Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 | /* * Copyright (c) 2018-2019 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT intel_e1000 #define LOG_MODULE_NAME eth_e1000 #define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL #include <zephyr/logging/log.h> LOG_MODULE_REGISTER(LOG_MODULE_NAME); #include <sys/types.h> #include <zephyr/kernel.h> #include <zephyr/net/ethernet.h> #include <ethernet/eth_stats.h> #include <zephyr/drivers/pcie/pcie.h> #include <zephyr/irq.h> #include "eth_e1000_priv.h" #if defined(CONFIG_ETH_E1000_PTP_CLOCK) #include <zephyr/drivers/ptp_clock.h> #define PTP_INST_NODEID(n) DT_INST_CHILD(n, ptp) #endif #if defined(CONFIG_ETH_E1000_VERBOSE_DEBUG) #define hexdump(_buf, _len, fmt, args...) \ ({ \ const size_t STR_SIZE = 80; \ char _str[STR_SIZE]; \ \ snprintk(_str, STR_SIZE, "%s: " fmt, __func__, ## args); \ \ LOG_HEXDUMP_DBG(_buf, _len, _str); \ }) #else #define hexdump(args...) #endif static const char *e1000_reg_to_string(enum e1000_reg_t r) { #define _(_x) case _x: return #_x switch (r) { _(CTRL); _(ICR); _(ICS); _(IMS); _(RCTL); _(TCTL); _(RDBAL); _(RDBAH); _(RDLEN); _(RDH); _(RDT); _(TDBAL); _(TDBAH); _(TDLEN); _(TDH); _(TDT); _(RAL); _(RAH); } #undef _ LOG_ERR("Unsupported register: 0x%x", r); k_oops(); return NULL; } static struct net_if *get_iface(struct e1000_dev *ctx) { return ctx->iface; } static enum ethernet_hw_caps e1000_caps(const struct device *dev) { return #if defined(CONFIG_NET_VLAN) ETHERNET_HW_VLAN | #endif #if defined(CONFIG_ETH_E1000_PTP_CLOCK) ETHERNET_PTP | #endif ETHERNET_LINK_10BASE_T | ETHERNET_LINK_100BASE_T | ETHERNET_LINK_1000BASE_T | /* The driver does not really support TXTIME atm but mark * it to support it so that we can test the txtime sample. */ ETHERNET_TXTIME; } #if defined(CONFIG_ETH_E1000_PTP_CLOCK) static const struct device *e1000_get_ptp_clock(const struct device *dev) { struct e1000_dev *ctx = dev->data; return ctx->ptp_clock; } #endif static int e1000_tx(struct e1000_dev *dev, void *buf, size_t len) { hexdump(buf, len, "%zu byte(s)", len); dev->tx.addr = POINTER_TO_INT(buf); dev->tx.len = len; dev->tx.cmd = TDESC_EOP | TDESC_RS; iow32(dev, TDT, 1); while (!(dev->tx.sta)) { k_yield(); } LOG_DBG("tx.sta: 0x%02hx", dev->tx.sta); return (dev->tx.sta & TDESC_STA_DD) ? 0 : -EIO; } static int e1000_send(const struct device *ddev, struct net_pkt *pkt) { struct e1000_dev *dev = ddev->data; size_t len = net_pkt_get_len(pkt); if (net_pkt_read(pkt, dev->txb, len)) { return -EIO; } return e1000_tx(dev, dev->txb, len); } static struct net_pkt *e1000_rx(struct e1000_dev *dev) { struct net_pkt *pkt = NULL; void *buf; ssize_t len; LOG_DBG("rx.sta: 0x%02hx", dev->rx.sta); if (!(dev->rx.sta & RDESC_STA_DD)) { LOG_ERR("RX descriptor not ready"); goto out; } buf = INT_TO_POINTER((uint32_t)dev->rx.addr); len = dev->rx.len - 4; if (len <= 0) { LOG_ERR("Invalid RX descriptor length: %hu", dev->rx.len); goto out; } hexdump(buf, len, "%zd byte(s)", len); pkt = net_pkt_rx_alloc_with_buffer(dev->iface, len, AF_UNSPEC, 0, K_NO_WAIT); if (!pkt) { LOG_ERR("Out of buffers"); goto out; } if (net_pkt_write(pkt, buf, len)) { LOG_ERR("Out of memory for received frame"); net_pkt_unref(pkt); pkt = NULL; } out: return pkt; } static void e1000_isr(const struct device *ddev) { struct e1000_dev *dev = ddev->data; uint32_t icr = ior32(dev, ICR); /* Cleared upon read */ icr &= ~(ICR_TXDW | ICR_TXQE); if (icr & ICR_RXO) { struct net_pkt *pkt = e1000_rx(dev); icr &= ~ICR_RXO; if (pkt) { net_recv_data(get_iface(dev), pkt); } else { eth_stats_update_errors_rx(get_iface(dev)); } } if (icr) { LOG_ERR("Unhandled interrupt, ICR: 0x%x", icr); } } int e1000_probe(const struct device *ddev) { /* PCI ID is decoded into REG_SIZE */ struct e1000_dev *dev = ddev->data; uint32_t ral, rah; struct pcie_bar mbar; if (dev->pcie->bdf == PCIE_BDF_NONE) { return -ENODEV; } pcie_probe_mbar(dev->pcie->bdf, 0, &mbar); pcie_set_cmd(dev->pcie->bdf, PCIE_CONF_CMDSTAT_MEM | PCIE_CONF_CMDSTAT_MASTER, true); device_map(&dev->address, mbar.phys_addr, mbar.size, K_MEM_CACHE_NONE); /* Setup TX descriptor */ iow32(dev, TDBAL, (uint32_t)POINTER_TO_UINT(&dev->tx)); iow32(dev, TDBAH, (uint32_t)((POINTER_TO_UINT(&dev->tx) >> 16) >> 16)); iow32(dev, TDLEN, 1*16); iow32(dev, TDH, 0); iow32(dev, TDT, 0); iow32(dev, TCTL, TCTL_EN); /* Setup RX descriptor */ dev->rx.addr = POINTER_TO_INT(dev->rxb); dev->rx.len = sizeof(dev->rxb); iow32(dev, RDBAL, (uint32_t)POINTER_TO_UINT(&dev->rx)); iow32(dev, RDBAH, (uint32_t)((POINTER_TO_UINT(&dev->rx) >> 16) >> 16)); iow32(dev, RDLEN, 1*16); iow32(dev, RDH, 0); iow32(dev, RDT, 1); iow32(dev, IMS, IMS_RXO); ral = ior32(dev, RAL); rah = ior32(dev, RAH); memcpy(dev->mac, &ral, 4); memcpy(dev->mac + 4, &rah, 2); return 0; } BUILD_ASSERT(DT_INST_IRQN(0) != PCIE_IRQ_DETECT, "Dynamic IRQ allocation is not supported"); static void e1000_iface_init(struct net_if *iface) { struct e1000_dev *dev = net_if_get_device(iface)->data; const struct e1000_config *config = net_if_get_device(iface)->config; if (dev->iface == NULL) { dev->iface = iface; /* Do the phy link up only once */ config->config_func(dev); } ethernet_init(iface); net_if_set_link_addr(iface, dev->mac, sizeof(dev->mac), NET_LINK_ETHERNET); LOG_DBG("done"); } static const struct ethernet_api e1000_api = { .iface_api.init = e1000_iface_init, #if defined(CONFIG_ETH_E1000_PTP_CLOCK) .get_ptp_clock = e1000_get_ptp_clock, #endif .get_capabilities = e1000_caps, .send = e1000_send, }; #define E1000_DT_INST_IRQ_FLAGS(inst) \ COND_CODE_1(DT_INST_IRQ_HAS_CELL(inst, sense), \ (DT_INST_IRQ(inst, sense)), \ (DT_INST_IRQ(inst, flags))) #define E1000_PCI_INIT(inst) \ DEVICE_PCIE_INST_DECLARE(inst); \ \ static struct e1000_dev dev_##inst = { \ DEVICE_PCIE_INST_INIT(inst, pcie), \ }; \ \ static void e1000_config_##inst(const struct e1000_dev *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(inst), \ DT_INST_IRQ(inst, priority), \ e1000_isr, DEVICE_DT_INST_GET(inst), \ E1000_DT_INST_IRQ_FLAGS(inst)); \ \ irq_enable(DT_INST_IRQN(inst)); \ iow32(dev, CTRL, CTRL_SLU); /* Set link up */ \ iow32(dev, RCTL, RCTL_EN | RCTL_MPE); \ } \ \ static const struct e1000_config config_##inst = { \ .config_func = e1000_config_##inst, \ }; \ \ ETH_NET_DEVICE_DT_INST_DEFINE(inst, \ e1000_probe, \ NULL, \ &dev_##inst, \ &config_##inst, \ CONFIG_ETH_INIT_PRIORITY, \ &e1000_api, \ NET_ETH_MTU); DT_INST_FOREACH_STATUS_OKAY(E1000_PCI_INIT); #if defined(CONFIG_ETH_E1000_PTP_CLOCK) struct ptp_context { struct e1000_dev *eth_context; /* Simulate the clock. This is only for testing. * The value is in nanoseconds */ uint64_t clock_time; }; static int ptp_clock_e1000_set(const struct device *dev, struct net_ptp_time *tm) { struct ptp_context *ptp_context = dev->data; /* TODO: Set the clock real value here */ ptp_context->clock_time = tm->second * NSEC_PER_SEC + tm->nanosecond; return 0; } static int ptp_clock_e1000_get(const struct device *dev, struct net_ptp_time *tm) { struct ptp_context *ptp_context = dev->data; /* TODO: Get the clock value */ tm->second = ptp_context->clock_time / NSEC_PER_SEC; tm->nanosecond = ptp_context->clock_time - tm->second * NSEC_PER_SEC; return 0; } static int ptp_clock_e1000_adjust(const struct device *dev, int increment) { ARG_UNUSED(dev); ARG_UNUSED(increment); /* TODO: Implement clock adjustment */ return 0; } static int ptp_clock_e1000_rate_adjust(const struct device *dev, double ratio) { const int hw_inc = NSEC_PER_SEC / CONFIG_ETH_E1000_PTP_CLOCK_SRC_HZ; struct ptp_context *ptp_context = dev->data; struct e1000_dev *context = ptp_context->eth_context; int corr; int32_t mul; float val; /* No change needed. */ if (ratio == 1.0) { return 0; } ratio *= context->clk_ratio; /* Limit possible ratio. */ if ((ratio > 1.0 + 1.0/(2.0 * hw_inc)) || (ratio < 1.0 - 1.0/(2.0 * hw_inc))) { return -EINVAL; } /* Save new ratio. */ context->clk_ratio = ratio; if (ratio < 1.0) { corr = hw_inc - 1; val = 1.0 / (hw_inc * (1.0 - ratio)); } else if (ratio > 1.0) { corr = hw_inc + 1; val = 1.0 / (hw_inc * (ratio - 1.0)); } else { val = 0; corr = hw_inc; } if (val >= INT32_MAX) { /* Value is too high. * It is not possible to adjust the rate of the clock. */ mul = 0; } else { mul = val; } /* TODO: Adjust the clock here */ return 0; } static const struct ptp_clock_driver_api api = { .set = ptp_clock_e1000_set, .get = ptp_clock_e1000_get, .adjust = ptp_clock_e1000_adjust, .rate_adjust = ptp_clock_e1000_rate_adjust, }; static int ptp_e1000_init(const struct device *port) { struct ptp_context *ptp_context = port->data; struct e1000_dev *context = ptp_context->eth_context; context->ptp_clock = port; ptp_context->clock_time = k_ticks_to_ns_floor64(k_uptime_ticks()); return 0; } #define E1000_PTP_INIT(inst) \ static struct ptp_context ptp_e1000_context_##inst = { \ .eth_context = DEVICE_DT_INST_GET(inst)->data, \ }; \ \ DEVICE_DEFINE(e1000_ptp_clock, PTP_CLOCK_NAME, \ ptp_e1000_init, NULL, \ &ptp_e1000_context_##inst, NULL, POST_KERNEL, \ CONFIG_APPLICATION_INIT_PRIORITY, &api); DT_INST_FOREACH_STATUS_OKAY(E1000_PTP_INIT); #endif /* CONFIG_ETH_E1000_PTP_CLOCK */ |