Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
/*
 * Copyright 2022 TOKITA Hiroshi <tokita.hiroshi@fujitsu.com>
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT arm_pl022

#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/sys/util.h>
#include <zephyr/spinlock.h>
#include <soc.h>
#if defined(CONFIG_PINCTRL)
#include <zephyr/drivers/pinctrl.h>
#endif
#if defined(CONFIG_SPI_PL022_DMA)
#include <zephyr/drivers/dma.h>
#endif

#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(spi_pl022);

#include "spi_context.h"

#define SSP_MASK(regname, name) GENMASK(SSP_##regname##_##name##_MSB, SSP_##regname##_##name##_LSB)

/* PL022 Register definitions */

/*
 * Macros to access SSP Registers with their offsets
 */
#define SSP_CR0(r)      (r + 0x000)
#define SSP_CR1(r)      (r + 0x004)
#define SSP_DR(r)       (r + 0x008)
#define SSP_SR(r)       (r + 0x00C)
#define SSP_CPSR(r)     (r + 0x010)
#define SSP_IMSC(r)     (r + 0x014)
#define SSP_RIS(r)      (r + 0x018)
#define SSP_MIS(r)      (r + 0x01C)
#define SSP_ICR(r)      (r + 0x020)
#define SSP_DMACR(r)    (r + 0x024)

/*
 * Control Register 0
 */
#define SSP_CR0_SCR_MSB 15
#define SSP_CR0_SCR_LSB 8
#define SSP_CR0_SPH_MSB 7
#define SSP_CR0_SPH_LSB 7
#define SSP_CR0_SPO_MSB 6
#define SSP_CR0_SPO_LSB 6
#define SSP_CR0_FRF_MSB 5
#define SSP_CR0_FRF_LSB 4
#define SSP_CR0_DSS_MSB 3
#define SSP_CR0_DSS_LSB 0

/* Data size select */
#define SSP_CR0_MASK_DSS SSP_MASK(CR0, DSS)
/* Frame format */
#define SSP_CR0_MASK_FRF SSP_MASK(CR0, FRF)
/* Polarity */
#define SSP_CR0_MASK_SPO SSP_MASK(CR0, SPO)
/* Phase */
#define SSP_CR0_MASK_SPH SSP_MASK(CR0, SPH)
/* Serial Clock Rate */
#define SSP_CR0_MASK_SCR SSP_MASK(CR0, SCR)

/*
 * Control Register 1
 */
#define SSP_CR1_SOD_MSB 3
#define SSP_CR1_SOD_LSB 3
#define SSP_CR1_MS_MSB 2
#define SSP_CR1_MS_LSB 2
#define SSP_CR1_SSE_MSB 1
#define SSP_CR1_SSE_LSB 1
#define SSP_CR1_LBM_MSB 0
#define SSP_CR1_LBM_LSB 0

/* Loopback Mode */
#define SSP_CR1_MASK_LBM SSP_MASK(CR1, LBM)
/* Port Enable */
#define SSP_CR1_MASK_SSE SSP_MASK(CR1, SSE)
/* Controller/Peripheral (Master/Slave) select */
#define SSP_CR1_MASK_MS SSP_MASK(CR1, MS)
/* Peripheral (Slave) mode output disabled */
#define SSP_CR1_MASK_SOD SSP_MASK(CR1, SOD)

/*
 * Status Register
 */
#define SSP_SR_BSY_MSB 4
#define SSP_SR_BSY_LSB 4
#define SSP_SR_RFF_MSB 3
#define SSP_SR_RFF_LSB 3
#define SSP_SR_RNE_MSB 2
#define SSP_SR_RNE_LSB 2
#define SSP_SR_TNF_MSB 1
#define SSP_SR_TNF_LSB 1
#define SSP_SR_TFE_MSB 0
#define SSP_SR_TFE_LSB 0

/* TX FIFO empty */
#define SSP_SR_MASK_TFE SSP_MASK(SR, TFE)
/* TX FIFO not full */
#define SSP_SR_MASK_TNF SSP_MASK(SR, TNF)
/* RX FIFO not empty */
#define SSP_SR_MASK_RNE SSP_MASK(SR, RNE)
/* RX FIFO full */
#define SSP_SR_MASK_RFF SSP_MASK(SR, RFF)
/* Busy Flag */
#define SSP_SR_MASK_BSY SSP_MASK(SR, BSY)

/*
 * Clock Prescale Register
 */
#define SSP_CPSR_CPSDVSR_MSB 7
#define SSP_CPSR_CPSDVSR_LSB 0
/* Clock prescale divider */
#define SSP_CPSR_MASK_CPSDVSR SSP_MASK(CPSR, CPSDVSR)

/*
 * Interrupt Mask Set/Clear Register
 */
#define SSP_IMSC_TXIM_MSB 3
#define SSP_IMSC_TXIM_LSB 3
#define SSP_IMSC_RXIM_MSB 2
#define SSP_IMSC_RXIM_LSB 2
#define SSP_IMSC_RTIM_MSB 1
#define SSP_IMSC_RTIM_LSB 1
#define SSP_IMSC_RORIM_MSB 0
#define SSP_IMSC_RORIM_LSB 0

/* Receive Overrun Interrupt mask */
#define SSP_IMSC_MASK_RORIM SSP_MASK(IMSC, RORIM)
/* Receive timeout Interrupt mask */
#define SSP_IMSC_MASK_RTIM SSP_MASK(IMSC, RTIM)
/* Receive FIFO Interrupt mask */
#define SSP_IMSC_MASK_RXIM SSP_MASK(IMSC, RXIM)
/* Transmit FIFO Interrupt mask */
#define SSP_IMSC_MASK_TXIM SSP_MASK(IMSC, TXIM)

/*
 * Raw Interrupt Status Register
 */
#define SSP_RIS_TXRIS_MSB 3
#define SSP_RIS_TXRIS_LSB 3
#define SSP_RIS_RXRIS_MSB 2
#define SSP_RIS_RXRIS_LSB 2
#define SSP_RIS_RTRIS_MSB 1
#define SSP_RIS_RTRIS_LSB 1
#define SSP_RIS_RORRIS_MSB 0
#define SSP_RIS_RORRIS_LSB 0

/* Receive Overrun Raw Interrupt status */
#define SSP_RIS_MASK_RORRIS SSP_MASK(RIS, RORRIS)
/* Receive Timeout Raw Interrupt status */
#define SSP_RIS_MASK_RTRIS SSP_MASK(RIS, RTRIS)
/* Receive FIFO Raw Interrupt status */
#define SSP_RIS_MASK_RXRIS SSP_MASK(RIS, RXRIS)
/* Transmit FIFO Raw Interrupt status */
#define SSP_RIS_MASK_TXRIS SSP_MASK(RIS, TXRIS)

/*
 * Masked Interrupt Status Register
 */
#define SSP_MIS_TXMIS_MSB 3
#define SSP_MIS_TXMIS_LSB 3
#define SSP_MIS_RXMIS_MSB 2
#define SSP_MIS_RXMIS_LSB 2
#define SSP_MIS_RTMIS_MSB 1
#define SSP_MIS_RTMIS_LSB 1
#define SSP_MIS_RORMIS_MSB 0
#define SSP_MIS_RORMIS_LSB 0

/* Receive Overrun Masked Interrupt status */
#define SSP_MIS_MASK_RORMIS SSP_MASK(MIS, RORMIS)
/* Receive Timeout Masked Interrupt status */
#define SSP_MIS_MASK_RTMIS SSP_MASK(MIS, RTMIS)
/* Receive FIFO Masked Interrupt status */
#define SSP_MIS_MASK_RXMIS SSP_MASK(MIS, RXMIS)
/* Transmit FIFO Masked Interrupt status */
#define SSP_MIS_MASK_TXMIS SSP_MASK(MIS, TXMIS)

/*
 * Interrupt Clear Register
 */
#define SSP_ICR_RTIC_MSB 1
#define SSP_ICR_RTIC_LSB 1
#define SSP_ICR_RORIC_MSB 0
#define SSP_ICR_RORIC_LSB 0

/* Receive Overrun Raw Clear Interrupt bit */
#define SSP_ICR_MASK_RORIC SSP_MASK(ICR, RORIC)
/* Receive Timeout Clear Interrupt bit */
#define SSP_ICR_MASK_RTIC SSP_MASK(ICR, RTIC)

/*
 * DMA Control Register
 */
#define SSP_DMACR_TXDMAE_MSB 1
#define SSP_DMACR_TXDMAE_LSB 1
#define SSP_DMACR_RXDMAE_MSB 0
#define SSP_DMACR_RXDMAE_LSB 0

/* Receive DMA Enable bit */
#define SSP_DMACR_MASK_RXDMAE SSP_MASK(DMACR, RXDMAE)
/* Transmit DMA Enable bit */
#define SSP_DMACR_MASK_TXDMAE SSP_MASK(DMACR, TXDMAE)

/* End register definitions */

/*
 * Clock Parameter ranges
 */
#define CPSDVR_MIN 0x02
#define CPSDVR_MAX 0xFE

#define SCR_MIN 0x00
#define SCR_MAX 0xFF

/* Fifo depth */
#define SSP_FIFO_DEPTH 8

/*
 * Register READ/WRITE macros
 */
#define SSP_READ_REG(reg) (*((volatile uint32_t *)reg))
#define SSP_WRITE_REG(reg, val) (*((volatile uint32_t *)reg) = val)
#define SSP_CLEAR_REG(reg, val) (*((volatile uint32_t *)reg) &= ~(val))

/*
 * Status check macros
 */
#define SSP_BUSY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_BSY)
#define SSP_RX_FIFO_NOT_EMPTY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_RNE)
#define SSP_TX_FIFO_EMPTY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_TFE)
#define SSP_TX_FIFO_NOT_FULL(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_TNF)

#if defined(CONFIG_SPI_PL022_DMA)
enum spi_pl022_dma_direction {
	TX = 0,
	RX,
	NUM_OF_DIRECTION
};

struct spi_pl022_dma_config {
	const struct device *dev;
	uint32_t channel;
	uint32_t channel_config;
	uint32_t slot;
};

struct spi_pl022_dma_data {
	struct dma_config config;
	struct dma_block_config block;
	uint32_t count;
	bool callbacked;
};
#endif

/*
 * Max frequency
 */
#define MAX_FREQ_CONTROLLER_MODE(pclk) ((pclk) / 2)
#define MAX_FREQ_PERIPHERAL_MODE(pclk) ((pclk) / 12)

struct spi_pl022_cfg {
	const uint32_t reg;
	const uint32_t pclk;
	const bool dma_enabled;
#if IS_ENABLED(CONFIG_CLOCK_CONTROL)
	const struct device *clk_dev;
	const clock_control_subsys_t clk_id;
#endif
#if IS_ENABLED(CONFIG_RESET)
	const struct reset_dt_spec reset;
#endif
#if defined(CONFIG_PINCTRL)
	const struct pinctrl_dev_config *pincfg;
#endif
#if defined(CONFIG_SPI_PL022_INTERRUPT)
	void (*irq_config)(const struct device *port);
#endif
#if defined(CONFIG_SPI_PL022_DMA)
	const struct spi_pl022_dma_config dma[NUM_OF_DIRECTION];
#endif
};

struct spi_pl022_data {
	struct spi_context ctx;
	uint32_t tx_count;
	uint32_t rx_count;
	struct k_spinlock lock;
#if defined(CONFIG_SPI_PL022_DMA)
	struct spi_pl022_dma_data dma[NUM_OF_DIRECTION];
#endif
};

#if defined(CONFIG_SPI_PL022_DMA)
static uint32_t dummy_tx;
static uint32_t dummy_rx;
#endif

/* Helper Functions */

static inline uint32_t spi_pl022_calc_prescale(const uint32_t pclk, const uint32_t baud)
{
	uint32_t prescale;

	/* prescale only can take even number */
	for (prescale = CPSDVR_MIN; prescale < CPSDVR_MAX; prescale += 2) {
		if (pclk < (prescale + 2) * CPSDVR_MAX * baud) {
			break;
		}
	}

	return prescale;
}

static inline uint32_t spi_pl022_calc_postdiv(const uint32_t pclk,
					      const uint32_t baud, const uint32_t prescale)
{
	uint32_t postdiv;

	for (postdiv = SCR_MAX + 1; postdiv > SCR_MIN + 1; --postdiv) {
		if (pclk / (prescale * (postdiv - 1)) > baud) {
			break;
		}
	}
	return postdiv - 1;
}

static int spi_pl022_configure(const struct device *dev,
			       const struct spi_config *spicfg)
{
	const struct spi_pl022_cfg *cfg = dev->config;
	struct spi_pl022_data *data = dev->data;
	const uint16_t op = spicfg->operation;
	uint32_t prescale;
	uint32_t postdiv;
	uint32_t pclk = 0;
	uint32_t cr0;
	uint32_t cr1;
	int ret;

	if (spi_context_configured(&data->ctx, spicfg)) {
		return 0;
	}

#if IS_ENABLED(CONFIG_CLOCK_CONTROL)
	ret = clock_control_get_rate(cfg->clk_dev, cfg->clk_id, &pclk);
	if (ret < 0 || pclk == 0) {
		return -EINVAL;
	}
#endif

	if (spicfg->frequency > MAX_FREQ_CONTROLLER_MODE(pclk)) {
		LOG_ERR("Frequency is up to %u in controller mode.",
			MAX_FREQ_CONTROLLER_MODE(pclk));
		return -ENOTSUP;
	}

	if (op & SPI_TRANSFER_LSB) {
		LOG_ERR("LSB-first not supported");
		return -ENOTSUP;
	}

	/* Half-duplex mode has not been implemented */
	if (op & SPI_HALF_DUPLEX) {
		LOG_ERR("Half-duplex not supported");
		return -ENOTSUP;
	}

	/* Peripheral mode has not been implemented */
	if (SPI_OP_MODE_GET(op) != SPI_OP_MODE_MASTER) {
		LOG_ERR("Peripheral mode is not supported");
		return -ENOTSUP;
	}

	/* Word sizes other than 8 bits has not been implemented */
	if (SPI_WORD_SIZE_GET(op) != 8) {
		LOG_ERR("Word sizes other than 8 bits are not supported");
		return -ENOTSUP;
	}

	/* configure registers */

	prescale = spi_pl022_calc_prescale(pclk, spicfg->frequency);
	postdiv = spi_pl022_calc_postdiv(pclk, spicfg->frequency, prescale);

	cr0 = 0;
	cr0 |= (postdiv << SSP_CR0_SCR_LSB);
	cr0 |= (SPI_WORD_SIZE_GET(op) - 1);
	cr0 |= (op & SPI_MODE_CPOL) ? SSP_CR0_MASK_SPO : 0;
	cr0 |= (op & SPI_MODE_CPHA) ? SSP_CR0_MASK_SPH : 0;

	cr1 = 0;
	cr1 |= SSP_CR1_MASK_SSE; /* Always enable SPI */
	cr1 |= (op & SPI_MODE_LOOP) ? SSP_CR1_MASK_LBM : 0;

	SSP_WRITE_REG(SSP_CPSR(cfg->reg), prescale);
	SSP_WRITE_REG(SSP_CR0(cfg->reg), cr0);
	SSP_WRITE_REG(SSP_CR1(cfg->reg), cr1);

#if defined(CONFIG_SPI_PL022_INTERRUPT)
	if (!cfg->dma_enabled) {
		SSP_WRITE_REG(SSP_IMSC(cfg->reg),
			      SSP_IMSC_MASK_RORIM | SSP_IMSC_MASK_RTIM | SSP_IMSC_MASK_RXIM);
	}
#endif

	data->ctx.config = spicfg;

	return 0;
}

static inline bool spi_pl022_transfer_ongoing(struct spi_pl022_data *data)
{
	return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx);
}

#if defined(CONFIG_SPI_PL022_DMA)
static void spi_pl022_dma_callback(const struct device *dma_dev, void *arg, uint32_t channel,
				   int status);

static size_t spi_pl022_dma_enabled_num(const struct device *dev)
{
	const struct spi_pl022_cfg *cfg = dev->config;

	return cfg->dma_enabled ? 2 : 0;
}

static uint32_t spi_pl022_dma_setup(const struct device *dev, const uint32_t dir)
{
	const struct spi_pl022_cfg *cfg = dev->config;
	struct spi_pl022_data *data = dev->data;
	struct dma_config *dma_cfg = &data->dma[dir].config;
	struct dma_block_config *block_cfg = &data->dma[dir].block;
	const struct spi_pl022_dma_config *dma = &cfg->dma[dir];
	int ret;

	memset(dma_cfg, 0, sizeof(struct dma_config));
	memset(block_cfg, 0, sizeof(struct dma_block_config));

	dma_cfg->source_burst_length = 1;
	dma_cfg->dest_burst_length = 1;
	dma_cfg->user_data = (void *)dev;
	dma_cfg->block_count = 1U;
	dma_cfg->head_block = block_cfg;
	dma_cfg->dma_slot = cfg->dma[dir].slot;
	dma_cfg->channel_direction = dir == TX ? MEMORY_TO_PERIPHERAL : PERIPHERAL_TO_MEMORY;

	if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
		dma_cfg->source_data_size = 1;
		dma_cfg->dest_data_size = 1;
	} else {
		dma_cfg->source_data_size = 2;
		dma_cfg->dest_data_size = 2;
	}

	block_cfg->block_size = spi_context_max_continuous_chunk(&data->ctx);

	if (dir == TX) {
		dma_cfg->dma_callback = spi_pl022_dma_callback;
		block_cfg->dest_address = SSP_DR(cfg->reg);
		block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
		if (spi_context_tx_buf_on(&data->ctx)) {
			block_cfg->source_address = (uint32_t)data->ctx.tx_buf;
			block_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
		} else {
			block_cfg->source_address = (uint32_t)&dummy_tx;
			block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
		}
	}

	if (dir == RX) {
		dma_cfg->dma_callback = spi_pl022_dma_callback;
		block_cfg->source_address = SSP_DR(cfg->reg);
		block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;

		if (spi_context_rx_buf_on(&data->ctx)) {
			block_cfg->dest_address = (uint32_t)data->ctx.rx_buf;
			block_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
		} else {
			block_cfg->dest_address = (uint32_t)&dummy_rx;
			block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
		}
	}

	ret = dma_config(dma->dev, dma->channel, dma_cfg);
	if (ret < 0) {
		LOG_ERR("dma_config %p failed %d\n", dma->dev, ret);
		return ret;
	}

	data->dma[dir].callbacked = false;

	ret = dma_start(dma->dev, dma->channel);
	if (ret < 0) {
		LOG_ERR("dma_start %p failed %d\n", dma->dev, ret);
		return ret;
	}

	return 0;
}

static int spi_pl022_start_dma_transceive(const struct device *dev)
{
	const struct spi_pl022_cfg *cfg = dev->config;
	int ret = 0;

	SSP_CLEAR_REG(SSP_DMACR(cfg->reg), SSP_DMACR_MASK_RXDMAE | SSP_DMACR_MASK_TXDMAE);

	for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
		ret = spi_pl022_dma_setup(dev, i);
		if (ret < 0) {
			goto on_error;
		}
	}

	SSP_WRITE_REG(SSP_DMACR(cfg->reg), SSP_DMACR_MASK_RXDMAE | SSP_DMACR_MASK_TXDMAE);

on_error:
	if (ret < 0) {
		for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
			dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
		}
	}
	return ret;
}

static bool spi_pl022_chunk_transfer_finished(const struct device *dev)
{
	struct spi_pl022_data *data = dev->data;
	struct spi_pl022_dma_data *dma = data->dma;
	const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);

	return (MIN(dma[TX].count, dma[RX].count) >= chunk_len);
}

static void spi_pl022_complete(const struct device *dev, int status)
{
	struct spi_pl022_data *data = dev->data;
	const struct spi_pl022_cfg *cfg = dev->config;

	for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
		dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
	}

	spi_context_complete(&data->ctx, dev, status);
}

static void spi_pl022_dma_callback(const struct device *dma_dev, void *arg, uint32_t channel,
				   int status)
{
	const struct device *dev = (const struct device *)arg;
	const struct spi_pl022_cfg *cfg = dev->config;
	struct spi_pl022_data *data = dev->data;
	bool complete = false;
	k_spinlock_key_t key;
	size_t chunk_len;
	int err = 0;

	if (status < 0) {
		key = k_spin_lock(&data->lock);

		LOG_ERR("dma:%p ch:%d callback gets error: %d", dma_dev, channel, status);
		spi_pl022_complete(dev, status);

		k_spin_unlock(&data->lock, key);
		return;
	}

	key = k_spin_lock(&data->lock);

	chunk_len = spi_context_max_continuous_chunk(&data->ctx);
	for (size_t i = 0; i < ARRAY_SIZE(cfg->dma); i++) {
		if (dma_dev == cfg->dma[i].dev && channel == cfg->dma[i].channel) {
			data->dma[i].count += chunk_len;
			data->dma[i].callbacked = true;
		}
	}
	/* Check transfer finished.
	 * The transmission of this chunk is complete if both the dma[TX].count
	 * and the dma[RX].count reach greater than or equal to the chunk_len.
	 * chunk_len is zero here means the transfer is already complete.
	 */
	if (spi_pl022_chunk_transfer_finished(dev)) {
		if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
			spi_context_update_tx(&data->ctx, 1, chunk_len);
			spi_context_update_rx(&data->ctx, 1, chunk_len);
		} else {
			spi_context_update_tx(&data->ctx, 2, chunk_len);
			spi_context_update_rx(&data->ctx, 2, chunk_len);
		}

		if (spi_pl022_transfer_ongoing(data)) {
			/* Next chunk is available, reset the count and
			 * continue processing
			 */
			data->dma[TX].count = 0;
			data->dma[RX].count = 0;
		} else {
			/* All data is processed, complete the process */
			complete = true;
		}
	}

	if (!complete && data->dma[TX].callbacked && data->dma[RX].callbacked) {
		err = spi_pl022_start_dma_transceive(dev);
		if (err) {
			complete = true;
		}
	}

	if (complete) {
		spi_pl022_complete(dev, err);
	}

	k_spin_unlock(&data->lock, key);
}

#endif /* DMA */

#if defined(CONFIG_SPI_PL022_INTERRUPT)

static void spi_pl022_async_xfer(const struct device *dev)
{
	const struct spi_pl022_cfg *cfg = dev->config;
	struct spi_pl022_data *data = dev->data;
	struct spi_context *ctx = &data->ctx;
	/* Process by per chunk */
	size_t chunk_len = spi_context_max_continuous_chunk(ctx);
	uint32_t txrx;

	/* Read RX FIFO */
	while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg) && (data->rx_count < chunk_len)) {
		txrx = SSP_READ_REG(SSP_DR(cfg->reg));

		/* Discard received data if rx buffer not assigned */
		if (ctx->rx_buf) {
			*(((uint8_t *)ctx->rx_buf) + data->rx_count) = (uint8_t)txrx;
		}
		data->rx_count++;
	}

	/* Check transfer finished.
	 * The transmission of this chunk is complete if both the tx_count
	 * and the rx_count reach greater than or equal to the chunk_len.
	 * chunk_len is zero here means the transfer is already complete.
	 */
	if (MIN(data->tx_count, data->rx_count) >= chunk_len && chunk_len > 0) {
		spi_context_update_tx(ctx, 1, chunk_len);
		spi_context_update_rx(ctx, 1, chunk_len);
		if (spi_pl022_transfer_ongoing(data)) {
			/* Next chunk is available, reset the count and continue processing */
			data->tx_count = 0;
			data->rx_count = 0;
			chunk_len = spi_context_max_continuous_chunk(ctx);
		} else {
			/* All data is processed, complete the process */
			spi_context_complete(ctx, dev, 0);
			return;
		}
	}

	/* Fill up TX FIFO */
	for (uint32_t i = 0; i < SSP_FIFO_DEPTH; i++) {
		if ((data->tx_count < chunk_len) && SSP_TX_FIFO_NOT_FULL(cfg->reg)) {
			/* Send 0 in the case of read only operation */
			txrx = 0;

			if (ctx->tx_buf) {
				txrx = *(((uint8_t *)ctx->tx_buf) + data->tx_count);
			}
			SSP_WRITE_REG(SSP_DR(cfg->reg), txrx);
			data->tx_count++;
		} else {
			break;
		}
	}
}

static void spi_pl022_start_async_xfer(const struct device *dev)
{
	const struct spi_pl022_cfg *cfg = dev->config;
	struct spi_pl022_data *data = dev->data;

	/* Ensure writable */
	while (!SSP_TX_FIFO_EMPTY(cfg->reg))
		;
	/* Drain RX FIFO */
	while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg))
		SSP_READ_REG(SSP_DR(cfg->reg));

	data->tx_count = 0;
	data->rx_count = 0;

	SSP_WRITE_REG(SSP_ICR(cfg->reg), SSP_ICR_MASK_RORIC | SSP_ICR_MASK_RTIC);

	spi_pl022_async_xfer(dev);
}

static void spi_pl022_isr(const struct device *dev)
{
	const struct spi_pl022_cfg *cfg = dev->config;
	struct spi_pl022_data *data = dev->data;
	struct spi_context *ctx = &data->ctx;
	uint32_t mis = SSP_READ_REG(SSP_MIS(cfg->reg));

	if (mis & SSP_MIS_MASK_RORMIS) {
		SSP_WRITE_REG(SSP_IMSC(cfg->reg), 0);
		spi_context_complete(ctx, dev, -EIO);
	} else {
		spi_pl022_async_xfer(dev);
	}

	SSP_WRITE_REG(SSP_ICR(cfg->reg), SSP_ICR_MASK_RORIC | SSP_ICR_MASK_RTIC);
}

#else

static void spi_pl022_xfer(const struct device *dev)
{
	const struct spi_pl022_cfg *cfg = dev->config;
	struct spi_pl022_data *data = dev->data;
	const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
	const void *txbuf = data->ctx.tx_buf;
	void *rxbuf = data->ctx.rx_buf;
	uint32_t txrx;
	size_t fifo_cnt = 0;

	data->tx_count = 0;
	data->rx_count = 0;

	/* Ensure writable */
	while (!SSP_TX_FIFO_EMPTY(cfg->reg))
		;
	/* Drain RX FIFO */
	while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg))
		SSP_READ_REG(SSP_DR(cfg->reg));

	while (data->rx_count < chunk_len || data->tx_count < chunk_len) {
		/* Fill up fifo with available TX data */
		while (SSP_TX_FIFO_NOT_FULL(cfg->reg) && data->tx_count < chunk_len &&
		       fifo_cnt < SSP_FIFO_DEPTH) {
			/* Send 0 in the case of read only operation */
			txrx = 0;

			if (txbuf) {
				txrx = ((uint8_t *)txbuf)[data->tx_count];
			}
			SSP_WRITE_REG(SSP_DR(cfg->reg), txrx);
			data->tx_count++;
			fifo_cnt++;
		}
		while (data->rx_count < chunk_len && fifo_cnt > 0) {
			if (!SSP_RX_FIFO_NOT_EMPTY(cfg->reg))
				continue;

			txrx = SSP_READ_REG(SSP_DR(cfg->reg));

			/* Discard received data if rx buffer not assigned */
			if (rxbuf) {
				((uint8_t *)rxbuf)[data->rx_count] = (uint8_t)txrx;
			}
			data->rx_count++;
			fifo_cnt--;
		}
	}
}

#endif

static int spi_pl022_transceive_impl(const struct device *dev,
				     const struct spi_config *config,
				     const struct spi_buf_set *tx_bufs,
				     const struct spi_buf_set *rx_bufs,
				     spi_callback_t cb,
				     void *userdata)
{
	const struct spi_pl022_cfg *cfg = dev->config;
	struct spi_pl022_data *data = dev->data;
	struct spi_context *ctx = &data->ctx;
	int ret;

	spi_context_lock(&data->ctx, (cb ? true : false), cb, userdata, config);

	ret = spi_pl022_configure(dev, config);
	if (ret < 0) {
		goto error;
	}

	spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);

	spi_context_cs_control(ctx, true);

	if (cfg->dma_enabled) {
#if defined(CONFIG_SPI_PL022_DMA)
		for (size_t i = 0; i < ARRAY_SIZE(data->dma); i++) {
			struct dma_status stat = {.busy = true};

			dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);

			while (stat.busy) {
				dma_get_status(cfg->dma[i].dev,
					       cfg->dma[i].channel, &stat);
			}

			data->dma[i].count = 0;
		}

		ret = spi_pl022_start_dma_transceive(dev);
		if (ret < 0) {
			spi_context_cs_control(ctx, false);
			goto error;
		}
		ret = spi_context_wait_for_completion(ctx);
#endif
	} else
#if defined(CONFIG_SPI_PL022_INTERRUPT)
	{
		spi_pl022_start_async_xfer(dev);
		ret = spi_context_wait_for_completion(ctx);
	}
#else
	{
		do {
			spi_pl022_xfer(dev);
			spi_context_update_tx(ctx, 1, data->tx_count);
			spi_context_update_rx(ctx, 1, data->rx_count);
		} while (spi_pl022_transfer_ongoing(data));

#if defined(CONFIG_SPI_ASYNC)
		spi_context_complete(&data->ctx, dev, ret);
#endif
	}
#endif

	spi_context_cs_control(ctx, false);

error:
	spi_context_release(&data->ctx, ret);

	return ret;
}

/* API Functions */

static int spi_pl022_transceive(const struct device *dev,
				const struct spi_config *config,
				const struct spi_buf_set *tx_bufs,
				const struct spi_buf_set *rx_bufs)
{
	return spi_pl022_transceive_impl(dev, config, tx_bufs, rx_bufs, NULL, NULL);
}

#if defined(CONFIG_SPI_ASYNC)

static int spi_pl022_transceive_async(const struct device *dev,
				      const struct spi_config *config,
				      const struct spi_buf_set *tx_bufs,
				      const struct spi_buf_set *rx_bufs,
				      spi_callback_t cb,
				      void *userdata)
{
	return spi_pl022_transceive_impl(dev, config, tx_bufs, rx_bufs, cb, userdata);
}

#endif

static int spi_pl022_release(const struct device *dev,
			     const struct spi_config *config)
{
	struct spi_pl022_data *data = dev->data;

	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

static const struct spi_driver_api spi_pl022_api = {
	.transceive = spi_pl022_transceive,
#if defined(CONFIG_SPI_ASYNC)
	.transceive_async = spi_pl022_transceive_async,
#endif
	.release = spi_pl022_release
};

static int spi_pl022_init(const struct device *dev)
{
	/* Initialize with lowest frequency */
	const struct spi_config spicfg = {
		.frequency = 0,
		.operation = SPI_WORD_SET(8),
		.slave = 0,
	};
	const struct spi_pl022_cfg *cfg = dev->config;
	struct spi_pl022_data *data = dev->data;
	int ret;

#if IS_ENABLED(CONFIG_CLOCK_CONTROL)
	if (cfg->clk_dev) {
		ret = clock_control_on(cfg->clk_dev, cfg->clk_id);
		if (ret < 0) {
			LOG_ERR("Failed to enable the clock");
			return ret;
		}
	}
#endif

#if IS_ENABLED(CONFIG_RESET)
	if (cfg->reset.dev) {
		ret = reset_line_toggle_dt(&cfg->reset);
		if (ret < 0) {
			return ret;
		}
	}
#endif

#if defined(CONFIG_PINCTRL)
	ret = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT);
	if (ret < 0) {
		LOG_ERR("Failed to apply pinctrl state");
		return ret;
	}
#endif

	if (cfg->dma_enabled) {
#if defined(CONFIG_SPI_PL022_DMA)
		for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
			uint32_t ch_filter = BIT(cfg->dma[i].channel);

			if (!device_is_ready(cfg->dma[i].dev)) {
				LOG_ERR("DMA %s not ready", cfg->dma[i].dev->name);
				return -ENODEV;
			}

			ret = dma_request_channel(cfg->dma[i].dev, &ch_filter);
			if (ret < 0) {
				LOG_ERR("dma_request_channel failed %d", ret);
				return ret;
			}
		}
#endif
	} else {
#if defined(CONFIG_SPI_PL022_INTERRUPT)
		cfg->irq_config(dev);
#endif
	}

	ret = spi_pl022_configure(dev, &spicfg);
	if (ret < 0) {
		LOG_ERR("Failed to configure spi");
		return ret;
	}

	ret = spi_context_cs_configure_all(&data->ctx);
	if (ret < 0) {
		LOG_ERR("Failed to spi_context configure");
		return ret;
	}

	/* Make sure the context is unlocked */
	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

#define DMA_INITIALIZER(idx, dir)                                                                  \
	{                                                                                          \
		.dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(idx, dir)),                         \
		.channel = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel),                           \
		.slot = DT_INST_DMAS_CELL_BY_NAME(idx, dir, slot),                                 \
		.channel_config = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel_config),             \
	}

#define DMAS_DECL(idx)                                                                             \
	{                                                                                          \
		COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, tx), (DMA_INITIALIZER(idx, tx)), ({0})),    \
		COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, rx), (DMA_INITIALIZER(idx, rx)), ({0})),    \
	}

#define DMAS_ENABLED(idx) (DT_INST_DMAS_HAS_NAME(idx, tx) && DT_INST_DMAS_HAS_NAME(idx, rx))

#define CLOCK_ID_DECL(idx)                                                                         \
	IF_ENABLED(DT_INST_NODE_HAS_PROP(0, clocks),                                               \
	(static const clock_control_subsys_t pl022_clk_id##idx =                                   \
		(clock_control_subsys_t)DT_INST_PHA_BY_IDX(idx, clocks, 0, clk_id);))              \

#define SPI_PL022_INIT(idx)                                                                        \
	IF_ENABLED(CONFIG_PINCTRL, (PINCTRL_DT_INST_DEFINE(idx);))                                 \
	IF_ENABLED(CONFIG_SPI_PL022_INTERRUPT,                                                     \
		   (static void spi_pl022_irq_config_##idx(const struct device *dev)               \
		    {                                                                              \
			   IRQ_CONNECT(DT_INST_IRQN(idx), DT_INST_IRQ(idx, priority),              \
				       spi_pl022_isr, DEVICE_DT_INST_GET(idx), 0);                 \
			   irq_enable(DT_INST_IRQN(idx));                                          \
		    }))                                                                            \
	IF_ENABLED(CONFIG_CLOCK_CONTROL, (CLOCK_ID_DECL(idx)))                                     \
	static struct spi_pl022_data spi_pl022_data_##idx = {                                      \
		SPI_CONTEXT_INIT_LOCK(spi_pl022_data_##idx, ctx),                                  \
		SPI_CONTEXT_INIT_SYNC(spi_pl022_data_##idx, ctx),                                  \
		SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(idx), ctx)};                           \
	static struct spi_pl022_cfg spi_pl022_cfg_##idx = {                                        \
		.reg = DT_INST_REG_ADDR(idx),                                                      \
		IF_ENABLED(CONFIG_CLOCK_CONTROL, (IF_ENABLED(DT_INST_NODE_HAS_PROP(0, clocks),     \
			(.clk_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)),                       \
			 .clk_id = pl022_clk_id##idx,))))                                          \
		IF_ENABLED(CONFIG_RESET, (IF_ENABLED(DT_INST_NODE_HAS_PROP(0, resets),             \
			   (.reset = RESET_DT_SPEC_INST_GET(idx),))))                              \
		IF_ENABLED(CONFIG_PINCTRL, (.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx),))       \
		IF_ENABLED(CONFIG_SPI_PL022_DMA, (.dma = DMAS_DECL(idx),)) COND_CODE_1(            \
				CONFIG_SPI_PL022_DMA, (.dma_enabled = DMAS_ENABLED(idx),),         \
				(.dma_enabled = false,))                                           \
		IF_ENABLED(CONFIG_SPI_PL022_INTERRUPT,                                             \
					   (.irq_config = spi_pl022_irq_config_##idx,))};          \
	DEVICE_DT_INST_DEFINE(idx, spi_pl022_init, NULL, &spi_pl022_data_##idx,                    \
			      &spi_pl022_cfg_##idx, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,         \
			      &spi_pl022_api);

DT_INST_FOREACH_STATUS_OKAY(SPI_PL022_INIT)