Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 | /* * Copyright (c) 2013-2014 Wind River Systems, Inc. * Copyright (c) 2021 Lexmark International, Inc. * Copyright (c) 2023 Arm Limited * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief New thread creation for ARM Cortex-M * * Core thread related primitives for the ARM Cortex-M * processor architecture. */ #include <zephyr/kernel.h> #include <zephyr/llext/symbol.h> #include <ksched.h> #include <zephyr/sys/barrier.h> #include <stdbool.h> #include <cmsis_core.h> #if (MPU_GUARD_ALIGN_AND_SIZE_FLOAT > MPU_GUARD_ALIGN_AND_SIZE) #define FP_GUARD_EXTRA_SIZE (MPU_GUARD_ALIGN_AND_SIZE_FLOAT - \ MPU_GUARD_ALIGN_AND_SIZE) #else #define FP_GUARD_EXTRA_SIZE 0 #endif #ifndef EXC_RETURN_FTYPE /* bit [4] allocate stack for floating-point context: 0=done 1=skipped */ #define EXC_RETURN_FTYPE (0x00000010UL) #endif /* Default last octet of EXC_RETURN, for threads that have not run yet. * The full EXC_RETURN value will be e.g. 0xFFFFFFBC. */ #if defined(CONFIG_ARM_NONSECURE_FIRMWARE) #define DEFAULT_EXC_RETURN 0xBC; #else #define DEFAULT_EXC_RETURN 0xFD; #endif #if !defined(CONFIG_MULTITHREADING) K_THREAD_STACK_DECLARE(z_main_stack, CONFIG_MAIN_STACK_SIZE); #endif /* An initial context, to be "restored" by z_arm_pendsv(), is put at the other * end of the stack, and thus reusable by the stack when not needed anymore. * * The initial context is an exception stack frame (ESF) since exiting the * PendSV exception will want to pop an ESF. Interestingly, even if the lsb of * an instruction address to jump to must always be set since the CPU always * runs in thumb mode, the ESF expects the real address of the instruction, * with the lsb *not* set (instructions are always aligned on 16 bit * halfwords). Since the compiler automatically sets the lsb of function * addresses, we have to unset it manually before storing it in the 'pc' field * of the ESF. */ void arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack, char *stack_ptr, k_thread_entry_t entry, void *p1, void *p2, void *p3) { struct __basic_sf *iframe; #ifdef CONFIG_MPU_STACK_GUARD #if defined(CONFIG_USERSPACE) if (z_stack_is_user_capable(stack)) { /* Guard area is carved-out of the buffer instead of reserved * for stacks that can host user threads */ thread->stack_info.start += MPU_GUARD_ALIGN_AND_SIZE; thread->stack_info.size -= MPU_GUARD_ALIGN_AND_SIZE; } #endif /* CONFIG_USERSPACE */ #if FP_GUARD_EXTRA_SIZE > 0 if ((thread->base.user_options & K_FP_REGS) != 0) { /* Larger guard needed due to lazy stacking of FP regs may * overshoot the guard area without writing anything. We * carve it out of the stack buffer as-needed instead of * unconditionally reserving it. */ thread->stack_info.start += FP_GUARD_EXTRA_SIZE; thread->stack_info.size -= FP_GUARD_EXTRA_SIZE; } #endif /* FP_GUARD_EXTRA_SIZE */ #endif /* CONFIG_MPU_STACK_GUARD */ iframe = Z_STACK_PTR_TO_FRAME(struct __basic_sf, stack_ptr); #if defined(CONFIG_USERSPACE) if ((thread->base.user_options & K_USER) != 0) { iframe->pc = (uint32_t)arch_user_mode_enter; } else { iframe->pc = (uint32_t)z_thread_entry; } #else iframe->pc = (uint32_t)z_thread_entry; #endif /* force ARM mode by clearing LSB of address */ iframe->pc &= 0xfffffffe; iframe->a1 = (uint32_t)entry; iframe->a2 = (uint32_t)p1; iframe->a3 = (uint32_t)p2; iframe->a4 = (uint32_t)p3; iframe->xpsr = 0x01000000UL; /* clear all, thumb bit is 1, even if RO */ thread->callee_saved.psp = (uint32_t)iframe; thread->arch.basepri = 0; #if defined(CONFIG_ARM_STORE_EXC_RETURN) || defined(CONFIG_USERSPACE) thread->arch.mode = 0; #if defined(CONFIG_ARM_STORE_EXC_RETURN) thread->arch.mode_exc_return = DEFAULT_EXC_RETURN; #endif #if FP_GUARD_EXTRA_SIZE > 0 if ((thread->base.user_options & K_FP_REGS) != 0) { thread->arch.mode |= Z_ARM_MODE_MPU_GUARD_FLOAT_Msk; } #endif #if defined(CONFIG_USERSPACE) thread->arch.priv_stack_start = 0; #endif #endif /* * initial values in all other registers/thread entries are * irrelevant. */ } #if defined(CONFIG_MPU_STACK_GUARD) && defined(CONFIG_FPU) \ && defined(CONFIG_FPU_SHARING) static inline void z_arm_thread_stack_info_adjust(struct k_thread *thread, bool use_large_guard) { if (use_large_guard) { /* Switch to use a large MPU guard if not already. */ if ((thread->arch.mode & Z_ARM_MODE_MPU_GUARD_FLOAT_Msk) == 0) { /* Default guard size is used. Update required. */ thread->arch.mode |= Z_ARM_MODE_MPU_GUARD_FLOAT_Msk; #if defined(CONFIG_USERSPACE) if (thread->arch.priv_stack_start) { /* User thread */ thread->arch.priv_stack_start += FP_GUARD_EXTRA_SIZE; } else #endif /* CONFIG_USERSPACE */ { /* Privileged thread */ thread->stack_info.start += FP_GUARD_EXTRA_SIZE; thread->stack_info.size -= FP_GUARD_EXTRA_SIZE; } } } else { /* Switch to use the default MPU guard size if not already. */ if ((thread->arch.mode & Z_ARM_MODE_MPU_GUARD_FLOAT_Msk) != 0) { /* Large guard size is used. Update required. */ thread->arch.mode &= ~Z_ARM_MODE_MPU_GUARD_FLOAT_Msk; #if defined(CONFIG_USERSPACE) if (thread->arch.priv_stack_start) { /* User thread */ thread->arch.priv_stack_start -= FP_GUARD_EXTRA_SIZE; } else #endif /* CONFIG_USERSPACE */ { /* Privileged thread */ thread->stack_info.start -= FP_GUARD_EXTRA_SIZE; thread->stack_info.size += FP_GUARD_EXTRA_SIZE; } } } } /* * Adjust the MPU stack guard size together with the FPU * policy and the stack_info values for the thread that is * being switched in. */ uint32_t z_arm_mpu_stack_guard_and_fpu_adjust(struct k_thread *thread) { if (((thread->base.user_options & K_FP_REGS) != 0) || ((thread->arch.mode_exc_return & EXC_RETURN_FTYPE) == 0)) { /* The thread has been pre-tagged (at creation or later) with * K_FP_REGS, i.e. it is expected to be using the FPU registers * (if not already). Activate lazy stacking and program a large * MPU guard to safely detect privilege thread stack overflows. * * OR * The thread is not pre-tagged with K_FP_REGS, but it has * generated an FP context. Activate lazy stacking and * program a large MPU guard to detect privilege thread * stack overflows. */ FPU->FPCCR |= FPU_FPCCR_LSPEN_Msk; z_arm_thread_stack_info_adjust(thread, true); /* Tag the thread with K_FP_REGS */ thread->base.user_options |= K_FP_REGS; return MPU_GUARD_ALIGN_AND_SIZE_FLOAT; } /* Thread is not pre-tagged with K_FP_REGS, and it has * not been using the FPU. Since there is no active FPU * context, de-activate lazy stacking and program the * default MPU guard size. */ FPU->FPCCR &= (~FPU_FPCCR_LSPEN_Msk); z_arm_thread_stack_info_adjust(thread, false); return MPU_GUARD_ALIGN_AND_SIZE; } #endif #ifdef CONFIG_USERSPACE FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry, void *p1, void *p2, void *p3) { /* Set up privileged stack before entering user mode */ _current->arch.priv_stack_start = (uint32_t)z_priv_stack_find(_current->stack_obj); #if defined(CONFIG_MPU_STACK_GUARD) #if defined(CONFIG_THREAD_STACK_INFO) /* We're dropping to user mode which means the guard area is no * longer used here, it instead is moved to the privilege stack * to catch stack overflows there. Un-do the calculations done * which accounted for memory borrowed from the thread stack. */ #if FP_GUARD_EXTRA_SIZE > 0 if ((_current->arch.mode & Z_ARM_MODE_MPU_GUARD_FLOAT_Msk) != 0) { _current->stack_info.start -= FP_GUARD_EXTRA_SIZE; _current->stack_info.size += FP_GUARD_EXTRA_SIZE; } #endif /* FP_GUARD_EXTRA_SIZE */ _current->stack_info.start -= MPU_GUARD_ALIGN_AND_SIZE; _current->stack_info.size += MPU_GUARD_ALIGN_AND_SIZE; #endif /* CONFIG_THREAD_STACK_INFO */ /* Stack guard area reserved at the bottom of the thread's * privileged stack. Adjust the available (writable) stack * buffer area accordingly. */ #if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING) _current->arch.priv_stack_start += ((_current->arch.mode & Z_ARM_MODE_MPU_GUARD_FLOAT_Msk) != 0) ? MPU_GUARD_ALIGN_AND_SIZE_FLOAT : MPU_GUARD_ALIGN_AND_SIZE; #else _current->arch.priv_stack_start += MPU_GUARD_ALIGN_AND_SIZE; #endif /* CONFIG_FPU && CONFIG_FPU_SHARING */ #endif /* CONFIG_MPU_STACK_GUARD */ z_arm_userspace_enter(user_entry, p1, p2, p3, (uint32_t)_current->stack_info.start, _current->stack_info.size - _current->stack_info.delta); CODE_UNREACHABLE; } bool z_arm_thread_is_in_user_mode(void) { uint32_t value; /* return mode information */ value = __get_CONTROL(); return (value & CONTROL_nPRIV_Msk) != 0; } EXPORT_SYMBOL(z_arm_thread_is_in_user_mode); #endif #if defined(CONFIG_BUILTIN_STACK_GUARD) /* * @brief Configure ARM built-in stack guard * * This function configures per thread stack guards by reprogramming * the built-in Process Stack Pointer Limit Register (PSPLIM). * The functionality is meant to be used during context switch. * * @param thread thread info data structure. */ void configure_builtin_stack_guard(struct k_thread *thread) { #if defined(CONFIG_USERSPACE) if ((thread->arch.mode & CONTROL_nPRIV_Msk) != 0) { /* Only configure stack limit for threads in privileged mode * (i.e supervisor threads or user threads doing system call). * User threads executing in user mode do not require a stack * limit protection. */ __set_PSPLIM(0); return; } /* Only configure PSPLIM to guard the privileged stack area, if * the thread is currently using it, otherwise guard the default * thread stack. Note that the conditional check relies on the * thread privileged stack being allocated in higher memory area * than the default thread stack (ensured by design). */ uint32_t guard_start = ((thread->arch.priv_stack_start) && (__get_PSP() >= thread->arch.priv_stack_start)) ? (uint32_t)thread->arch.priv_stack_start : (uint32_t)thread->stack_obj; __ASSERT(thread->stack_info.start == ((uint32_t)thread->stack_obj), "stack_info.start does not point to the start of the" "thread allocated area."); #else uint32_t guard_start = thread->stack_info.start; #endif #if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM) __set_PSPLIM(guard_start); #else #error "Built-in PSP limit checks not supported by HW" #endif } #endif /* CONFIG_BUILTIN_STACK_GUARD */ #if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE) #define IS_MPU_GUARD_VIOLATION(guard_start, guard_len, fault_addr, stack_ptr) \ ((fault_addr != -EINVAL) ? \ ((fault_addr >= guard_start) && \ (fault_addr < (guard_start + guard_len)) && \ (stack_ptr < (guard_start + guard_len))) \ : \ (stack_ptr < (guard_start + guard_len))) /** * @brief Assess occurrence of current thread's stack corruption * * This function performs an assessment whether a memory fault (on a * given memory address) is the result of stack memory corruption of * the current thread. * * Thread stack corruption for supervisor threads or user threads in * privilege mode (when User Space is supported) is reported upon an * attempt to access the stack guard area (if MPU Stack Guard feature * is supported). Additionally the current PSP (process stack pointer) * must be pointing inside or below the guard area. * * Thread stack corruption for user threads in user mode is reported, * if the current PSP is pointing below the start of the current * thread's stack. * * Notes: * - we assume a fully descending stack, * - we assume a stacking error has occurred, * - the function shall be called when handling MemManage and Bus fault, * and only if a Stacking error has been reported. * * If stack corruption is detected, the function returns the lowest * allowed address where the Stack Pointer can safely point to, to * prevent from errors when un-stacking the corrupted stack frame * upon exception return. * * @param fault_addr memory address on which memory access violation * has been reported. It can be invalid (-EINVAL), * if only Stacking error has been reported. * @param psp current address the PSP points to * * @return The lowest allowed stack frame pointer, if error is a * thread stack corruption, otherwise return 0. */ uint32_t z_check_thread_stack_fail(const uint32_t fault_addr, const uint32_t psp) { #if defined(CONFIG_MULTITHREADING) const struct k_thread *thread = _current; if (thread == NULL) { return 0; } #endif #if (defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)) && \ defined(CONFIG_MPU_STACK_GUARD) uint32_t guard_len = ((_current->arch.mode & Z_ARM_MODE_MPU_GUARD_FLOAT_Msk) != 0) ? MPU_GUARD_ALIGN_AND_SIZE_FLOAT : MPU_GUARD_ALIGN_AND_SIZE; #else /* If MPU_STACK_GUARD is not enabled, the guard length is * effectively zero. Stack overflows may be detected only * for user threads in nPRIV mode. */ uint32_t guard_len = MPU_GUARD_ALIGN_AND_SIZE; #endif /* CONFIG_FPU && CONFIG_FPU_SHARING */ #if defined(CONFIG_USERSPACE) if (thread->arch.priv_stack_start) { /* User thread */ if (z_arm_thread_is_in_user_mode() == false) { /* User thread in privilege mode */ if (IS_MPU_GUARD_VIOLATION( thread->arch.priv_stack_start - guard_len, guard_len, fault_addr, psp)) { /* Thread's privilege stack corruption */ return thread->arch.priv_stack_start; } } else { if (psp < (uint32_t)thread->stack_obj) { /* Thread's user stack corruption */ return (uint32_t)thread->stack_obj; } } } else { /* Supervisor thread */ if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start - guard_len, guard_len, fault_addr, psp)) { /* Supervisor thread stack corruption */ return thread->stack_info.start; } } #else /* CONFIG_USERSPACE */ #if defined(CONFIG_MULTITHREADING) if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start - guard_len, guard_len, fault_addr, psp)) { /* Thread stack corruption */ return thread->stack_info.start; } #else if (IS_MPU_GUARD_VIOLATION((uint32_t)z_main_stack, guard_len, fault_addr, psp)) { /* Thread stack corruption */ return (uint32_t)K_THREAD_STACK_BUFFER(z_main_stack); } #endif #endif /* CONFIG_USERSPACE */ return 0; } #endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */ #if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING) int arch_float_disable(struct k_thread *thread) { if (thread != _current) { return -EINVAL; } if (arch_is_in_isr()) { return -EINVAL; } /* Disable all floating point capabilities for the thread */ /* K_FP_REG flag is used in SWAP and stack check fail. Locking * interrupts here prevents a possible context-switch or MPU * fault to take an outdated thread user_options flag into * account. */ int key = arch_irq_lock(); thread->base.user_options &= ~K_FP_REGS; __set_CONTROL(__get_CONTROL() & (~CONTROL_FPCA_Msk)); /* No need to add an ISB barrier after setting the CONTROL * register; arch_irq_unlock() already adds one. */ arch_irq_unlock(key); return 0; } int arch_float_enable(struct k_thread *thread, unsigned int options) { /* This is not supported in Cortex-M */ return -ENOTSUP; } #endif /* CONFIG_FPU && CONFIG_FPU_SHARING */ /* Internal function for Cortex-M initialization, * applicable to either case of running Zephyr * with or without multi-threading support. */ static void z_arm_prepare_switch_to_main(void) { #if defined(CONFIG_FPU) /* Initialize the Floating Point Status and Control Register when in * Unshared FP Registers mode (In Shared FP Registers mode, FPSCR is * initialized at thread creation for threads that make use of the FP). */ #if defined(CONFIG_ARMV8_1_M_MAINLINE) /* * For ARMv8.1-M with FPU, the FPSCR[18:16] LTPSIZE field must be set * to 0b100 for "Tail predication not applied" as it's reset value */ __set_FPSCR(4 << FPU_FPDSCR_LTPSIZE_Pos); #else __set_FPSCR(0); #endif #if defined(CONFIG_FPU_SHARING) /* In Sharing mode clearing FPSCR may set the CONTROL.FPCA flag. */ __set_CONTROL(__get_CONTROL() & (~(CONTROL_FPCA_Msk))); barrier_isync_fence_full(); #endif /* CONFIG_FPU_SHARING */ #endif /* CONFIG_FPU */ } void arch_switch_to_main_thread(struct k_thread *main_thread, char *stack_ptr, k_thread_entry_t _main) { z_arm_prepare_switch_to_main(); _current = main_thread; #if defined(CONFIG_THREAD_LOCAL_STORAGE) /* On Cortex-M, TLS uses a global variable as pointer to * the thread local storage area. So this needs to point * to the main thread's TLS area before switching to any * thread for the first time, as the pointer is only set * during context switching. */ extern uintptr_t z_arm_tls_ptr; z_arm_tls_ptr = main_thread->tls; #endif #ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING z_thread_mark_switched_in(); #endif /* the ready queue cache already contains the main thread */ #if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE) /* * If stack protection is enabled, make sure to set it * before jumping to thread entry function */ z_arm_configure_dynamic_mpu_regions(main_thread); #endif #if defined(CONFIG_BUILTIN_STACK_GUARD) /* Set PSPLIM register for built-in stack guarding of main thread. */ #if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM) __set_PSPLIM(main_thread->stack_info.start); #else #error "Built-in PSP limit checks not supported by the hardware." #endif #endif /* CONFIG_BUILTIN_STACK_GUARD */ /* * Set PSP to the highest address of the main stack * before enabling interrupts and jumping to main. * * The compiler may store _main on the stack, but this * location is relative to `PSP`. * This assembly block ensures that _main is stored in * a callee saved register before switching stack and continuing * with the thread entry process. * * When calling arch_irq_unlock_outlined, LR is lost which is fine since * we do not intend to return after calling z_thread_entry. */ __asm__ volatile ( "mov r4, %0\n" /* force _main to be stored in a register */ "msr PSP, %1\n" /* __set_PSP(stack_ptr) */ "mov r0, #0\n" /* arch_irq_unlock(0) */ "ldr r3, =arch_irq_unlock_outlined\n" "blx r3\n" "mov r0, r4\n" /* z_thread_entry(_main, NULL, NULL, NULL) */ "mov r1, #0\n" "mov r2, #0\n" "mov r3, #0\n" "ldr r4, =z_thread_entry\n" "bx r4\n" /* We don’t intend to return, so there is no need to link. */ : "+r" (_main) : "r" (stack_ptr) : "r0", "r1", "r2", "r3", "r4"); CODE_UNREACHABLE; } __used void arch_irq_unlock_outlined(unsigned int key) { #if defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE) __enable_fault_irq(); /* alters FAULTMASK */ __enable_irq(); /* alters PRIMASK */ #endif arch_irq_unlock(key); } __used unsigned int arch_irq_lock_outlined(void) { return arch_irq_lock(); } #if !defined(CONFIG_MULTITHREADING) FUNC_NORETURN void z_arm_switch_to_main_no_multithreading( k_thread_entry_t main_entry, void *p1, void *p2, void *p3) { z_arm_prepare_switch_to_main(); /* Set PSP to the highest address of the main stack. */ char *psp = K_THREAD_STACK_BUFFER(z_main_stack) + K_THREAD_STACK_SIZEOF(z_main_stack); #if defined(CONFIG_BUILTIN_STACK_GUARD) char *psplim = (K_THREAD_STACK_BUFFER(z_main_stack)); /* Clear PSPLIM before setting it to guard the main stack area. */ __set_PSPLIM(0); #endif /* Store all required input in registers, to be accessible * after stack pointer change. The function is not going * to return, so callee-saved registers do not need to be * stacked. * * The compiler may store _main on the stack, but this * location is relative to `PSP`. * This assembly block ensures that _main is stored in * a callee saved register before switching stack and continuing * with the thread entry process. */ __asm__ volatile ( #ifdef CONFIG_BUILTIN_STACK_GUARD "msr PSPLIM, %[_psplim]\n" /* __set_PSPLIM(_psplim) */ #endif "msr PSP, %[_psp]\n" /* __set_PSP(psp) */ "mov r0, #0\n" "ldr r1, =arch_irq_unlock_outlined\n" "blx r1\n" "mov r0, %[_p1]\n" "mov r1, %[_p2]\n" "mov r2, %[_p3]\n" "blx %[_main_entry]\n" /* main_entry(p1, p2, p3) */ "ldr r0, =arch_irq_lock_outlined\n" "blx r0\n" "loop: b loop\n\t" /* while (true); */ : : [_p1]"r" (p1), [_p2]"r" (p2), [_p3]"r" (p3), [_psp]"r" (psp), [_main_entry]"r" (main_entry) #ifdef CONFIG_BUILTIN_STACK_GUARD , [_psplim]"r" (psplim) #endif : "r0", "r1", "r2", "r3" ); CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ } #endif /* !CONFIG_MULTITHREADING */ |