRE);

	/* Set flash latency */

	/* AHB/AXI/HCLK clock is SYSCLK / HPRE */
	/* If freq increases, set flash latency before any clock setting */
	if (new_hclk_freq > old_hclk_freq) {
		LL_SetFlashLatency(new_hclk_freq);
	}
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	/*
	 * The default Flash latency is 3 WS which is not enough,
	 * set higher and correct later if needed
	 */
	LL_FLASH_SetLatency(LL_FLASH_LATENCY_6);
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */

	/* Preset the prescalers prior to choosing SYSCLK */
	/* Prevents APB clock to go over limits */
	/* Set buses (Sys,AHB, APB1, APB2 & APB4) prescalers */
	LL_RCC_SetSysPrescaler(sysclk_prescaler(STM32_D1CPRE));
	LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_HPRE));
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
	LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_PPRE1));
	LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_PPRE2));
	LL_RCC_SetAPB4Prescaler(apb4_prescaler(STM32_PPRE4));
	LL_RCC_SetAPB5Prescaler(apb5_prescaler(STM32_PPRE5));

#else
	LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_D2PPRE1));
	LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_D2PPRE2));
	LL_RCC_SetAPB3Prescaler(apb3_prescaler(STM32_D1PPRE));
	LL_RCC_SetAPB4Prescaler(apb4_prescaler(STM32_D3PPRE));

#endif
	/* Set up sys clock */
	if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) {
		/* Set PLL1 as System Clock Source */
		LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
		while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
		}
	} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSE)) {
		/* Set sysclk source to HSE */
		LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
		while (LL_RCC_GetSysClkSource() !=
					LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
		}
	} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSI)) {
		/* Set sysclk source to HSI */
		stm32_clock_switch_to_hsi();
	} else if (IS_ENABLED(STM32_SYSCLK_SRC_CSI)) {
		/* Set sysclk source to CSI */
		LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_CSI);
		while (LL_RCC_GetSysClkSource() !=
					LL_RCC_SYS_CLKSOURCE_STATUS_CSI) {
		}
	} else {
		return -ENOTSUP;
	}

	/* Set FLASH latency */
	/* AHB/AXI/HCLK clock is SYSCLK / HPRE */
	/* If freq not increased, set flash latency after all clock setting */
	if (new_hclk_freq <= old_hclk_freq) {
		LL_SetFlashLatency(new_hclk_freq);
	}

	optimize_regulator_voltage_scale(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);

	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
#endif /* CONFIG_CPU_CORTEX_M7 */

	ARG_UNUSED(dev);

	/* Update CMSIS variable */
	SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;

	return r;
}

#if defined(STM32_HSE_CSS)
void __weak stm32_hse_css_callback(void) {}

/* Called by the HAL in response to an HSE CSS interrupt */
void HAL_RCC_CSSCallback(void)
{
	stm32_hse_css_callback();
}
#endif

/**
 * @brief RCC device, note that priority is intentionally set to 1 so
 * that the device init runs just after SOC init
 */
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
		    stm32_clock_control_init,
		    NULL,
		    NULL, NULL,
		    PRE_KERNEL_1,
		    CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
		    &stm32_clock_control_api);