Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/*
 * Copyright (c) 2023 Intel Corporation.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <errno.h>
#include <zephyr/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/pm/device.h>
#include "sedi_driver_uart.h"

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_sedi_isr(void *arg);
static void uart_sedi_cb(struct device *port);
#endif

#define DT_DRV_COMPAT intel_sedi_uart

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
/*  UART IRQ handler declaration.  */
#define  UART_IRQ_HANDLER_DECL(n) \
	static void irq_config_uart_##n(const struct device *dev)

/* Setting configuration function. */
#define UART_CONFIG_IRQ_HANDLER_SET(n) \
	.uart_irq_config_func = irq_config_uart_##n
#define UART_IRQ_HANDLER_DEFINE(n)				       \
	static void irq_config_uart_##n(const struct device *dev)      \
	{							       \
		ARG_UNUSED(dev);				       \
		IRQ_CONNECT(DT_INST_IRQN(n),			       \
			    DT_INST_IRQ(n, priority), uart_sedi_isr,   \
			    DEVICE_DT_GET(DT_NODELABEL(uart##n)),      \
			    DT_INST_IRQ(n, sense));		       \
		irq_enable(DT_INST_IRQN(n));			       \
	}
#else /*CONFIG_UART_INTERRUPT_DRIVEN */
#define UART_IRQ_HANDLER_DECL(n)
#define UART_CONFIG_IRQ_HANDLER_SET(n) (0)

#define UART_IRQ_HANDLER_DEFINE(n)
#endif  /* !CONFIG_UART_INTERRUPT_DRIVEN */

/* Device init macro for UART instance. As multiple uart instances follow a
 * similar definition of data structures differing only in the instance
 * number.This macro makes adding instances simpler.
 */
#define UART_SEDI_DEVICE_INIT(n)				      \
	UART_IRQ_HANDLER_DECL(n);				      \
	static K_MUTEX_DEFINE(uart_##n##_mutex);		      \
	static K_SEM_DEFINE(uart_##n##_tx_sem, 1, 1);		      \
	static K_SEM_DEFINE(uart_##n##_rx_sem, 1, 1);		      \
	static K_SEM_DEFINE(uart_##n##_sync_read_sem, 0, 1);	      \
	static const struct uart_sedi_config_info config_info_##n = { \
		DEVICE_MMIO_ROM_INIT(DT_DRV_INST(n)),		      \
		.instance = DT_INST_PROP(n, peripheral_id),	      \
		.baud_rate = DT_INST_PROP(n, current_speed),	      \
		.hw_fc = DT_INST_PROP(n, hw_flow_control),	      \
		.line_ctrl = SEDI_UART_LC_8N1,			      \
		.mutex = &uart_##n##_mutex,			      \
		UART_CONFIG_IRQ_HANDLER_SET(n)			      \
	};							      \
								      \
	static struct uart_sedi_drv_data drv_data_##n;		      \
	PM_DEVICE_DT_DEFINE(DT_NODELABEL(uart##n),                    \
			    uart_sedi_pm_action);		      \
	DEVICE_DT_DEFINE(DT_NODELABEL(uart##n),		              \
		      &uart_sedi_init,				      \
		      PM_DEVICE_DT_GET(DT_NODELABEL(uart##n)),        \
		      &drv_data_##n, &config_info_##n,		      \
		      PRE_KERNEL_1,				      \
		      CONFIG_SERIAL_INIT_PRIORITY, &api);	      \
	UART_IRQ_HANDLER_DEFINE(n)



/* Convenient macro to get the controller instance. */
#define GET_CONTROLLER_INSTANCE(dev)		 \
	(((const struct uart_sedi_config_info *) \
	  dev->config)->instance)

#define GET_MUTEX(dev)				 \
	(((const struct uart_sedi_config_info *) \
	  dev->config)->mutex)

struct uart_sedi_config_info {
	DEVICE_MMIO_ROM;
	/* Specifies the uart instance for configuration. */
	sedi_uart_t instance;

	/* Specifies the baudrate for the uart instance. */
	uint32_t baud_rate;

	/* Specifies the port line control settings */
	sedi_uart_lc_t line_ctrl;

	struct k_mutex *mutex;

	/* Enable / disable hardware flow control for UART. */
	bool hw_fc;

	/* UART irq configuration function when supporting interrupt
	 * mode.
	 */
	uart_irq_config_func_t uart_irq_config_func;
};


static int uart_sedi_init(const struct device *dev);

struct uart_sedi_drv_data {
	DEVICE_MMIO_RAM;
	uart_irq_callback_user_data_t user_cb;
	void *unsol_rx_usr_cb_param;
	uint32_t sync_rx_len;
	uint32_t sync_rx_status;
	void *user_data;
	void *usr_rx_buff;
	uint32_t usr_rx_size;
	uint8_t iir_cache;
	uint8_t busy_count;
};

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_busy_set(const struct device *dev)
{

	struct uart_sedi_drv_data *context = dev->data;

	context->busy_count++;

	if (context->busy_count == 1) {
		pm_device_busy_set(dev);
	}
}

static void uart_busy_clear(const struct device *dev)
{

	struct uart_sedi_drv_data *context = dev->data;

	context->busy_count--;

	if (context->busy_count == 0) {
		pm_device_busy_clear(dev);
	}
}
#endif

#ifdef CONFIG_PM_DEVICE

#ifndef CONFIG_UART_CONSOLE

static int uart_suspend_device(const struct device *dev)
{
	const struct uart_sedi_config_info *config = dev->config;

	if (pm_device_is_busy(dev)) {
		return -EBUSY;
	}

	int ret = sedi_uart_set_power(config->instance, SEDI_POWER_SUSPEND);

	if (ret != SEDI_DRIVER_OK) {
		return -EIO;
	}

	return 0;
}

static int uart_resume_device_from_suspend(const struct device *dev)
{
	const struct uart_sedi_config_info *config = dev->config;
	int ret;

	ret = sedi_uart_set_power(config->instance, SEDI_POWER_FULL);
	if (ret != SEDI_DRIVER_OK) {
		return -EIO;
	}

	return 0;
}

static int uart_sedi_pm_action(const struct device *dev,
		enum pm_device_action action)
{
	int ret = 0;

	switch (action) {
	case PM_DEVICE_ACTION_SUSPEND:
		ret = uart_suspend_device(dev);
		break;
	case PM_DEVICE_ACTION_RESUME:
		ret = uart_resume_device_from_suspend(dev);
		break;

	default:
		ret = -ENOTSUP;
	}
	return ret;
}

#else

static int uart_sedi_pm_action(const struct device *dev,
		enum pm_device_action action)
{
	/* do nothing if using UART print log to avoid clock gating
	 * pm driver already handled power management for uart.
	 */
	return 0;
}

#endif /* CONFIG_UART_CONSOLE */

#endif /* CONFIG_PM_DEVICE */

static int uart_sedi_poll_in(const struct device *dev, unsigned char *data)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);
	uint32_t status;
	int ret = 0;

	sedi_uart_get_status(instance, (uint32_t *) &status);

	/* In order to check if there is any data to read from UART
	 * controller we should check if the SEDI_UART_RX_BUSY bit from
	 * 'status' is not set. This bit is set only if there is any
	 * pending character to read.
	 */
	if (!(status & SEDI_UART_RX_BUSY)) {
		ret = -1;
	} else {
		if (sedi_uart_read(instance, data, (uint32_t *)&status)) {
			ret = -1;
		}
	}
	return ret;
}

static void uart_sedi_poll_out(const struct device *dev,
			       unsigned char data)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	sedi_uart_write(instance, data);
}

#ifdef CONFIG_UART_LINE_CTRL
static int get_xfer_error(int bsp_err)
{
	int err;

	switch (bsp_err) {
	case SEDI_DRIVER_OK:
		err = 0;
		break;
	case SEDI_USART_ERROR_CANCELED:
		err = -ECANCELED;
		break;
	case SEDI_DRIVER_ERROR:
		err = -EIO;
		break;
	case SEDI_DRIVER_ERROR_PARAMETER:
		err = -EINVAL;
		break;
	case SEDI_DRIVER_ERROR_UNSUPPORTED:
		err = -ENOTSUP;
		break;
	default:
		err = -EFAULT;
	}
	return err;
}
#endif  /* CONFIG_UART_LINE_CTRL */

static int uart_sedi_err_check(const struct device *dev)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);
	uint32_t status;
	int ret_status = 0;

	sedi_uart_get_status(instance, (uint32_t *const)&status);
	if (status &  SEDI_UART_RX_OE) {
		ret_status = UART_ERROR_OVERRUN;
	}

	if (status & SEDI_UART_RX_PE) {
		ret_status = UART_ERROR_PARITY;
	}

	if (status & SEDI_UART_RX_FE) {
		ret_status = UART_ERROR_FRAMING;
	}

	if (status & SEDI_UART_RX_BI) {
		ret_status = UART_BREAK;
	}

	return ret_status;
}


#ifdef CONFIG_UART_INTERRUPT_DRIVEN

static int uart_sedi_fifo_fill(const struct device *dev, const uint8_t *tx_data,
			       int size)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	return sedi_uart_fifo_fill(instance, tx_data, size);
}

static int uart_sedi_fifo_read(const struct device *dev, uint8_t *rx_data,
			       const int size)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	return sedi_uart_fifo_read(instance, rx_data, size);
}

static void uart_sedi_irq_tx_enable(const struct device *dev)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	sedi_uart_irq_tx_enable(instance);
}

static void uart_sedi_irq_tx_disable(const struct device *dev)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	sedi_uart_irq_tx_disable(instance);
}

static int uart_sedi_irq_tx_ready(const struct device *dev)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	return sedi_uart_irq_tx_ready(instance);
}

static int uart_sedi_irq_tx_complete(const struct device *dev)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	return sedi_uart_is_tx_complete(instance);
}

static void uart_sedi_irq_rx_enable(const struct device *dev)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	uart_busy_set(dev);
	sedi_uart_irq_rx_enable(instance);
}

static void uart_sedi_irq_rx_disable(const struct device *dev)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	sedi_uart_irq_rx_disable(instance);
	uart_busy_clear(dev);
}

static int uart_sedi_irq_rx_ready(const struct device *dev)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	return sedi_uart_is_irq_rx_ready(instance);
}

static void uart_sedi_irq_err_enable(const struct device *dev)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	sedi_uart_irq_err_enable(instance);
}

static void uart_sedi_irq_err_disable(const struct device *dev)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	sedi_uart_irq_err_disable(instance);
}

static int uart_sedi_irq_is_pending(const struct device *dev)
{

	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	return sedi_uart_is_irq_pending(instance);
}

static int uart_sedi_irq_update(const struct device *dev)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);

	sedi_uart_update_irq_cache(instance);
	return 1;
}

static void uart_sedi_irq_callback_set(const struct device *dev,
				       uart_irq_callback_user_data_t cb,
				       void *user_data)
{
	struct uart_sedi_drv_data *drv_data = dev->data;

	drv_data->user_cb = cb;
	drv_data->user_data = user_data;

}

static void uart_sedi_isr(void *arg)
{
	struct device *dev = arg;
	struct uart_sedi_drv_data *drv_data = dev->data;

	if (drv_data->user_cb) {
		drv_data->user_cb(dev, drv_data->user_data);
	} else {
		uart_sedi_cb(dev);
	}
}

/* Called from generic callback of zephyr , set by set_cb. */
static void uart_sedi_cb(struct device *port)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(port);

	sedi_uart_isr_handler(instance);
}

#endif /* CONFIG_UART_INTERRUPT_DRIVEN */

#ifdef CONFIG_UART_LINE_CTRL
static int uart_sedi_line_ctrl_set(struct device *dev,
		uint32_t ctrl, uint32_t val)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);
	sedi_uart_config_t cfg;
	uint32_t mask;
	int ret;

	k_mutex_lock(GET_MUTEX(dev), K_FOREVER);
	switch (ctrl) {
	case UART_LINE_CTRL_BAUD_RATE:
		sedi_uart_get_config(instance, &cfg);
		cfg.baud_rate = val;
		ret = sedi_uart_set_config(instance, &cfg);
		break;

	default:
		ret = -ENODEV;
	}
	k_mutex_unlock(GET_MUTEX(dev));
	ret = get_xfer_error(ret);
	return ret;
}

static int uart_sedi_line_ctrl_get(struct device *dev,
		uint32_t ctrl, uint32_t *val)
{
	sedi_uart_t instance = GET_CONTROLLER_INSTANCE(dev);
	sedi_uart_config_t cfg;
	uint32_t mask;
	int ret;

	k_mutex_lock(GET_MUTEX(dev), K_FOREVER);
	switch (ctrl) {
	case UART_LINE_CTRL_BAUD_RATE:
		ret = sedi_uart_get_config(instance, &cfg);
		*val = cfg.baud_rate;
		break;

	case UART_LINE_CTRL_LOOPBACK:
		ret = sedi_uart_get_loopback_mode(instance, (uint32_t *)val);
		break;

	case UART_LINE_CTRL_AFCE:
		ret = sedi_uart_get_config(instance, &cfg);
		*val = cfg.hw_fc;
		break;

	case UART_LINE_CTRL_LINE_STATUS_REPORT_MASK:
		mask = 0;
		*val = 0;
		ret = sedi_get_ln_status_report_mask(instance,
						     (uint32_t *)&mask);
		*val |= ((mask & SEDI_UART_RX_OE) ? UART_ERROR_OVERRUN : 0);
		*val |= ((mask & SEDI_UART_RX_PE) ? UART_ERROR_PARITY : 0);
		*val |= ((mask & SEDI_UART_RX_FE) ? UART_ERROR_FRAMING : 0);
		*val |= ((mask & SEDI_UART_RX_BI) ? UART_BREAK : 0);
		break;

	case UART_LINE_CTRL_RTS:
		ret = sedi_uart_read_rts(instance, (uint32_t *)val);
		break;

	case UART_LINE_CTRL_CTS:
		ret = sedi_uart_read_cts(instance, (uint32_t *)val);
		break;


	default:
		ret = -ENODEV;
	}
	k_mutex_unlock(GET_MUTEX(dev));
	ret = get_xfer_error(ret);
	return ret;
}

#endif /* CONFIG_UART_LINE_CTRL */

static const struct uart_driver_api api = {
	.poll_in = uart_sedi_poll_in,
	.poll_out = uart_sedi_poll_out,
	.err_check = uart_sedi_err_check,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	.fifo_fill = uart_sedi_fifo_fill,
	.fifo_read = uart_sedi_fifo_read,
	.irq_tx_enable = uart_sedi_irq_tx_enable,
	.irq_tx_disable = uart_sedi_irq_tx_disable,
	.irq_tx_ready = uart_sedi_irq_tx_ready,
	.irq_tx_complete = uart_sedi_irq_tx_complete,
	.irq_rx_enable = uart_sedi_irq_rx_enable,
	.irq_rx_disable = uart_sedi_irq_rx_disable,
	.irq_rx_ready = uart_sedi_irq_rx_ready,
	.irq_err_enable = uart_sedi_irq_err_enable,
	.irq_err_disable = uart_sedi_irq_err_disable,
	.irq_is_pending = uart_sedi_irq_is_pending,
	.irq_update = uart_sedi_irq_update,
	.irq_callback_set = uart_sedi_irq_callback_set,
#endif  /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_LINE_CTRL
	.line_ctrl_set = uart_sedi_line_ctrl_set,
	.line_ctrl_get = uart_sedi_line_ctrl_get,
#endif  /* CONFIG_UART_LINE_CTRL */

};

static int uart_sedi_init(const struct device *dev)
{

	const struct uart_sedi_config_info *config = dev->config;
	sedi_uart_config_t cfg;

	DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);
	sedi_uart_init(config->instance, (void *)DEVICE_MMIO_GET(dev));

	cfg.line_control = config->line_ctrl;
	cfg.baud_rate = config->baud_rate;
	cfg.hw_fc = config->hw_fc;

	/* Setting to full power and enabling clk. */
	sedi_uart_set_power(config->instance, SEDI_POWER_FULL);

	sedi_uart_set_config(config->instance, &cfg);

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	config->uart_irq_config_func(dev);
#endif  /* CONFIG_UART_INTERRUPT_DRIVEN */

	return 0;
}

DT_INST_FOREACH_STATUS_OKAY(UART_SEDI_DEVICE_INIT)