Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*
 * Copyright (c) 2018 Nordic Semiconductor ASA
 * Copyright (c) 2016 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */


#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/counter.h>
#include <zephyr/kernel.h>
#include <zephyr/ztest.h>

/* Invalid value that is not supposed to be written by the driver. It is used
 * to mark the sample buffer entries as empty. If needed, it can be overridden
 * for a particular board by providing a specific definition above.
 */
#if !defined(INVALID_ADC_VALUE)
#define INVALID_ADC_VALUE SHRT_MIN
#endif

#if CONFIG_NOCACHE_MEMORY
#define __NOCACHE	__attribute__((__section__(".nocache")))
#else /* CONFIG_NOCACHE_MEMORY */
#define __NOCACHE
#endif /* CONFIG_NOCACHE_MEMORY */

#define BUFFER_SIZE  6
#ifdef CONFIG_TEST_USERSPACE
static ZTEST_BMEM int16_t m_sample_buffer[BUFFER_SIZE];
#else
static __aligned(32) int16_t m_sample_buffer[BUFFER_SIZE] __NOCACHE;
#endif

#define DT_SPEC_AND_COMMA(node_id, prop, idx) ADC_DT_SPEC_GET_BY_IDX(node_id, idx),

#if DT_NODE_HAS_PROP(DT_PATH(zephyr_user), io_channels)
/* Data of ADC io-channels specified in devicetree. */
static const struct adc_dt_spec adc_channels[] = {
	DT_FOREACH_PROP_ELEM(DT_PATH(zephyr_user), io_channels, DT_SPEC_AND_COMMA)
};
static const int adc_channels_count = ARRAY_SIZE(adc_channels);
#else
#error "Unsupported board."
#endif

const struct device *get_adc_device(void)
{
	if (!adc_is_ready_dt(&adc_channels[0])) {
		printk("ADC device is not ready\n");
		return NULL;
	}

	return adc_channels[0].dev;
}

#if DT_NODE_HAS_STATUS(DT_NODELABEL(test_counter), okay) && \
	defined(CONFIG_COUNTER)
static void init_counter(void)
{
	int err;
	const struct device *const dev = DEVICE_DT_GET(DT_NODELABEL(test_counter));
	struct counter_top_cfg top_cfg = { .callback = NULL,
					   .user_data = NULL,
					   .flags = 0 };

	zassert_true(device_is_ready(dev), "Counter device is not ready");

	counter_start(dev);
	top_cfg.ticks = counter_us_to_ticks(dev, CONFIG_ADC_API_SAMPLE_INTERVAL_US);
	err = counter_set_top_value(dev, &top_cfg);
	zassert_equal(0, err, "%s: Counter failed to set top value (err: %d)",
		      dev->name, err);
}
#endif

static void init_adc(void)
{
	int i, ret;

	zassert_true(adc_is_ready_dt(&adc_channels[0]), "ADC device is not ready");

	for (i = 0; i < adc_channels_count; i++) {
		ret = adc_channel_setup_dt(&adc_channels[i]);
		zassert_equal(ret, 0, "Setting up of channel %d failed with code %d", i, ret);
	}

	for (i = 0; i < BUFFER_SIZE; ++i) {
		m_sample_buffer[i] = INVALID_ADC_VALUE;
	}

#if DT_NODE_HAS_STATUS(DT_NODELABEL(test_counter), okay) && \
	defined(CONFIG_COUNTER)
	init_counter();
#endif
}

static void check_samples(int expected_count)
{
	int i;

	TC_PRINT("Samples read: ");
	for (i = 0; i < BUFFER_SIZE; i++) {
		int16_t sample_value = m_sample_buffer[i];

		TC_PRINT("0x%04hx ", sample_value);
		if (i < expected_count) {
			zassert_not_equal(INVALID_ADC_VALUE, sample_value,
				"[%u] should be filled", i);
		} else {
			zassert_equal(INVALID_ADC_VALUE, sample_value,
				"[%u] should be empty", i);
		}
	}
	TC_PRINT("\n");
}

/*
 * test_adc_sample_one_channel
 */
static int test_task_one_channel(void)
{
	int ret;
	struct adc_sequence sequence = {
		.buffer = m_sample_buffer,
		.buffer_size = sizeof(m_sample_buffer),
	};

	init_adc();
	(void)adc_sequence_init_dt(&adc_channels[0], &sequence);

	ret = adc_read_dt(&adc_channels[0], &sequence);
	zassert_equal(ret, 0, "adc_read() failed with code %d", ret);

	check_samples(1);

	return TC_PASS;
}

ZTEST_USER(adc_basic, test_adc_sample_one_channel)
{
	zassert_true(test_task_one_channel() == TC_PASS);
}

/*
 * test_adc_sample_multiple_channels
 */
static int test_task_multiple_channels(void)
{
	int ret;
	struct adc_sequence sequence = {
		.buffer      = m_sample_buffer,
		.buffer_size = sizeof(m_sample_buffer),
	};

	init_adc();
	(void)adc_sequence_init_dt(&adc_channels[0], &sequence);

	for (int i = 1; i < adc_channels_count; i++) {
		sequence.channels |= BIT(adc_channels[i].channel_id);
	}

	ret = adc_read_dt(&adc_channels[0], &sequence);
	if (ret == -ENOTSUP) {
		ztest_test_skip();
	}
	zassert_equal(ret, 0, "adc_read() failed with code %d", ret);

	check_samples(adc_channels_count);

	return TC_PASS;
}

ZTEST_USER(adc_basic, test_adc_sample_two_channels)
{
	if (adc_channels_count > 1) {
		zassert_true(test_task_multiple_channels() == TC_PASS);
	} else {
		ztest_test_skip();
	}
}

/*
 * test_adc_asynchronous_call
 */
#if defined(CONFIG_ADC_ASYNC)
struct k_poll_signal async_sig;

static int test_task_asynchronous_call(void)
{
	int ret;
	const struct adc_sequence_options options = {
		.extra_samplings = 4,
		/* Start consecutive samplings as fast as possible. */
		.interval_us     = CONFIG_ADC_API_SAMPLE_INTERVAL_US,
	};
	struct adc_sequence sequence = {
		.options     = &options,
		.buffer      = m_sample_buffer,
		.buffer_size = sizeof(m_sample_buffer),
	};
	struct k_poll_event  async_evt =
		K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_SIGNAL,
					 K_POLL_MODE_NOTIFY_ONLY,
					 &async_sig);
	init_adc();

	(void)adc_sequence_init_dt(&adc_channels[0], &sequence);

	ret = adc_read_async(adc_channels[0].dev, &sequence, &async_sig);
	zassert_equal(ret, 0, "adc_read_async() failed with code %d", ret);

	ret = k_poll(&async_evt, 1, K_MSEC(1000));
	zassert_equal(ret, 0, "k_poll failed with error %d", ret);

	check_samples(1 + options.extra_samplings);

	return TC_PASS;
}
#endif /* defined(CONFIG_ADC_ASYNC) */

ZTEST_USER(adc_basic, test_adc_asynchronous_call)
{
#if defined(CONFIG_ADC_ASYNC)
	zassert_true(test_task_asynchronous_call() == TC_PASS);
#else
	ztest_test_skip();
#endif /* defined(CONFIG_ADC_ASYNC) */
}

/*
 * test_adc_sample_with_interval
 */
static uint32_t my_sequence_identifier = 0x12345678;
static void *user_data = &my_sequence_identifier;

static enum adc_action sample_with_interval_callback(const struct device *dev,
						     const struct adc_sequence *sequence,
						     uint16_t sampling_index)
{
	if (sequence->options->user_data != &my_sequence_identifier) {
		user_data = sequence->options->user_data;
		return ADC_ACTION_FINISH;
	}

	TC_PRINT("%s: sampling %d\n", __func__, sampling_index);
	return ADC_ACTION_CONTINUE;
}

static int test_task_with_interval(void)
{
	int ret;
	const struct adc_sequence_options options = {
		.interval_us     = 100 * 1000UL,
		.callback        = sample_with_interval_callback,
		.user_data       = user_data,
		.extra_samplings = 4,
	};
	struct adc_sequence sequence = {
		.options     = &options,
		.buffer      = m_sample_buffer,
		.buffer_size = sizeof(m_sample_buffer),
	};

	init_adc();

	(void)adc_sequence_init_dt(&adc_channels[0], &sequence);

	ret = adc_read_dt(&adc_channels[0], &sequence);
	if (ret == -ENOTSUP) {
		ztest_test_skip();
	}
	zassert_equal(ret, 0, "adc_read() failed with code %d", ret);

	zassert_equal(user_data, sequence.options->user_data,
		"Invalid user data: %p, expected: %p",
		user_data, sequence.options->user_data);

	check_samples(1 + options.extra_samplings);

	return TC_PASS;
}

ZTEST(adc_basic, test_adc_sample_with_interval)
{
	zassert_true(test_task_with_interval() == TC_PASS);
}

/*
 * test_adc_repeated_samplings
 */
static uint8_t m_samplings_done;
static enum adc_action repeated_samplings_callback(const struct device *dev,
						   const struct adc_sequence *sequence,
						   uint16_t sampling_index)
{
	++m_samplings_done;
	TC_PRINT("%s: done %d\n", __func__, m_samplings_done);
	if (m_samplings_done == 1U) {
		check_samples(MIN(adc_channels_count, 2));

		/* After first sampling continue normally. */
		return ADC_ACTION_CONTINUE;
	} else {
		check_samples(2 * MIN(adc_channels_count, 2));

		/*
		 * The second sampling is repeated 9 times (the samples are
		 * written in the same place), then the sequence is finished
		 * prematurely.
		 */
		if (m_samplings_done < 10) {
			return ADC_ACTION_REPEAT;
		} else {
			return ADC_ACTION_FINISH;
		}
	}
}

static int test_task_repeated_samplings(void)
{
	int ret;
	const struct adc_sequence_options options = {
		.callback        = repeated_samplings_callback,
		/*
		 * This specifies that 3 samplings are planned. However,
		 * the callback function above is constructed in such way
		 * that the first sampling is done normally, the second one
		 * is repeated 9 times, and then the sequence is finished.
		 * Hence, the third sampling will not take place.
		 */
		.extra_samplings = 2,
		/* Start consecutive samplings as fast as possible. */
		.interval_us     = CONFIG_ADC_API_SAMPLE_INTERVAL_US,
	};
	struct adc_sequence sequence = {
		.options     = &options,
		.buffer      = m_sample_buffer,
		.buffer_size = sizeof(m_sample_buffer),
	};

	init_adc();
	(void)adc_sequence_init_dt(&adc_channels[0], &sequence);

	if (adc_channels_count > 1) {
		sequence.channels |=  BIT(adc_channels[1].channel_id);
	}

	ret = adc_read_dt(&adc_channels[0], &sequence);
	if (ret == -ENOTSUP) {
		ztest_test_skip();
	}
	zassert_equal(ret, 0, "adc_read() failed with code %d", ret);

	return TC_PASS;
}

ZTEST(adc_basic, test_adc_repeated_samplings)
{
	zassert_true(test_task_repeated_samplings() == TC_PASS);
}

/*
 * test_adc_invalid_request
 */
static int test_task_invalid_request(void)
{
	int ret;
	struct adc_sequence sequence = {
		.channels    = BIT(adc_channels[0].channel_id),
		.buffer      = m_sample_buffer,
		.buffer_size = sizeof(m_sample_buffer),
		.resolution  = 0, /* intentionally invalid value */
	};

	init_adc();

	ret = adc_read_dt(&adc_channels[0], &sequence);
	zassert_not_equal(ret, 0, "adc_read() unexpectedly succeeded");

#if defined(CONFIG_ADC_ASYNC)
	ret = adc_read_async(adc_channels[0].dev, &sequence, &async_sig);
	zassert_not_equal(ret, 0, "adc_read_async() unexpectedly succeeded");
#endif

	/*
	 * Make the sequence parameters valid, now the request should succeed.
	 */
	sequence.resolution = adc_channels[0].resolution;

	ret = adc_read_dt(&adc_channels[0], &sequence);
	zassert_equal(ret, 0, "adc_read() failed with code %d", ret);

	check_samples(1);

	return TC_PASS;
}

ZTEST_USER(adc_basic, test_adc_invalid_request)
{
	zassert_true(test_task_invalid_request() == TC_PASS);
}