/*
* Copyright (c) 2016 BayLibre, SAS
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_spi
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_ll_stm32);
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <stm32_ll_spi.h>
#include <errno.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/toolchain.h>
#include <zephyr/pm/policy.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#ifdef CONFIG_SPI_STM32_DMA
#include <zephyr/drivers/dma/dma_stm32.h>
#include <zephyr/drivers/dma.h>
#endif
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/irq.h>
#include <zephyr/mem_mgmt/mem_attr.h>
#ifdef CONFIG_DCACHE
#include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h>
#endif /* CONFIG_DCACHE */
#ifdef CONFIG_NOCACHE_MEMORY
#include <zephyr/linker/linker-defs.h>
#elif defined(CONFIG_CACHE_MANAGEMENT)
#include <zephyr/arch/cache.h>
#endif /* CONFIG_NOCACHE_MEMORY */
#include "spi_ll_stm32.h"
#if defined(CONFIG_DCACHE) && \
!defined(CONFIG_NOCACHE_MEMORY)
/* currently, manual cache coherency management is only done on dummy_rx_tx_buffer */
#define SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED 1
#else
#define SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED 0
#endif /* defined(CONFIG_DCACHE) && !defined(CONFIG_NOCACHE_MEMORY) */
#define WAIT_1US 1U
/*
* Check for SPI_SR_FRE to determine support for TI mode frame format
* error flag, because STM32F1 SoCs do not support it and STM32CUBE
* for F1 family defines an unused LL_SPI_SR_FRE.
*/
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
#define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCE | LL_SPI_SR_MODF | \
LL_SPI_SR_OVR | LL_SPI_SR_TIFRE)
#else
#if defined(LL_SPI_SR_UDR)
#define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \
LL_SPI_SR_OVR | LL_SPI_SR_FRE)
#elif defined(SPI_SR_FRE)
#define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \
LL_SPI_SR_OVR | LL_SPI_SR_FRE)
#else
#define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | LL_SPI_SR_OVR)
#endif
#endif /* CONFIG_SOC_SERIES_STM32MP1X */
static void spi_stm32_pm_policy_state_lock_get(const struct device *dev)
{
if (IS_ENABLED(CONFIG_PM)) {
struct spi_stm32_data *data = dev->data;
if (!data->pm_policy_state_on) {
data->pm_policy_state_on = true;
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
}
pm_device_runtime_get(dev);
}
}
}
static void spi_stm32_pm_policy_state_lock_put(const struct device *dev)
{
if (IS_ENABLED(CONFIG_PM)) {
struct spi_stm32_data *data = dev->data;
if (data->pm_policy_state_on) {
data->pm_policy_state_on = false;
pm_device_runtime_put(dev);
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
}
}
}
}
#ifdef CONFIG_SPI_STM32_DMA
static uint32_t bits2bytes(uint32_t bits)
{
return bits / 8;
}
/* dummy buffer is used for transferring NOP when tx buf is null
* and used as a dummy sink for when rx buf is null.
*/
/*
* If Nocache Memory is supported, buffer will be placed in nocache region by
* the linker to avoid potential DMA cache-coherency problems.
* If Nocache Memory is not supported, cache coherency might need to be kept
* manually. See SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED.
*/
static __aligned(32) uint32_t dummy_rx_tx_buffer __nocache;
/* This function is executed in the interrupt context */
static void dma_callback(const struct device *dma_dev, void *arg,
uint32_t channel, int status)
{
ARG_UNUSED(dma_dev);
/* arg holds SPI DMA data
* Passed in spi_stm32_dma_tx/rx_load()
*/
struct spi_stm32_data *spi_dma_data = arg;
if (status < 0) {
LOG_ERR("DMA callback error with channel %d.", channel);
spi_dma_data->status_flags |= SPI_STM32_DMA_ERROR_FLAG;
} else {
/* identify the origin of this callback */
if (channel == spi_dma_data->dma_tx.channel) {
/* this part of the transfer ends */
spi_dma_data->status_flags |= SPI_STM32_DMA_TX_DONE_FLAG;
} else if (channel == spi_dma_data->dma_rx.channel) {
/* this part of the transfer ends */
spi_dma_data->status_flags |= SPI_STM32_DMA_RX_DONE_FLAG;
} else {
LOG_ERR("DMA callback channel %d is not valid.", channel);
spi_dma_data->status_flags |= SPI_STM32_DMA_ERROR_FLAG;
}
}
k_sem_give(&spi_dma_data->status_sem);
}
static int spi_stm32_dma_tx_load(const struct device *dev, const uint8_t *buf,
size_t len)
{
const struct spi_stm32_config *cfg = dev->config;
struct spi_stm32_data *data = dev->data;
struct dma_block_config *blk_cfg;
int ret;
/* remember active TX DMA channel (used in callback) */
struct stream *stream = &data->dma_tx;
blk_cfg = &stream->dma_blk_cfg;
/* prepare the block for this TX DMA channel */
memset(blk_cfg, 0, sizeof(struct dma_block_config));
blk_cfg->block_size = len;
/* tx direction has memory as source and periph as dest. */
if (buf == NULL) {
/* if tx buff is null, then sends NOP on the line. */
dummy_rx_tx_buffer = 0;
#if SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED
arch_dcache_flush_range((void *)&dummy_rx_tx_buffer, sizeof(uint32_t));
#endif /* SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED */
blk_cfg->source_address = (uint32_t)&dummy_rx_tx_buffer;
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
} else {
blk_cfg->source_address = (uint32_t)buf;
if (data->dma_tx.src_addr_increment) {
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
blk_cfg->dest_address = ll_func_dma_get_reg_addr(cfg->spi, SPI_STM32_DMA_TX);
/* fifo mode NOT USED there */
if (data->dma_tx.dst_addr_increment) {
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
/* give the fifo mode from the DT */
blk_cfg->fifo_mode_control = data->dma_tx.fifo_threshold;
/* direction is given by the DT */
stream->dma_cfg.head_block = blk_cfg;
/* give the dma channel data as arg, as the callback comes from the dma */
stream->dma_cfg.user_data = data;
/* pass our client origin to the dma: data->dma_tx.dma_channel */
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.channel,
&stream->dma_cfg);
/* the channel is the actual stream from 0 */
if (ret != 0) {
return ret;
}
/* gives the request ID to the dma mux */
return dma_start(data->dma_tx.dma_dev, data->dma_tx.channel);
}
static int spi_stm32_dma_rx_load(const struct device *dev, uint8_t *buf,
size_t len)
{
const struct spi_stm32_config *cfg = dev->config;
struct spi_stm32_data *data = dev->data;
struct dma_block_config *blk_cfg;
int ret;
/* retrieve active RX DMA channel (used in callback) */
struct stream *stream = &data->dma_rx;
blk_cfg = &stream->dma_blk_cfg;
/* prepare the block for this RX DMA channel */
memset(blk_cfg, 0, sizeof(struct dma_block_config));
blk_cfg->block_size = len;
/* rx direction has periph as source and mem as dest. */
if (buf == NULL) {
/* if rx buff is null, then write data to dummy address. */
blk_cfg->dest_address = (uint32_t)&dummy_rx_tx_buffer;
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
} else {
blk_cfg->dest_address = (uint32_t)buf;
if (data->dma_rx.dst_addr_increment) {
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
blk_cfg->source_address = ll_func_dma_get_reg_addr(cfg->spi, SPI_STM32_DMA_RX);
if (data->dma_rx.src_addr_increment) {
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
/* give the fifo mode from the DT */
blk_cfg->fifo_mode_control = data->dma_rx.fifo_threshold;
/* direction is given by the DT */
stream->dma_cfg.head_block = blk_cfg;
stream->dma_cfg.user_data = data;
/* pass our client origin to the dma: data->dma_rx.channel */
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.channel,
&stream->dma_cfg);
/* the channel is the actual stream from 0 */
if (ret != 0) {
return ret;
}
/* gives the request ID to the dma mux */
return dma_start(data->dma_rx.dma_dev, data->dma_rx.channel);
}
static int spi_dma_move_buffers(const struct device *dev, size_t len)
{
struct spi_stm32_data *data = dev->data;
int ret;
size_t dma_segment_len;
dma_segment_len = len * data->dma_rx.dma_cfg.dest_data_size;
ret = spi_stm32_dma_rx_load(dev, data->ctx.rx_buf, dma_segment_len);
if (ret != 0) {
return ret;
}
dma_segment_len = len * data->dma_tx.dma_cfg.source_data_size;
ret = spi_stm32_dma_tx_load(dev, data->ctx.tx_buf, dma_segment_len);
return ret;
}
#endif /* CONFIG_SPI_STM32_DMA */
/* Value to shift out when no application data needs transmitting. */
#define SPI_STM32_TX_NOP 0x00
static void spi_stm32_send_next_frame(SPI_TypeDef *spi,
struct spi_stm32_data *data)
{
const uint8_t frame_size = SPI_WORD_SIZE_GET(data->ctx.config->operation);
uint32_t tx_frame = SPI_STM32_TX_NOP;
if (frame_size == 8) {
if (spi_context_tx_buf_on(&data->ctx)) {
tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
}
LL_SPI_TransmitData8(spi, tx_frame);
spi_context_update_tx(&data->ctx, 1, 1);
} else {
if (spi_context_tx_buf_on(&data->ctx)) {
tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf));
}
LL_SPI_TransmitData16(spi, tx_frame);
spi_context_update_tx(&data->ctx, 2, 1);
}
}
static void spi_stm32_read_next_frame(SPI_TypeDef *spi,
struct spi_stm32_data *data)
{
const uint8_t frame_size = SPI_WORD_SIZE_GET(data->ctx.config->operation);
uint32_t rx_frame = 0;
if (frame_size == 8) {
rx_frame = LL_SPI_ReceiveData8(spi);
if (spi_context_rx_buf_on(&data->ctx)) {
UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf);
}
spi_context_update_rx(&data->ctx, 1, 1);
} else {
rx_frame = LL_SPI_ReceiveData16(spi);
if (spi_context_rx_buf_on(&data->ctx)) {
UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf);
}
spi_context_update_rx(&data->ctx, 2, 1);
}
}
static bool spi_stm32_transfer_ongoing(struct spi_stm32_data *data)
{
return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx);
}
static int spi_stm32_get_err(SPI_TypeDef *spi)
{
uint32_t sr = LL_SPI_ReadReg(spi, SR);
if (sr & SPI_STM32_ERR_MSK) {
LOG_ERR("%s: err=%d", __func__,
sr & (uint32_t)SPI_STM32_ERR_MSK);
/* OVR error must be explicitly cleared */
if (LL_SPI_IsActiveFlag_OVR(spi)) {
LL_SPI_ClearFlag_OVR(spi);
}
return -EIO;
}
return 0;
}
static void spi_stm32_shift_fifo(SPI_TypeDef *spi, struct spi_stm32_data *data)
{
if (ll_func_rx_is_not_empty(spi)) {
spi_stm32_read_next_frame(spi, data);
}
if (ll_func_tx_is_not_full(spi)) {
spi_stm32_send_next_frame(spi, data);
}
}
/* Shift a SPI frame as master. */
static void spi_stm32_shift_m(const struct spi_stm32_config *cfg,
struct spi_stm32_data *data)
{
if (cfg->fifo_enabled) {
spi_stm32_shift_fifo(cfg->spi, data);
} else {
while (!ll_func_tx_is_not_full(cfg->spi)) {
/* NOP */
}
spi_stm32_send_next_frame(cfg->spi, data);
while (!ll_func_rx_is_not_empty(cfg->spi)) {
/* NOP */
}
spi_stm32_read_next_frame(cfg->spi, data);
}
}
/* Shift a SPI frame as slave. */
static void spi_stm32_shift_s(SPI_TypeDef *spi, struct spi_stm32_data *data)
{
if (ll_func_tx_is_not_full(spi) && spi_context_tx_on(&data->ctx)) {
uint16_t tx_frame;
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
LL_SPI_TransmitData8(spi, tx_frame);
spi_context_update_tx(&data->ctx, 1, 1);
} else {
tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf));
LL_SPI_TransmitData16(spi, tx_frame);
spi_context_update_tx(&data->ctx, 2, 1);
}
} else {
ll_func_disable_int_tx_empty(spi);
}
if (ll_func_rx_is_not_empty(spi) &&
spi_context_rx_buf_on(&data->ctx)) {
uint16_t rx_frame;
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
rx_frame = LL_SPI_ReceiveData8(spi);
UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf);
spi_context_update_rx(&data->ctx, 1, 1);
} else {
rx_frame = LL_SPI_ReceiveData16(spi);
UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf);
spi_context_update_rx(&data->ctx, 2, 1);
}
}
}
/*
* Without a FIFO, we can only shift out one frame's worth of SPI
* data, and read the response back.
*
* TODO: support 16-bit data frames.
*/
static int spi_stm32_shift_frames(const struct spi_stm32_config *cfg,
struct spi_stm32_data *data)
{
uint16_t operation = data->ctx.config->operation;
if (SPI_OP_MODE_GET(operation) == SPI_OP_MODE_MASTER) {
spi_stm32_shift_m(cfg, data);
} else {
spi_stm32_shift_s(cfg->spi, data);
}
return spi_stm32_get_err(cfg->spi);
}
static void spi_stm32_cs_control(const struct device *dev, bool on)
{
struct spi_stm32_data *data = dev->data;
spi_context_cs_control(&data->ctx, on);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz)
const struct spi_stm32_config *cfg = dev->config;
if (cfg->use_subghzspi_nss) {
if (on) {
LL_PWR_SelectSUBGHZSPI_NSS();
} else {
LL_PWR_UnselectSUBGHZSPI_NSS();
}
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz) */
}
static void spi_stm32_complete(const struct device *dev, int status)
{
const struct spi_stm32_config *cfg = dev->config;
SPI_TypeDef *spi = cfg->spi;
struct spi_stm32_data *data = dev->data;
#ifdef CONFIG_SPI_STM32_INTERRUPT
ll_func_disable_int_tx_empty(spi);
ll_func_disable_int_rx_not_empty(spi);
ll_func_disable_int_errors(spi);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
if (cfg->fifo_enabled) {
LL_SPI_DisableIT_EOT(spi);
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */
#endif /* CONFIG_SPI_STM32_INTERRUPT */
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo)
/* Flush RX buffer */
while (ll_func_rx_is_not_empty(spi)) {
(void) LL_SPI_ReceiveData8(spi);
}
#endif /* compat st_stm32_spi_fifo*/
if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) {
while (ll_func_spi_is_busy(spi)) {
/* NOP */
}
spi_stm32_cs_control(dev, false);
}
/* BSY flag is cleared when MODF flag is raised */
if (LL_SPI_IsActiveFlag_MODF(spi)) {
LL_SPI_ClearFlag_MODF(spi);
}
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
if (cfg->fifo_enabled) {
LL_SPI_ClearFlag_TXTF(spi);
LL_SPI_ClearFlag_OVR(spi);
LL_SPI_ClearFlag_EOT(spi);
LL_SPI_SetTransferSize(spi, 0);
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */
if (!(data->ctx.config->operation & SPI_HOLD_ON_CS)) {
ll_func_disable_spi(spi);
}
#ifdef CONFIG_SPI_STM32_INTERRUPT
spi_context_complete(&data->ctx, dev, status);
#endif
spi_stm32_pm_policy_state_lock_put(dev);
}
#ifdef CONFIG_SPI_STM32_INTERRUPT
static void spi_stm32_isr(const struct device *dev)
{
const struct spi_stm32_config *cfg = dev->config;
struct spi_stm32_data *data = dev->data;
SPI_TypeDef *spi = cfg->spi;
int err;
/* Some spurious interrupts are triggered when SPI is not enabled; ignore them.
* Do it only when fifo is enabled to leave non-fifo functionality untouched for now
*/
if (cfg->fifo_enabled) {
if (!LL_SPI_IsEnabled(spi)) {
return;
}
}
err = spi_stm32_get_err(spi);
if (err) {
spi_stm32_complete(dev, err);
return;
}
if (spi_stm32_transfer_ongoing(data)) {
err = spi_stm32_shift_frames(cfg, data);
}
if (err || !spi_stm32_transfer_ongoing(data)) {
spi_stm32_complete(dev, err);
}
}
#endif /* CONFIG_SPI_STM32_INTERRUPT */
static int spi_stm32_configure(const struct device *dev,
const struct spi_config *config)
{
const struct spi_stm32_config *cfg = dev->config;
struct spi_stm32_data *data = dev->data;
const uint32_t scaler[] = {
LL_SPI_BAUDRATEPRESCALER_DIV2,
LL_SPI_BAUDRATEPRESCALER_DIV4,
LL_SPI_BAUDRATEPRESCALER_DIV8,
LL_SPI_BAUDRATEPRESCALER_DIV16,
LL_SPI_BAUDRATEPRESCALER_DIV32,
LL_SPI_BAUDRATEPRESCALER_DIV64,
LL_SPI_BAUDRATEPRESCALER_DIV128,
LL_SPI_BAUDRATEPRESCALER_DIV256
};
SPI_TypeDef *spi = cfg->spi;
uint32_t clock;
int br;
if (spi_context_configured(&data->ctx, config)) {
/* Nothing to do */
return 0;
}
if ((SPI_WORD_SIZE_GET(config->operation) != 8)
&& (SPI_WORD_SIZE_GET(config->operation) != 16)) {
return -ENOTSUP;
}
/* configure the frame format Motorola (default) or TI */
if ((config->operation & SPI_FRAME_FORMAT_TI) == SPI_FRAME_FORMAT_TI) {
#ifdef LL_SPI_PROTOCOL_TI
LL_SPI_SetStandard(spi, LL_SPI_PROTOCOL_TI);
#else
LOG_ERR("Frame Format TI not supported");
/* on stm32F1 or some stm32L1 (cat1,2) without SPI_CR2_FRF */
return -ENOTSUP;
#endif
#if defined(LL_SPI_PROTOCOL_MOTOROLA) && defined(SPI_CR2_FRF)
} else {
LL_SPI_SetStandard(spi, LL_SPI_PROTOCOL_MOTOROLA);
#endif
}
if (IS_ENABLED(STM32_SPI_DOMAIN_CLOCK_SUPPORT) && (cfg->pclk_len > 1)) {
if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
(clock_control_subsys_t) &cfg->pclken[1], &clock) < 0) {
LOG_ERR("Failed call clock_control_get_rate(pclk[1])");
return -EIO;
}
} else {
if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
(clock_control_subsys_t) &cfg->pclken[0], &clock) < 0) {
LOG_ERR("Failed call clock_control_get_rate(pclk[0])");
return -EIO;
}
}
for (br = 1 ; br <= ARRAY_SIZE(scaler) ; ++br) {
uint32_t clk = clock >> br;
if (clk <= config->frequency) {
break;
}
}
if (br > ARRAY_SIZE(scaler)) {
LOG_ERR("Unsupported frequency %uHz, max %uHz, min %uHz",
config->frequency,
clock >> 1,
clock >> ARRAY_SIZE(scaler));
return -EINVAL;
}
LL_SPI_Disable(spi);
LL_SPI_SetBaudRatePrescaler(spi, scaler[br - 1]);
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) {
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_HIGH);
} else {
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_LOW);
}
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) {
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_2EDGE);
} else {
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_1EDGE);
}
LL_SPI_SetTransferDirection(spi, LL_SPI_FULL_DUPLEX);
if (config->operation & SPI_TRANSFER_LSB) {
LL_SPI_SetTransferBitOrder(spi, LL_SPI_LSB_FIRST);
} else {
LL_SPI_SetTransferBitOrder(spi, LL_SPI_MSB_FIRST);
}
LL_SPI_DisableCRC(spi);
if (spi_cs_is_gpio(config) || !IS_ENABLED(CONFIG_SPI_STM32_USE_HW_SS)) {
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
if (SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_MASTER) {
if (LL_SPI_GetNSSPolarity(spi) == LL_SPI_NSS_POLARITY_LOW)
LL_SPI_SetInternalSSLevel(spi, LL_SPI_SS_LEVEL_HIGH);
}
#endif
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_SOFT);
} else {
if (config->operation & SPI_OP_MODE_SLAVE) {
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_INPUT);
} else {
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_OUTPUT);
}
}
if (config->operation & SPI_OP_MODE_SLAVE) {
LL_SPI_SetMode(spi, LL_SPI_MODE_SLAVE);
} else {
LL_SPI_SetMode(spi, LL_SPI_MODE_MASTER);
}
if (SPI_WORD_SIZE_GET(config->operation) == 8) {
LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_8BIT);
} else {
LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_16BIT);
}
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
LL_SPI_SetMasterSSIdleness(spi, cfg->mssi_clocks);
LL_SPI_SetInterDataIdleness(spi, (cfg->midi_clocks << SPI_CFG2_MIDI_Pos));
#endif
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo)
ll_func_set_fifo_threshold_8bit(spi);
#endif
/* At this point, it's mandatory to set this on the context! */
data->ctx.config = config;
LOG_DBG("Installed config %p: freq %uHz (div = %u),"
" mode %u/%u/%u, slave %u",
config, clock >> br, 1 << br,
(SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) ? 1 : 0,
(SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) ? 1 : 0,
(SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) ? 1 : 0,
config->slave);
return 0;
}
static int spi_stm32_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_stm32_data *data = dev->data;
const struct spi_stm32_config *cfg = dev->config;
spi_context_unlock_unconditionally(&data->ctx);
ll_func_disable_spi(cfg->spi);
return 0;
}
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
static int32_t spi_stm32_count_bufset_frames(const struct spi_config *config,
const struct spi_buf_set *bufs)
{
if (bufs == NULL) {
return 0;
}
uint32_t num_bytes = 0;
for (size_t i = 0; i < bufs->count; i++) {
num_bytes += bufs->buffers[i].len;
}
uint8_t bytes_per_frame = SPI_WORD_SIZE_GET(config->operation) / 8;
if ((num_bytes % bytes_per_frame) != 0) {
return -EINVAL;
}
return num_bytes / bytes_per_frame;
}
static int32_t spi_stm32_count_total_frames(const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
int tx_frames = spi_stm32_count_bufset_frames(config, tx_bufs);
if (tx_frames < 0) {
return tx_frames;
}
int rx_frames = spi_stm32_count_bufset_frames(config, rx_bufs);
if (rx_frames < 0) {
return rx_frames;
}
if (tx_frames > UINT16_MAX || rx_frames > UINT16_MAX) {
return -EMSGSIZE;
}
return MAX(rx_frames, tx_frames);
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */
static int transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
const struct spi_stm32_config *cfg = dev->config;
struct spi_stm32_data *data = dev->data;
SPI_TypeDef *spi = cfg->spi;
int ret;
if (!tx_bufs && !rx_bufs) {
return 0;
}
#ifndef CONFIG_SPI_STM32_INTERRUPT
if (asynchronous) {
return -ENOTSUP;
}
#endif /* CONFIG_SPI_STM32_INTERRUPT */
spi_context_lock(&data->ctx, asynchronous, cb, userdata, config);
spi_stm32_pm_policy_state_lock_get(dev);
ret = spi_stm32_configure(dev, config);
if (ret) {
goto end;
}
/* Set buffers info */
if (SPI_WORD_SIZE_GET(config->operation) == 8) {
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
} else {
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 2);
}
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
if (cfg->fifo_enabled && SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_MASTER) {
int total_frames = spi_stm32_count_total_frames(
config, tx_bufs, rx_bufs);
if (total_frames < 0) {
ret = total_frames;
goto end;
}
LL_SPI_SetTransferSize(spi, (uint32_t)total_frames);
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo)
/* Flush RX buffer */
while (ll_func_rx_is_not_empty(spi)) {
(void) LL_SPI_ReceiveData8(spi);
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo) */
LL_SPI_Enable(spi);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
/* With the STM32MP1, STM32U5 and the STM32H7,
* if the device is the SPI master,
* we need to enable the start of the transfer with
* LL_SPI_StartMasterTransfer(spi)
*/
if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) {
LL_SPI_StartMasterTransfer(spi);
while (!LL_SPI_IsActiveMasterTransfer(spi)) {
/* NOP */
}
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */
#ifdef CONFIG_SOC_SERIES_STM32H7X
/*
* Add a small delay after enabling to prevent transfer stalling at high
* system clock frequency (see errata sheet ES0392).
*/
k_busy_wait(WAIT_1US);
#endif /* CONFIG_SOC_SERIES_STM32H7X */
/* This is turned off in spi_stm32_complete(). */
spi_stm32_cs_control(dev, true);
#ifdef CONFIG_SPI_STM32_INTERRUPT
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
if (cfg->fifo_enabled) {
LL_SPI_EnableIT_EOT(spi);
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */
ll_func_enable_int_errors(spi);
if (rx_bufs) {
ll_func_enable_int_rx_not_empty(spi);
}
ll_func_enable_int_tx_empty(spi);
ret = spi_context_wait_for_completion(&data->ctx);
#else /* CONFIG_SPI_STM32_INTERRUPT */
do {
ret = spi_stm32_shift_frames(cfg, data);
} while (!ret && spi_stm32_transfer_ongoing(data));
spi_stm32_complete(dev, ret);
#ifdef CONFIG_SPI_SLAVE
if (spi_context_is_slave(&data->ctx) && !ret) {
ret = data->ctx.recv_frames;
}
#endif /* CONFIG_SPI_SLAVE */
#endif /* CONFIG_SPI_STM32_INTERRUPT */
end:
spi_context_release(&data->ctx, ret);
return ret;
}
#ifdef CONFIG_SPI_STM32_DMA
static int wait_dma_rx_tx_done(const struct device *dev)
{
struct spi_stm32_data *data = dev->data;
int res = -1;
k_timeout_t timeout;
/*
* In slave mode we do not know when the transaction will start. Hence,
* it doesn't make sense to have timeout in this case.
*/
if (IS_ENABLED(CONFIG_SPI_SLAVE) && spi_context_is_slave(&data->ctx)) {
timeout = K_FOREVER;
} else {
timeout = K_MSEC(1000);
}
while (1) {
res = k_sem_take(&data->status_sem, timeout);
if (res != 0) {
return res;
}
if (data->status_flags & SPI_STM32_DMA_ERROR_FLAG) {
return -EIO;
}
if (data->status_flags & SPI_STM32_DMA_DONE_FLAG) {
return 0;
}
}
return res;
}
#ifdef CONFIG_DCACHE
static bool buf_in_nocache(uintptr_t buf, size_t len_bytes)
{
bool buf_within_nocache = false;
#ifdef CONFIG_NOCACHE_MEMORY
/* Check if buffer is in nocache region defined by the linker */
buf_within_nocache = (buf >= ((uintptr_t)_nocache_ram_start)) &&
((buf + len_bytes - 1) <= ((uintptr_t)_nocache_ram_end));
if (buf_within_nocache) {
return true;
}
#endif /* CONFIG_NOCACHE_MEMORY */
/* Check if buffer is in nocache memory region defined in DT */
buf_within_nocache = mem_attr_check_buf(
(void *)buf, len_bytes, DT_MEM_ARM(ATTR_MPU_RAM_NOCACHE)) == 0;
return buf_within_nocache;
}
static bool is_dummy_buffer(const struct spi_buf *buf)
{
return buf->buf == NULL;
}
static bool spi_buf_set_in_nocache(const struct spi_buf_set *bufs)
{
for (size_t i = 0; i < bufs->count; i++) {
const struct spi_buf *buf = &bufs->buffers[i];
if (!is_dummy_buffer(buf) &&
!buf_in_nocache((uintptr_t)buf->buf, buf->len)) {
return false;
}
}
return true;
}
#endif /* CONFIG_DCACHE */
static int transceive_dma(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
const struct spi_stm32_config *cfg = dev->config;
struct spi_stm32_data *data = dev->data;
SPI_TypeDef *spi = cfg->spi;
int ret;
int err;
if (!tx_bufs && !rx_bufs) {
return 0;
}
if (asynchronous) {
return -ENOTSUP;
}
#ifdef CONFIG_DCACHE
if ((tx_bufs != NULL && !spi_buf_set_in_nocache(tx_bufs)) ||
(rx_bufs != NULL && !spi_buf_set_in_nocache(rx_bufs))) {
return -EFAULT;
}
#endif /* CONFIG_DCACHE */
spi_context_lock(&data->ctx, asynchronous, cb, userdata, config);
spi_stm32_pm_policy_state_lock_get(dev);
k_sem_reset(&data->status_sem);
ret = spi_stm32_configure(dev, config);
if (ret) {
goto end;
}
/* Set buffers info */
if (SPI_WORD_SIZE_GET(config->operation) == 8) {
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
} else {
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 2);
}
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
/* set request before enabling (else SPI CFG1 reg is write protected) */
LL_SPI_EnableDMAReq_RX(spi);
LL_SPI_EnableDMAReq_TX(spi);
LL_SPI_Enable(spi);
if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) {
LL_SPI_StartMasterTransfer(spi);
}
#else
LL_SPI_Enable(spi);
#endif /* st_stm32h7_spi */
/* This is turned off in spi_stm32_complete(). */
spi_stm32_cs_control(dev, true);
while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) {
size_t dma_len;
if (data->ctx.rx_len == 0) {
dma_len = data->ctx.tx_len;
} else if (data->ctx.tx_len == 0) {
dma_len = data->ctx.rx_len;
} else {
dma_len = MIN(data->ctx.tx_len, data->ctx.rx_len);
}
data->status_flags = 0;
ret = spi_dma_move_buffers(dev, dma_len);
if (ret != 0) {
break;
}
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
/* toggle the DMA request to restart the transfer */
LL_SPI_EnableDMAReq_RX(spi);
LL_SPI_EnableDMAReq_TX(spi);
#endif /* ! st_stm32h7_spi */
ret = wait_dma_rx_tx_done(dev);
if (ret != 0) {
break;
}
#ifdef SPI_SR_FTLVL
while (LL_SPI_GetTxFIFOLevel(spi) > 0) {
}
#endif /* SPI_SR_FTLVL */
#ifdef CONFIG_SPI_STM32_ERRATA_BUSY
WAIT_FOR(ll_func_spi_dma_busy(spi) != 0,
CONFIG_SPI_STM32_BUSY_FLAG_TIMEOUT,
k_yield());
#else
/* wait until spi is no more busy (spi TX fifo is really empty) */
while (ll_func_spi_dma_busy(spi) == 0) {
}
#endif /* CONFIG_SPI_STM32_ERRATA_BUSY */
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi)
/* toggle the DMA transfer request */
LL_SPI_DisableDMAReq_TX(spi);
LL_SPI_DisableDMAReq_RX(spi);
#endif /* ! st_stm32h7_spi */
uint8_t frame_size_bytes = bits2bytes(
SPI_WORD_SIZE_GET(config->operation));
spi_context_update_tx(&data->ctx, frame_size_bytes, dma_len);
spi_context_update_rx(&data->ctx, frame_size_bytes, dma_len);
}
/* spi complete relies on SPI Status Reg which cannot be disabled */
spi_stm32_complete(dev, ret);
/* disable spi instance after completion */
LL_SPI_Disable(spi);
/* The Config. Reg. on some mcus is write un-protected when SPI is disabled */
LL_SPI_DisableDMAReq_TX(spi);
LL_SPI_DisableDMAReq_RX(spi);
err = dma_stop(data->dma_rx.dma_dev, data->dma_rx.channel);
if (err) {
LOG_DBG("Rx dma_stop failed with error %d", err);
}
err = dma_stop(data->dma_tx.dma_dev, data->dma_tx.channel);
if (err) {
LOG_DBG("Tx dma_stop failed with error %d", err);
}
#ifdef CONFIG_SPI_SLAVE
if (spi_context_is_slave(&data->ctx) && !ret) {
ret = data->ctx.recv_frames;
}
#endif /* CONFIG_SPI_SLAVE */
end:
spi_context_release(&data->ctx, ret);
spi_stm32_pm_policy_state_lock_put(dev);
return ret;
}
#endif /* CONFIG_SPI_STM32_DMA */
static int spi_stm32_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
#ifdef CONFIG_SPI_STM32_DMA
struct spi_stm32_data *data = dev->data;
if ((data->dma_tx.dma_dev != NULL)
&& (data->dma_rx.dma_dev != NULL)) {
return transceive_dma(dev, config, tx_bufs, rx_bufs,
false, NULL, NULL);
}
#endif /* CONFIG_SPI_STM32_DMA */
return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_stm32_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static const struct spi_driver_api api_funcs = {
.transceive = spi_stm32_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_stm32_transceive_async,
#endif
.release = spi_stm32_release,
};
static inline bool spi_stm32_is_subghzspi(const struct device *dev)
{
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz)
const struct spi_stm32_config *cfg = dev->config;
return cfg->use_subghzspi_nss;
#else
ARG_UNUSED(dev);
return false;
#endif /* st_stm32_spi_subghz */
}
static int spi_stm32_init(const struct device *dev)
{
struct spi_stm32_data *data __attribute__((unused)) = dev->data;
const struct spi_stm32_config *cfg = dev->config;
int err;
if (!device_is_ready(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE))) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
err = clock_control_on(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
(clock_control_subsys_t) &cfg->pclken[0]);
if (err < 0) {
LOG_ERR("Could not enable SPI clock");
return err;
}
if (IS_ENABLED(STM32_SPI_DOMAIN_CLOCK_SUPPORT) && (cfg->pclk_len > 1)) {
err = clock_control_configure(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
(clock_control_subsys_t) &cfg->pclken[1],
NULL);
if (err < 0) {
LOG_ERR("Could not select SPI domain clock");
return err;
}
}
if (!spi_stm32_is_subghzspi(dev)) {
/* Configure dt provided device signals when available */
err = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
LOG_ERR("SPI pinctrl setup failed (%d)", err);
return err;
}
}
#ifdef CONFIG_SPI_STM32_INTERRUPT
cfg->irq_config(dev);
#endif /* CONFIG_SPI_STM32_INTERRUPT */
#ifdef CONFIG_SPI_STM32_DMA
if ((data->dma_rx.dma_dev != NULL) &&
!device_is_ready(data->dma_rx.dma_dev)) {
LOG_ERR("%s device not ready", data->dma_rx.dma_dev->name);
return -ENODEV;
}
if ((data->dma_tx.dma_dev != NULL) &&
!device_is_ready(data->dma_tx.dma_dev)) {
LOG_ERR("%s device not ready", data->dma_tx.dma_dev->name);
return -ENODEV;
}
LOG_DBG("SPI with DMA transfer");
#endif /* CONFIG_SPI_STM32_DMA */
err = spi_context_cs_configure_all(&data->ctx);
if (err < 0) {
return err;
}
spi_context_unlock_unconditionally(&data->ctx);
return pm_device_runtime_enable(dev);
}
#ifdef CONFIG_PM_DEVICE
static int spi_stm32_pm_action(const struct device *dev,
enum pm_device_action action)
{
const struct spi_stm32_config *config = dev->config;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
int err;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
if (!spi_stm32_is_subghzspi(dev)) {
/* Set pins to active state */
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
}
/* enable clock */
err = clock_control_on(clk, (clock_control_subsys_t)&config->pclken[0]);
if (err != 0) {
LOG_ERR("Could not enable SPI clock");
return err;
}
break;
case PM_DEVICE_ACTION_SUSPEND:
/* Stop device clock. */
err = clock_control_off(clk, (clock_control_subsys_t)&config->pclken[0]);
if (err != 0) {
LOG_ERR("Could not disable SPI clock");
return err;
}
if (!spi_stm32_is_subghzspi(dev)) {
/* Move pins to sleep state */
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
if ((err < 0) && (err != -ENOENT)) {
/*
* If returning -ENOENT, no pins where defined for sleep mode :
* Do not output on console (might sleep already) when going to
* sleep,
* "SPI pinctrl sleep state not available"
* and don't block PM suspend.
* Else return the error.
*/
return err;
}
}
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
#ifdef CONFIG_SPI_STM32_INTERRUPT
#define STM32_SPI_IRQ_HANDLER_DECL(id) \
static void spi_stm32_irq_config_func_##id(const struct device *dev)
#define STM32_SPI_IRQ_HANDLER_FUNC(id) \
.irq_config = spi_stm32_irq_config_func_##id,
#define STM32_SPI_IRQ_HANDLER(id) \
static void spi_stm32_irq_config_func_##id(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(id), \
DT_INST_IRQ(id, priority), \
spi_stm32_isr, DEVICE_DT_INST_GET(id), 0); \
irq_enable(DT_INST_IRQN(id)); \
}
#else
#define STM32_SPI_IRQ_HANDLER_DECL(id)
#define STM32_SPI_IRQ_HANDLER_FUNC(id)
#define STM32_SPI_IRQ_HANDLER(id)
#endif /* CONFIG_SPI_STM32_INTERRUPT */
#define SPI_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \
.dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \
.channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \
.dma_cfg = { \
.dma_slot = STM32_DMA_SLOT(index, dir, slot),\
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE( \
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE( \
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
.source_burst_length = 1, /* SINGLE transfer */ \
.dest_burst_length = 1, /* SINGLE transfer */ \
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
STM32_DMA_CHANNEL_CONFIG(index, dir)),\
.dma_callback = dma_callback, \
.block_count = 2, \
}, \
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \
STM32_DMA_FEATURES(index, dir)), \
#ifdef CONFIG_SPI_STM32_DMA
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest) \
.dma_##dir = { \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(id, dir), \
(SPI_DMA_CHANNEL_INIT(id, dir, DIR, src, dest)),\
(NULL)) \
},
#define SPI_DMA_STATUS_SEM(id) \
.status_sem = Z_SEM_INITIALIZER( \
spi_stm32_dev_data_##id.status_sem, 0, 1),
#else
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest)
#define SPI_DMA_STATUS_SEM(id)
#endif /* CONFIG_SPI_STM32_DMA */
#define SPI_SUPPORTS_FIFO(id) DT_INST_NODE_HAS_PROP(id, fifo_enable)
#define SPI_GET_FIFO_PROP(id) DT_INST_PROP(id, fifo_enable)
#define SPI_FIFO_ENABLED(id) COND_CODE_1(SPI_SUPPORTS_FIFO(id), (SPI_GET_FIFO_PROP(id)), (0))
#define STM32_SPI_INIT(id) \
STM32_SPI_IRQ_HANDLER_DECL(id); \
\
PINCTRL_DT_INST_DEFINE(id); \
\
static const struct stm32_pclken pclken_##id[] = \
STM32_DT_INST_CLOCKS(id);\
\
static const struct spi_stm32_config spi_stm32_cfg_##id = { \
.spi = (SPI_TypeDef *) DT_INST_REG_ADDR(id), \
.pclken = pclken_##id, \
.pclk_len = DT_INST_NUM_CLOCKS(id), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(id), \
.fifo_enabled = SPI_FIFO_ENABLED(id), \
STM32_SPI_IRQ_HANDLER_FUNC(id) \
IF_ENABLED(DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz), \
(.use_subghzspi_nss = \
DT_INST_PROP_OR(id, use_subghzspi_nss, false),))\
IF_ENABLED(DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi), \
(.midi_clocks = \
DT_INST_PROP(id, midi_clock),)) \
IF_ENABLED(DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi), \
(.mssi_clocks = \
DT_INST_PROP(id, mssi_clock),)) \
}; \
\
static struct spi_stm32_data spi_stm32_dev_data_##id = { \
SPI_CONTEXT_INIT_LOCK(spi_stm32_dev_data_##id, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_stm32_dev_data_##id, ctx), \
SPI_DMA_CHANNEL(id, rx, RX, PERIPHERAL, MEMORY) \
SPI_DMA_CHANNEL(id, tx, TX, MEMORY, PERIPHERAL) \
SPI_DMA_STATUS_SEM(id) \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(id), ctx) \
}; \
\
PM_DEVICE_DT_INST_DEFINE(id, spi_stm32_pm_action); \
\
DEVICE_DT_INST_DEFINE(id, &spi_stm32_init, PM_DEVICE_DT_INST_GET(id), \
&spi_stm32_dev_data_##id, &spi_stm32_cfg_##id, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&api_funcs); \
\
STM32_SPI_IRQ_HANDLER(id)
DT_INST_FOREACH_STATUS_OKAY(STM32_SPI_INIT)