Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/*
 * Copyright (c) 2019 Richard Osterloh <richard.osterloh@gmail.com>
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define LOG_DOMAIN flash_stm32g4
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);

#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <string.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/sys/barrier.h>
#include <zephyr/init.h>
#include <soc.h>
#include <stm32_ll_system.h>

#include "flash_stm32.h"

#define STM32G4_SERIES_MAX_FLASH	512
#define BANK2_OFFSET	(KB(STM32G4_SERIES_MAX_FLASH) / 2)

/*
 * offset and len must be aligned on 8 for write,
 * positive and not beyond end of flash
 */
bool flash_stm32_valid_range(const struct device *dev, off_t offset,
			     uint32_t len,
			     bool write)
{

#if defined(FLASH_STM32_DBANK) && (CONFIG_FLASH_SIZE < STM32G4_SERIES_MAX_FLASH)
	/*
	 * In case of bank1/2 discontinuity, the range should not
	 * start before bank2 and end beyond bank1 at the same time.
	 * Locations beyond bank2 are caught by flash_stm32_range_exists.
	 */
	if ((offset < BANK2_OFFSET) && (offset + len > FLASH_SIZE / 2)) {
		return 0;
	}
#endif

	if (write && !flash_stm32_valid_write(offset, len)) {
		return false;
	}
	return flash_stm32_range_exists(dev, offset, len);
}

static inline void flush_cache(FLASH_TypeDef *regs)
{
	if (regs->ACR & FLASH_ACR_DCEN) {
		regs->ACR &= ~FLASH_ACR_DCEN;
		/* Datasheet: DCRST: Data cache reset
		 * This bit can be written only when the data cache is disabled
		 */
		regs->ACR |= FLASH_ACR_DCRST;
		regs->ACR &= ~FLASH_ACR_DCRST;
		regs->ACR |= FLASH_ACR_DCEN;
	}

	if (regs->ACR & FLASH_ACR_ICEN) {
		regs->ACR &= ~FLASH_ACR_ICEN;
		/* Datasheet: ICRST: Instruction cache reset :
		 * This bit can be written only when the instruction cache
		 * is disabled
		 */
		regs->ACR |= FLASH_ACR_ICRST;
		regs->ACR &= ~FLASH_ACR_ICRST;
		regs->ACR |= FLASH_ACR_ICEN;
	}
}

static int write_dword(const struct device *dev, off_t offset, uint64_t val)
{
	volatile uint32_t *flash = (uint32_t *)(offset + FLASH_STM32_BASE_ADDRESS);
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
#if defined(FLASH_STM32_DBANK)
	bool dcache_enabled = false;
#endif /* FLASH_STM32_DBANK */
	uint32_t tmp;
	int rc;

	/* if the control register is locked, do not fail silently */
	if (regs->CR & FLASH_CR_LOCK) {
		LOG_ERR("CR locked");
		return -EIO;
	}

	/* Check that no Flash main memory operation is ongoing */
	rc = flash_stm32_wait_flash_idle(dev);
	if (rc < 0) {
		return rc;
	}

	/* Check if this double word is erased and value isn't 0.
	 *
	 * It is allowed to write only zeros over an already written dword
	 * See 3.3.7 in reference manual.
	 */
	if ((flash[0] != 0xFFFFFFFFUL ||
	    flash[1] != 0xFFFFFFFFUL) && val != 0UL) {
		LOG_ERR("Word at offs %ld not erased", (long)offset);
		return -EIO;
	}

#if defined(FLASH_STM32_DBANK)
	/*
	 * Disable the data cache to avoid the silicon errata ES0430 Rev 7 2.2.2:
	 * "Data cache might be corrupted during Flash memory read-while-write operation"
	 */
	if (regs->ACR & FLASH_ACR_DCEN) {
		dcache_enabled = true;
		regs->ACR &= (~FLASH_ACR_DCEN);
	}
#endif /* FLASH_STM32_DBANK */

	/* Set the PG bit */
	regs->CR |= FLASH_CR_PG;

	/* Flush the register write */
	tmp = regs->CR;

	/* Perform the data write operation at the desired memory address */
	flash[0] = (uint32_t)val;
	flash[1] = (uint32_t)(val >> 32);

	/* Wait until the BSY bit is cleared */
	rc = flash_stm32_wait_flash_idle(dev);

	/* Clear the PG bit */
	regs->CR &= (~FLASH_CR_PG);

#if defined(FLASH_STM32_DBANK)
	/* Reset/enable the data cache if previously enabled */
	if (dcache_enabled) {
		regs->ACR |= FLASH_ACR_DCRST;
		regs->ACR &= (~FLASH_ACR_DCRST);
		regs->ACR |= FLASH_ACR_DCEN;
	}
#endif /* FLASH_STM32_DBANK */

	return rc;
}

static int erase_page(const struct device *dev, unsigned int offset)
{
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	uint32_t tmp;
	int rc;
	int page;

	/* if the control register is locked, do not fail silently */
	if (regs->CR & FLASH_CR_LOCK) {
		LOG_ERR("CR locked");
		return -EIO;
	}

	/* Check that no Flash memory operation is ongoing */
	rc = flash_stm32_wait_flash_idle(dev);
	if (rc < 0) {
		return rc;
	}

#if defined(FLASH_STM32_DBANK)
	bool bank_swap;
	/* Check whether bank1/2 are swapped */
	bank_swap = (LL_SYSCFG_GetFlashBankMode() == LL_SYSCFG_BANKMODE_BANK2);

	if ((offset < (FLASH_SIZE / 2)) && !bank_swap) {
		/* The pages to be erased is in bank 1 */
		regs->CR &= ~FLASH_CR_BKER_Msk;
		page = offset / FLASH_PAGE_SIZE;
		LOG_DBG("Erase page %d on bank 1", page);
	} else if ((offset >= BANK2_OFFSET) && bank_swap) {
		/* The pages to be erased is in bank 1 */
		regs->CR &= ~FLASH_CR_BKER_Msk;
		page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE;
		LOG_DBG("Erase page %d on bank 1", page);
	} else if ((offset < (FLASH_SIZE / 2)) && bank_swap) {
		/* The pages to be erased is in bank 2 */
		regs->CR |= FLASH_CR_BKER;
		page = offset / FLASH_PAGE_SIZE;
		LOG_DBG("Erase page %d on bank 2", page);
	} else if ((offset >= BANK2_OFFSET) && !bank_swap) {
		/* The pages to be erased is in bank 2 */
		regs->CR |= FLASH_CR_BKER;
		page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE;
		LOG_DBG("Erase page %d on bank 2", page);
	} else {
		LOG_ERR("Offset %d does not exist", offset);
		return -EINVAL;
	}
#else
	page = offset / FLASH_PAGE_SIZE;
		LOG_DBG("Erase page %d", page);
#endif

	/* Set the PER bit and select the page you wish to erase */
	regs->CR |= FLASH_CR_PER;
	regs->CR &= ~FLASH_CR_PNB_Msk;
	regs->CR |= (page << FLASH_CR_PNB_Pos);

	/* Set the STRT bit */
	regs->CR |= FLASH_CR_STRT;

	/* flush the register write */
	tmp = regs->CR;

	/* Wait for the BSY bit */
	rc = flash_stm32_wait_flash_idle(dev);

	flush_cache(regs);

#ifdef FLASH_STM32_DBANK
	regs->CR &= ~(FLASH_CR_PER | FLASH_CR_BKER);
#else
	regs->CR &= ~(FLASH_CR_PER);
#endif

	return rc;
}

int flash_stm32_block_erase_loop(const struct device *dev,
				 unsigned int offset,
				 unsigned int len)
{
	unsigned int address = offset;
	int rc = 0;

	for (; address <= offset + len - 1 ; address += FLASH_PAGE_SIZE) {
		rc = erase_page(dev, address);
		if (rc < 0) {
			break;
		}
	}

	return rc;
}

int flash_stm32_write_range(const struct device *dev, unsigned int offset,
			    const void *data, unsigned int len)
{
	int i, rc = 0;

	for (i = 0; i < len; i += 8, offset += 8) {
		rc = write_dword(dev, offset, ((const uint64_t *) data)[i>>3]);
		if (rc < 0) {
			return rc;
		}
	}

	return rc;
}

static __unused int write_optb(const struct device *dev, uint32_t mask,
			       uint32_t value)
{
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	int rc;

	if (regs->CR & FLASH_CR_OPTLOCK) {
		return -EIO;
	}

	if ((regs->OPTR & mask) == value) {
		return 0;
	}

	rc = flash_stm32_wait_flash_idle(dev);
	if (rc < 0) {
		return rc;
	}

	regs->OPTR = (regs->OPTR & ~mask) | value;
	regs->CR |= FLASH_CR_OPTSTRT;

	/* Make sure previous write is completed. */
	barrier_dsync_fence_full();

	rc = flash_stm32_wait_flash_idle(dev);
	if (rc < 0) {
		return rc;
	}

	return 0;
}

#if defined(CONFIG_FLASH_STM32_WRITE_PROTECT)

/*
 * Remark for future development implementing Write Protection for the L4 parts:
 *
 * STM32L4 allows for 2 write protected memory areas, c.f. FLASH_WEP1AR, FLASH_WRP1BR
 * which are defined by their start and end pages.
 *
 * Other STM32 parts (i.e. F4 series) uses bitmask to select sectors.
 *
 * To implement Write Protection for L4 one should thus add a new EX_OP like
 * FLASH_STM32_EX_OP_SECTOR_WP_RANGED in stm32_flash_api_extensions.h
 */

#endif /* CONFIG_FLASH_STM32_WRITE_PROTECT */

#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION)
int flash_stm32_update_rdp(const struct device *dev, bool enable,
			   bool permanent)
{
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	uint8_t current_level, target_level;

	current_level =
		(regs->OPTR & FLASH_OPTR_RDP_Msk) >> FLASH_OPTR_RDP_Pos;
	target_level = current_level;

	/*
	 * 0xAA = RDP level 0 (no protection)
	 * 0xCC = RDP level 2 (permanent protection)
	 * others = RDP level 1 (protection active)
	 */
	switch (current_level) {
	case FLASH_STM32_RDP2:
		if (!enable || !permanent) {
			LOG_ERR("RDP level 2 is permanent and can't be changed!");
			return -ENOTSUP;
		}
		break;
	case FLASH_STM32_RDP0:
		if (enable) {
			target_level = FLASH_STM32_RDP1;
			if (permanent) {
#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_PERMANENT_ALLOW)
				target_level = FLASH_STM32_RDP2;
#else
				LOG_ERR("Permanent readout protection (RDP "
					"level 0 -> 2) not allowed");
				return -ENOTSUP;
#endif
			}
		}
		break;
	default: /* FLASH_STM32_RDP1 */
		if (enable && permanent) {
#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_PERMANENT_ALLOW)
			target_level = FLASH_STM32_RDP2;
#else
			LOG_ERR("Permanent readout protection (RDP "
				"level 1 -> 2) not allowed");
			return -ENOTSUP;
#endif
		}
		if (!enable) {
#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_DISABLE_ALLOW)
			target_level = FLASH_STM32_RDP0;
#else
			LOG_ERR("Disabling readout protection (RDP "
				"level 1 -> 0) not allowed");
			return -EACCES;
#endif
		}
	}

	/* Update RDP level if needed */
	if (current_level != target_level) {
		LOG_INF("RDP changed from 0x%02x to 0x%02x", current_level,
			target_level);

		write_optb(dev, FLASH_OPTR_RDP_Msk,
			   (uint32_t)target_level << FLASH_OPTR_RDP_Pos);
	}
	return 0;
}

int flash_stm32_get_rdp(const struct device *dev, bool *enabled,
			bool *permanent)
{
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	uint8_t current_level;

	current_level =
		(regs->OPTR & FLASH_OPTR_RDP_Msk) >> FLASH_OPTR_RDP_Pos;

	/*
	 * 0xAA = RDP level 0 (no protection)
	 * 0xCC = RDP level 2 (permanent protection)
	 * others = RDP level 1 (protection active)
	 */
	switch (current_level) {
	case FLASH_STM32_RDP2:
		*enabled = true;
		*permanent = true;
		break;
	case FLASH_STM32_RDP0:
		*enabled = false;
		*permanent = false;
		break;
	default: /* FLASH_STM32_RDP1 */
		*enabled = true;
		*permanent = false;
	}
	return 0;
}
#endif /* CONFIG_FLASH_STM32_READOUT_PROTECTION */

void flash_stm32_page_layout(const struct device *dev,
			     const struct flash_pages_layout **layout,
			     size_t *layout_size)
{
	ARG_UNUSED(dev);

#if defined(FLASH_STM32_DBANK) && (CONFIG_FLASH_SIZE < STM32G4_SERIES_MAX_FLASH)
#define PAGES_PER_BANK  ((FLASH_SIZE / FLASH_PAGE_SIZE) / 2)
	static struct flash_pages_layout stm32g4_flash_layout[3];

	if (stm32g4_flash_layout[0].pages_count == 0) {
		/* Bank1 */
		stm32g4_flash_layout[0].pages_count = PAGES_PER_BANK;
		stm32g4_flash_layout[0].pages_size = FLASH_PAGE_SIZE;
		/* Dummy page corresponding to discontinuity between bank1/2 */
		stm32g4_flash_layout[1].pages_count = 1;
		stm32g4_flash_layout[1].pages_size = BANK2_OFFSET
					- (PAGES_PER_BANK * FLASH_PAGE_SIZE);
		/* Bank2 */
		stm32g4_flash_layout[2].pages_count = PAGES_PER_BANK;
		stm32g4_flash_layout[2].pages_size = FLASH_PAGE_SIZE;
	}
#else
	static struct flash_pages_layout stm32g4_flash_layout[1];

	if (stm32g4_flash_layout[0].pages_count == 0) {
		stm32g4_flash_layout[0].pages_count = FLASH_SIZE
						/ FLASH_PAGE_SIZE;
		stm32g4_flash_layout[0].pages_size = FLASH_PAGE_SIZE;
	}
#endif

	*layout = stm32g4_flash_layout;
	*layout_size = ARRAY_SIZE(stm32g4_flash_layout);
}

/* Override weak function */
int  flash_stm32_check_configuration(void)
{
#if defined(FLASH_STM32_DBANK)
	if (READ_BIT(FLASH->OPTR, FLASH_STM32_DBANK) == 0U) {
		/* Single bank not supported when dualbank is possible */
		LOG_ERR("Single bank configuration not supported");
		return -ENOTSUP;
	}
#endif
	return 0;
}