Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 | /*
* Copyright (c) 2023 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief UART driver for Intel FPGA UART Core IP
* Reference : Embedded Peripherals IP User Guide : 11. UART Core
* Limitations:
* 1. User should consider to always use polling mode, as IP core does not have fifo.
* So IP can only send/receive 1 character at a time.
* 2. CTS and RTS is purely software controlled. Assertion might not be on time.
* 3. Full duplex mode is not supported.
*/
#define DT_DRV_COMPAT altr_uart
#include <zephyr/kernel.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/serial/uart_altera.h>
#ifdef CONFIG_UART_LINE_CTRL
#ifndef CONFIG_UART_INTERRUPT_DRIVEN
/* CTS and RTS is purely software controlled. */
#error "uart_altera.c: Must enable UART_INTERRUPT_DRIVEN for line control!"
#endif
#endif
/* register offsets */
#define ALTERA_AVALON_UART_OFFSET (0x4)
#define ALTERA_AVALON_UART_RXDATA_REG_OFFSET (0 * ALTERA_AVALON_UART_OFFSET)
#define ALTERA_AVALON_UART_TXDATA_REG_OFFSET (1 * ALTERA_AVALON_UART_OFFSET)
#define ALTERA_AVALON_UART_STATUS_REG_OFFSET (2 * ALTERA_AVALON_UART_OFFSET)
#define ALTERA_AVALON_UART_CONTROL_REG_OFFSET (3 * ALTERA_AVALON_UART_OFFSET)
#define ALTERA_AVALON_UART_DIVISOR_REG_OFFSET (4 * ALTERA_AVALON_UART_OFFSET)
#define ALTERA_AVALON_UART_EOP_REG_OFFSET (5 * ALTERA_AVALON_UART_OFFSET)
/*status register mask */
#define ALTERA_AVALON_UART_STATUS_PE_MSK (0x1)
#define ALTERA_AVALON_UART_STATUS_FE_MSK (0x2)
#define ALTERA_AVALON_UART_STATUS_BRK_MSK (0x4)
#define ALTERA_AVALON_UART_STATUS_ROE_MSK (0x8)
#define ALTERA_AVALON_UART_STATUS_TMT_MSK (0x20)
#define ALTERA_AVALON_UART_STATUS_TRDY_MSK (0x40)
#define ALTERA_AVALON_UART_STATUS_RRDY_MSK (0x80)
#define ALTERA_AVALON_UART_STATUS_DCTS_MSK (0x400)
#define ALTERA_AVALON_UART_STATUS_CTS_MSK (0x800)
#define ALTERA_AVALON_UART_STATUS_E_MSK (0x100)
#define ALTERA_AVALON_UART_STATUS_EOP_MSK (0x1000)
/* control register mask */
#define ALTERA_AVALON_UART_CONTROL_TMT_MSK (0x20)
#define ALTERA_AVALON_UART_CONTROL_TRDY_MSK (0x40)
#define ALTERA_AVALON_UART_CONTROL_RRDY_MSK (0x80)
#define ALTERA_AVALON_UART_CONTROL_E_MSK (0x100)
#define ALTERA_AVALON_UART_CONTROL_DCTS_MSK (0x400)
#define ALTERA_AVALON_UART_CONTROL_RTS_MSK (0x800)
#define ALTERA_AVALON_UART_CONTROL_EOP_MSK (0x1000)
/* defined values */
#define UART_ALTERA_NO_ERROR (0u)
#define ALTERA_AVALON_UART_CLEAR_STATUS_VAL (0u)
#define ALTERA_AVALON_UART_PENDING_MASK (ALTERA_AVALON_UART_STATUS_RRDY_MSK | \
ALTERA_AVALON_UART_STATUS_TRDY_MSK | ALTERA_AVALON_UART_STATUS_E_MSK | \
ALTERA_AVALON_UART_STATUS_EOP_MSK)
/***********************/
/* configuration flags */
/*
* The value ALT_AVALON_UART_FB is a value set in the devices flag field to
* indicate that the device has a fixed baud rate; i.e. if this flag is set
* software can not control the baud rate of the device.
*/
#define ALT_AVALON_UART_FB 0x1
/*
* The value ALT_AVALON_UART_FC is a value set in the device flag field to
* indicate the device is using flow control, i.e. the driver must
* throttle on transmit if the nCTS pin is low.
*/
#define ALT_AVALON_UART_FC 0x2
/* end of configuration flags */
/******************************/
/* device data */
struct uart_altera_device_data {
struct uart_config uart_cfg; /* stores uart config from device tree*/
struct k_spinlock lock;
uint32_t status_act; /* stores value of status register. */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t cb; /**< Callback function pointer */
void *cb_data; /**< Callback function arg */
#ifdef CONFIG_UART_ALTERA_EOP
uint8_t set_eop_cb;
uart_irq_callback_user_data_t cb_eop; /**< Callback function pointer */
void *cb_data_eop; /**< Callback function arg */
#endif /* CONFIG_UART_ALTERA_EOP */
#ifdef CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND
uint8_t dcts_rising;
#endif /*CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND*/
uint32_t control_val; /* stores value to set control register. */
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
/*
* device config:
* stores data that cannot be changed during run time.
*/
struct uart_altera_device_config {
mm_reg_t base;
uint32_t flags; /* refer to configuration flags */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_config_func_t irq_config_func;
unsigned int irq_num;
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
/**
* function prototypes
*/
static int uart_altera_irq_update(const struct device *dev);
static int uart_altera_irq_tx_ready(const struct device *dev);
static int uart_altera_irq_rx_ready(const struct device *dev);
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
/**
* @brief Poll the device for input.
*
* This is a non-blocking function.
*
* @param dev UART device instance
* @param p_char Pointer to character
*
* @return 0 if a character arrived, -1 if input buffer is empty.
* -EINVAL if p_char is null pointer
*/
static int uart_altera_poll_in(const struct device *dev, unsigned char *p_char)
{
const struct uart_altera_device_config *config = dev->config;
struct uart_altera_device_data *data = dev->data;
int ret_val = -1;
uint32_t status;
/* generate fatal error if CONFIG_ASSERT is enabled. */
__ASSERT(p_char != NULL, "p_char is null pointer!");
/* Stop, if p_char is null pointer */
if (p_char == NULL) {
return -EINVAL;
}
k_spinlock_key_t key = k_spin_lock(&data->lock);
/* check if received character is ready.*/
status = sys_read32(config->base + ALTERA_AVALON_UART_STATUS_REG_OFFSET);
if (status & ALTERA_AVALON_UART_STATUS_RRDY_MSK) {
/* got a character */
*p_char = sys_read32(config->base + ALTERA_AVALON_UART_RXDATA_REG_OFFSET);
ret_val = 0;
}
k_spin_unlock(&data->lock, key);
return ret_val;
}
/**
* @brief Output a character in polled mode.
*
* This function will block until transmitter is ready.
* Then, a character will be transmitted.
*
* @param dev UART device instance
* @param c Character to send
*/
static void uart_altera_poll_out(const struct device *dev, unsigned char c)
{
const struct uart_altera_device_config *config = dev->config;
struct uart_altera_device_data *data = dev->data;
uint32_t status;
k_spinlock_key_t key = k_spin_lock(&data->lock);
do {
/* wait until uart is free to transmit.*/
status = sys_read32(config->base + ALTERA_AVALON_UART_STATUS_REG_OFFSET);
} while ((status & ALTERA_AVALON_UART_STATUS_TRDY_MSK) == 0);
sys_write32(c, config->base + ALTERA_AVALON_UART_TXDATA_REG_OFFSET);
k_spin_unlock(&data->lock, key);
}
/**
* @brief Initialise an instance of the driver
*
* This function initialise the interrupt configuration for the driver.
*
* @param dev UART device instance
*
* @return 0 to indicate success.
*/
static int uart_altera_init(const struct device *dev)
{
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
struct uart_altera_device_data *data = dev->data;
const struct uart_altera_device_config *config = dev->config;
/* clear status to ensure, that interrupts are not triggered due to old status. */
sys_write32(ALTERA_AVALON_UART_CLEAR_STATUS_VAL, config->base
+ ALTERA_AVALON_UART_STATUS_REG_OFFSET);
/*
* Enable hardware interrupt.
* The corresponding csr from IP still needs to be set,
* so that the IP generates interrupt signal.
*/
config->irq_config_func(dev);
#ifdef CONFIG_UART_LINE_CTRL
/* Enable DCTS interrupt. */
data->control_val = ALTERA_AVALON_UART_CONTROL_DCTS_MSK;
#endif /* CONFIG_UART_LINE_CTRL */
sys_write32(data->control_val, config->base + ALTERA_AVALON_UART_CONTROL_REG_OFFSET);
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
return 0;
}
/**
* @brief Check if an error was received
* If error is received, it will be mapped to uart_rx_stop_reason.
* This function should be called after irq_update.
* If interrupt driven API is not enabled,
* this function will read and clear the status register.
*
* @param dev UART device struct
*
* @return UART_ERROR_OVERRUN, UART_ERROR_PARITY, UART_ERROR_FRAMING,
* UART_BREAK if an error was detected, 0 otherwise.
*/
static int uart_altera_err_check(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
int err = UART_ALTERA_NO_ERROR;
#ifndef CONFIG_UART_INTERRUPT_DRIVEN
const struct uart_altera_device_config *config = dev->config;
k_spinlock_key_t key = k_spin_lock(&data->lock);
data->status_act = sys_read32(config->base + ALTERA_AVALON_UART_STATUS_REG_OFFSET);
#endif
if (data->status_act & ALTERA_AVALON_UART_STATUS_E_MSK) {
if (data->status_act & ALTERA_AVALON_UART_STATUS_PE_MSK) {
err |= UART_ERROR_PARITY;
}
if (data->status_act & ALTERA_AVALON_UART_STATUS_FE_MSK) {
err |= UART_ERROR_FRAMING;
}
if (data->status_act & ALTERA_AVALON_UART_STATUS_BRK_MSK) {
err |= UART_BREAK;
}
if (data->status_act & ALTERA_AVALON_UART_STATUS_ROE_MSK) {
err |= UART_ERROR_OVERRUN;
}
}
#ifndef CONFIG_UART_INTERRUPT_DRIVEN
/* clear status */
sys_write32(ALTERA_AVALON_UART_CLEAR_STATUS_VAL, config->base
+ ALTERA_AVALON_UART_STATUS_REG_OFFSET);
k_spin_unlock(&data->lock, key);
#endif
return err;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
/***
* @brief helper function to check, if the configuration is support.
* @param cfg_stored : The original configuration.
* @param cfg_in : The input configuration.
* @return true if only baudrate is changed. otherwise false.
*/
static bool uart_altera_check_configuration(const struct uart_config *cfg_stored,
const struct uart_config *cfg_in)
{
bool ret_val = false;
if ((cfg_stored->parity == cfg_in->parity)
&& (cfg_stored->stop_bits == cfg_in->stop_bits)
&& (cfg_stored->data_bits == cfg_in->data_bits)
&& (cfg_stored->flow_ctrl == cfg_in->flow_ctrl)) {
ret_val = true;
}
return ret_val;
}
/**
* @brief Set UART configuration using data from *cfg_in.
*
* @param dev UART : Device struct
* @param cfg_in : The input configuration.
*
* @return 0 if success, -ENOTSUP, if input from cfg_in is not configurable.
* -EINVAL if cfg_in is null pointer
*/
static int uart_altera_configure(const struct device *dev,
const struct uart_config *cfg_in)
{
const struct uart_altera_device_config *config = dev->config;
struct uart_altera_device_data * const data = dev->data;
struct uart_config * const cfg_stored = &data->uart_cfg;
uint32_t divisor_val;
int ret_val;
/* generate fatal error if CONFIG_ASSERT is enabled. */
__ASSERT(cfg_in != NULL, "cfg_in is null pointer!");
/* Stop, if cfg_in is null pointer */
if (cfg_in == NULL) {
return -EINVAL;
}
/* check if configuration is supported. */
if (uart_altera_check_configuration(cfg_stored, cfg_in)
&& !(config->flags & ALT_AVALON_UART_FB)) {
/* calculate and set baudrate. */
divisor_val = (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC/cfg_in->baudrate) - 1;
sys_write32(divisor_val, config->base + ALTERA_AVALON_UART_DIVISOR_REG_OFFSET);
/* update stored data. */
cfg_stored->baudrate = cfg_in->baudrate;
ret_val = 0;
} else {
/* return not supported */
ret_val = -ENOTSUP;
}
return ret_val;
}
/**
* @brief Get UART configuration and stores in *cfg_out.
*
* @param dev UART : Device struct
* @param cfg_out : The output configuration.
*
* @return 0 if success.
* -EINVAL if cfg_out is null pointer
*/
static int uart_altera_config_get(const struct device *dev,
struct uart_config *cfg_out)
{
const struct uart_altera_device_data *data = dev->data;
/* generate fatal error if CONFIG_ASSERT is enabled. */
__ASSERT(cfg_out != NULL, "cfg_out is null pointer!");
/* Stop, if cfg_out is null pointer */
if (cfg_out == NULL) {
return -EINVAL;
}
*cfg_out = data->uart_cfg;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
/**
* @brief Fill FIFO with data
* This function is expected to be called from UART interrupt handler (ISR),
* if uart_irq_tx_ready() returns true. This function does not block!
* IP has no fifo. Hence only 1 data can be sent at a time!
*
* @param dev UART device struct
* @param tx_data Data to transmit
* @param size Number of bytes to send (unused)
*
* @return Number of bytes sent
*/
static int uart_altera_fifo_fill(const struct device *dev,
const uint8_t *tx_data,
int size)
{
ARG_UNUSED(size);
const struct uart_altera_device_config *config = dev->config;
struct uart_altera_device_data *data = dev->data;
int ret_val;
/* generate fatal error if CONFIG_ASSERT is enabled. */
__ASSERT(tx_data != NULL, "tx_data is null pointer!");
/* Stop, if tx_data is null pointer */
if (tx_data == NULL) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&data->lock);
if (data->status_act & ALTERA_AVALON_UART_STATUS_TRDY_MSK) {
sys_write32(*tx_data, config->base + ALTERA_AVALON_UART_TXDATA_REG_OFFSET);
ret_val = 1;
/* function may be called in a loop. update the actual status! */
data->status_act = sys_read32(config->base + ALTERA_AVALON_UART_STATUS_REG_OFFSET);
} else {
ret_val = 0;
}
#ifdef CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND
/* clear and CTS rising edge! */
data->dcts_rising = 0;
#endif /* CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND */
k_spin_unlock(&data->lock, key);
return ret_val;
}
/**
* @brief Read data from FIFO
* This function is expected to be called from UART interrupt handler (ISR),
* if uart_irq_rx_ready() returns true.
* IP has no fifo. Hence only 1 data can be read at a time!
*
* @param dev UART device struct
* @param rx_data Data container
* @param size Container size
*
* @return Number of bytes read
*/
static int uart_altera_fifo_read(const struct device *dev, uint8_t *rx_data,
const int size)
{
ARG_UNUSED(size);
const struct uart_altera_device_config *config = dev->config;
struct uart_altera_device_data *data = dev->data;
int ret_val;
/* generate fatal error if CONFIG_ASSERT is enabled. */
__ASSERT(rx_data != NULL, "rx_data is null pointer!");
/* Stop, if rx_data is null pointer */
if (rx_data == NULL) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&data->lock);
if (data->status_act & ALTERA_AVALON_UART_STATUS_RRDY_MSK) {
*rx_data = sys_read32(config->base + ALTERA_AVALON_UART_RXDATA_REG_OFFSET);
ret_val = 1;
/* function may be called in a loop. update the actual status! */
data->status_act = sys_read32(config->base + ALTERA_AVALON_UART_STATUS_REG_OFFSET);
} else {
ret_val = 0;
}
#ifdef CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND
/* assert RTS as soon as rx data is read, as IP has no fifo. */
data->status_act = sys_read32(config->base + ALTERA_AVALON_UART_STATUS_REG_OFFSET);
if (((data->status_act & ALTERA_AVALON_UART_STATUS_RRDY_MSK) == 0)
&& (data->status_act & ALTERA_AVALON_UART_STATUS_CTS_MSK)) {
data->control_val |= ALTERA_AVALON_UART_CONTROL_RTS_MSK;
sys_write32(data->control_val, config->base
+ ALTERA_AVALON_UART_CONTROL_REG_OFFSET);
}
#endif /* CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND */
k_spin_unlock(&data->lock, key);
return ret_val;
}
/**
* @brief Enable TX interrupt
*
* @param dev UART device struct
*/
static void uart_altera_irq_tx_enable(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
const struct uart_altera_device_config *config = dev->config;
k_spinlock_key_t key = k_spin_lock(&data->lock);
data->control_val |= ALTERA_AVALON_UART_CONTROL_TRDY_MSK;
#ifdef CONFIG_UART_LINE_CTRL
/* also enable RTS, if flow control is enabled. */
data->control_val |= ALTERA_AVALON_UART_CONTROL_RTS_MSK;
#endif
sys_write32(data->control_val, config->base + ALTERA_AVALON_UART_CONTROL_REG_OFFSET);
k_spin_unlock(&data->lock, key);
}
/**
* @brief Disable TX interrupt
*
* @param dev UART device struct
*/
static void uart_altera_irq_tx_disable(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
const struct uart_altera_device_config *config = dev->config;
k_spinlock_key_t key = k_spin_lock(&data->lock);
data->control_val &= ~ALTERA_AVALON_UART_CONTROL_TRDY_MSK;
#ifdef CONFIG_UART_LINE_CTRL
/* also disable RTS, if flow control is enabled. */
data->control_val &= ~ALTERA_AVALON_UART_CONTROL_RTS_MSK;
#endif
sys_write32(data->control_val, config->base + ALTERA_AVALON_UART_CONTROL_REG_OFFSET);
k_spin_unlock(&data->lock, key);
}
/**
* @brief Check if UART TX buffer can accept a new char.
*
* @param dev UART device struct
*
* @return 1 if TX interrupt is enabled and at least one char can be written to UART.
* 0 if device is not ready to write a new byte.
*/
static int uart_altera_irq_tx_ready(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
int ret_val = 0;
k_spinlock_key_t key = k_spin_lock(&data->lock);
/* if TX interrupt is enabled */
if (data->control_val & ALTERA_AVALON_UART_CONTROL_TRDY_MSK) {
/* IP core does not have fifo. Wait until tx data is completely shifted. */
if (data->status_act & ALTERA_AVALON_UART_STATUS_TMT_MSK) {
ret_val = 1;
}
}
#ifdef CONFIG_UART_LINE_CTRL
/* if flow control is enabled, set tx not ready, if CTS is low. */
if ((data->status_act & ALTERA_AVALON_UART_STATUS_CTS_MSK) == 0) {
ret_val = 0;
}
#ifdef CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND
if (data->dcts_rising == 0) {
ret_val = 0;
}
#endif /* CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND */
#endif /* CONFIG_UART_LINE_CTRL */
k_spin_unlock(&data->lock, key);
return ret_val;
}
/**
* @brief Check if nothing remains to be transmitted
*
* @param dev UART device struct
*
* @return 1 if nothing remains to be transmitted, 0 otherwise
*/
static int uart_altera_irq_tx_complete(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
int ret_val = 0;
k_spinlock_key_t key = k_spin_lock(&data->lock);
if (data->status_act & ALTERA_AVALON_UART_STATUS_TMT_MSK) {
ret_val = 1;
}
k_spin_unlock(&data->lock, key);
return ret_val;
}
/**
* @brief Enable RX interrupt in
*
* @param dev UART device struct
*/
static void uart_altera_irq_rx_enable(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
const struct uart_altera_device_config *config = dev->config;
k_spinlock_key_t key = k_spin_lock(&data->lock);
data->control_val |= ALTERA_AVALON_UART_CONTROL_RRDY_MSK;
sys_write32(data->control_val, config->base + ALTERA_AVALON_UART_CONTROL_REG_OFFSET);
k_spin_unlock(&data->lock, key);
}
/**
* @brief Disable RX interrupt
*
* @param dev UART device struct
*/
static void uart_altera_irq_rx_disable(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
const struct uart_altera_device_config *config = dev->config;
k_spinlock_key_t key = k_spin_lock(&data->lock);
data->control_val &= ~ALTERA_AVALON_UART_CONTROL_RRDY_MSK;
sys_write32(data->control_val, config->base + ALTERA_AVALON_UART_CONTROL_REG_OFFSET);
k_spin_unlock(&data->lock, key);
}
/**
* @brief Check if Rx IRQ has been raised
*
* @param dev UART device struct
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static int uart_altera_irq_rx_ready(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
int ret_val = 0;
k_spinlock_key_t key = k_spin_lock(&data->lock);
/* if RX interrupt is enabled */
if (data->control_val & ALTERA_AVALON_UART_CONTROL_RRDY_MSK) {
/* check for space in rx data register */
if (data->status_act & ALTERA_AVALON_UART_STATUS_RRDY_MSK) {
ret_val = 1;
}
}
k_spin_unlock(&data->lock, key);
return ret_val;
}
/**
* @brief This function will cache the status register.
*
* @param dev UART device struct
*
* @return 1 for success.
*/
static int uart_altera_irq_update(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
const struct uart_altera_device_config *config = dev->config;
k_spinlock_key_t key = k_spin_lock(&data->lock);
data->status_act = sys_read32(config->base + ALTERA_AVALON_UART_STATUS_REG_OFFSET);
k_spin_unlock(&data->lock, key);
return 1;
}
/**
* @brief Check if any IRQ is pending
*
* @param dev UART device struct
*
* @return 1 if an IRQ is pending, 0 otherwise
*/
static int uart_altera_irq_is_pending(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
int ret_val = 0;
k_spinlock_key_t key = k_spin_lock(&data->lock);
if (data->status_act & data->control_val & ALTERA_AVALON_UART_PENDING_MASK) {
ret_val = 1;
}
k_spin_unlock(&data->lock, key);
return ret_val;
}
/**
* @brief Set the callback function pointer for IRQ.
*
* @param dev UART device struct
* @param cb Callback function pointer.
* @param cb_data Data to pass to callback function.
*/
static void uart_altera_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_altera_device_data *data = dev->data;
/* generate fatal error if CONFIG_ASSERT is enabled. */
__ASSERT(cb != NULL, "uart_irq_callback_user_data_t cb is null pointer!");
k_spinlock_key_t key = k_spin_lock(&data->lock);
#ifdef CONFIG_UART_ALTERA_EOP
if (data->set_eop_cb) {
data->cb_eop = cb;
data->cb_data_eop = cb_data;
data->set_eop_cb = 0;
} else {
data->cb = cb;
data->cb_data = cb_data;
}
#else
data->cb = cb;
data->cb_data = cb_data;
#endif /* CONFIG_UART_ALTERA_EOP */
k_spin_unlock(&data->lock, key);
}
#ifdef CONFIG_UART_LINE_CTRL
/**
* @brief DCTS Interrupt service routine.
*
* Handles assertion and deassettion of CTS/RTS stignal
*
* @param dev Pointer to UART device struct
*/
static void uart_altera_dcts_isr(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
const struct uart_altera_device_config *config = dev->config;
k_spinlock_key_t key = k_spin_lock(&data->lock);
/* Assume that user follows zephyr requirement and update status in their call back. */
if (data->status_act & ALTERA_AVALON_UART_STATUS_CTS_MSK) {
#ifdef CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND
data->dcts_rising = 1;
#endif /* CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND */
/* check if device is ready to receive character */
if ((data->status_act & ALTERA_AVALON_UART_STATUS_RRDY_MSK) == 0) {
/* Assert RTS to inform other UART. */
data->control_val |= ALTERA_AVALON_UART_CONTROL_RTS_MSK;
sys_write32(data->control_val, config->base
+ ALTERA_AVALON_UART_CONTROL_REG_OFFSET);
}
} else {
/* other UART deasserts RTS */
if (data->status_act & ALTERA_AVALON_UART_STATUS_TMT_MSK) {
/* only deasserts if not transmitting. */
data->control_val &= ~ALTERA_AVALON_UART_CONTROL_RTS_MSK;
sys_write32(data->control_val, config->base
+ ALTERA_AVALON_UART_CONTROL_REG_OFFSET);
}
}
k_spin_unlock(&data->lock, key);
}
#endif /* CONFIG_UART_LINE_CTRL */
/**
* @brief Interrupt service routine.
*
* This simply calls the callback function, if one exists.
*
* @param dev Pointer to UART device struct
*
*/
static void uart_altera_isr(const struct device *dev)
{
struct uart_altera_device_data *data = dev->data;
const struct uart_altera_device_config *config = dev->config;
uart_irq_callback_user_data_t callback = data->cb;
/* Pre ISR */
#ifdef CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND
/* deassert RTS as soon as rx data is received, as IP has no fifo. */
data->status_act = sys_read32(config->base + ALTERA_AVALON_UART_STATUS_REG_OFFSET);
if (data->status_act & ALTERA_AVALON_UART_STATUS_RRDY_MSK) {
data->control_val &= ~ALTERA_AVALON_UART_CONTROL_RTS_MSK;
sys_write32(data->control_val, config->base
+ ALTERA_AVALON_UART_CONTROL_REG_OFFSET);
}
#endif /* CONFIG_UART_ALTERA_LINE_CTRL_WORKAROUND */
if (callback) {
callback(dev, data->cb_data);
}
/* Post ISR */
#if CONFIG_UART_ALTERA_EOP
data->status_act = sys_read32(config->base + ALTERA_AVALON_UART_STATUS_REG_OFFSET);
if (data->status_act & ALTERA_AVALON_UART_STATUS_EOP_MSK) {
callback = data->cb_eop;
if (callback) {
callback(dev, data->cb_data_eop);
}
}
#endif /* CONFIG_UART_ALTERA_EOP */
#ifdef CONFIG_UART_LINE_CTRL
/* handles RTS/CTS signal */
if (data->status_act & ALTERA_AVALON_UART_STATUS_DCTS_MSK) {
uart_altera_dcts_isr(dev);
}
#endif
/* clear status after all interrupts are handled. */
sys_write32(ALTERA_AVALON_UART_CLEAR_STATUS_VAL, config->base
+ ALTERA_AVALON_UART_STATUS_REG_OFFSET);
}
#ifdef CONFIG_UART_DRV_CMD
/**
* @brief Send extra command to driver
*
* @param dev UART device struct
* @param cmd Command to driver
* @param p Parameter to the command
*
* @return 0 if successful, failed otherwise
*/
static int uart_altera_drv_cmd(const struct device *dev, uint32_t cmd,
uint32_t p)
{
struct uart_altera_device_data *data = dev->data;
#if CONFIG_UART_ALTERA_EOP
const struct uart_altera_device_config *config = dev->config;
#endif
int ret_val = -ENOTSUP;
k_spinlock_key_t key = k_spin_lock(&data->lock);
switch (cmd) {
#if CONFIG_UART_ALTERA_EOP
case CMD_ENABLE_EOP:
/* enable EOP interrupt */
data->control_val |= ALTERA_AVALON_UART_CONTROL_EOP_MSK;
sys_write32(data->control_val, config->base
+ ALTERA_AVALON_UART_CONTROL_REG_OFFSET);
/* set EOP character */
sys_write32((uint8_t) p, config->base + ALTERA_AVALON_UART_EOP_REG_OFFSET);
/* after this, user needs to call uart_irq_callback_set
* to set data->cb_eop and data->cb_data_eop!
*/
data->set_eop_cb = 1;
ret_val = 0;
break;
case CMD_DISABLE_EOP:
/* Disable EOP interrupt */
data->control_val &= ~ALTERA_AVALON_UART_CONTROL_EOP_MSK;
sys_write32(data->control_val, config->base
+ ALTERA_AVALON_UART_CONTROL_REG_OFFSET);
/* clear call back */
data->cb_eop = NULL;
data->cb_data_eop = NULL;
ret_val = 0;
break;
#endif /* CONFIG_UART_ALTERA_EOP */
default:
ret_val = -ENOTSUP;
break;
};
k_spin_unlock(&data->lock, key);
return ret_val;
}
#endif /* CONFIG_UART_DRV_CMD */
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_driver_api uart_altera_driver_api = {
.poll_in = uart_altera_poll_in,
.poll_out = uart_altera_poll_out,
.err_check = uart_altera_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_altera_configure,
.config_get = uart_altera_config_get,
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_altera_fifo_fill,
.fifo_read = uart_altera_fifo_read,
.irq_tx_enable = uart_altera_irq_tx_enable,
.irq_tx_disable = uart_altera_irq_tx_disable,
.irq_tx_ready = uart_altera_irq_tx_ready,
.irq_tx_complete = uart_altera_irq_tx_complete,
.irq_rx_enable = uart_altera_irq_rx_enable,
.irq_rx_disable = uart_altera_irq_rx_disable,
.irq_rx_ready = uart_altera_irq_rx_ready,
.irq_is_pending = uart_altera_irq_is_pending,
.irq_update = uart_altera_irq_update,
.irq_callback_set = uart_altera_irq_callback_set,
#endif
#ifdef CONFIG_UART_DRV_CMD
.drv_cmd = uart_altera_drv_cmd,
#endif
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define UART_ALTERA_IRQ_CONFIG_FUNC(n) \
static void uart_altera_irq_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
uart_altera_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
}
#define UART_ALTERA_IRQ_CONFIG_INIT(n) \
.irq_config_func = uart_altera_irq_config_func_##n, \
.irq_num = DT_INST_IRQN(n),
#else
#define UART_ALTERA_IRQ_CONFIG_FUNC(n)
#define UART_ALTERA_IRQ_CONFIG_INIT(n)
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#define UART_ALTERA_DEVICE_INIT(n) \
UART_ALTERA_IRQ_CONFIG_FUNC(n) \
static struct uart_altera_device_data uart_altera_dev_data_##n = { \
.uart_cfg = \
{ \
.baudrate = DT_INST_PROP(n, current_speed), \
.parity = DT_INST_ENUM_IDX_OR(n, parity, \
UART_CFG_PARITY_NONE), \
.stop_bits = DT_INST_ENUM_IDX_OR(n, stop_bits, \
UART_CFG_STOP_BITS_1), \
.data_bits = DT_INST_ENUM_IDX_OR(n, data_bits, \
UART_CFG_DATA_BITS_8), \
.flow_ctrl = DT_INST_PROP(n, hw_flow_control) ? \
UART_CFG_FLOW_CTRL_RTS_CTS : \
UART_CFG_FLOW_CTRL_NONE, \
}, \
}; \
\
static const struct uart_altera_device_config uart_altera_dev_cfg_##n = { \
.base = DT_INST_REG_ADDR(n), \
.flags = ((DT_INST_PROP(n, fixed_baudrate)?ALT_AVALON_UART_FB:0) \
|(DT_INST_PROP(n, hw_flow_control)?ALT_AVALON_UART_FC:0)), \
UART_ALTERA_IRQ_CONFIG_INIT(n) \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
uart_altera_init, \
NULL, \
&uart_altera_dev_data_##n, \
&uart_altera_dev_cfg_##n, \
PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&uart_altera_driver_api);
DT_INST_FOREACH_STATUS_OKAY(UART_ALTERA_DEVICE_INIT)
|