Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 | /*
* Copyright 2022 TOKITA Hiroshi <tokita.hiroshi@fujitsu.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT arm_pl022
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/sys/util.h>
#include <zephyr/spinlock.h>
#include <soc.h>
#if defined(CONFIG_PINCTRL)
#include <zephyr/drivers/pinctrl.h>
#endif
#if defined(CONFIG_SPI_PL022_DMA)
#include <zephyr/drivers/dma.h>
#endif
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(spi_pl022);
#include "spi_context.h"
#define SSP_MASK(regname, name) GENMASK(SSP_##regname##_##name##_MSB, SSP_##regname##_##name##_LSB)
/* PL022 Register definitions */
/*
* Macros to access SSP Registers with their offsets
*/
#define SSP_CR0(r) (r + 0x000)
#define SSP_CR1(r) (r + 0x004)
#define SSP_DR(r) (r + 0x008)
#define SSP_SR(r) (r + 0x00C)
#define SSP_CPSR(r) (r + 0x010)
#define SSP_IMSC(r) (r + 0x014)
#define SSP_RIS(r) (r + 0x018)
#define SSP_MIS(r) (r + 0x01C)
#define SSP_ICR(r) (r + 0x020)
#define SSP_DMACR(r) (r + 0x024)
/*
* Control Register 0
*/
#define SSP_CR0_SCR_MSB 15
#define SSP_CR0_SCR_LSB 8
#define SSP_CR0_SPH_MSB 7
#define SSP_CR0_SPH_LSB 7
#define SSP_CR0_SPO_MSB 6
#define SSP_CR0_SPO_LSB 6
#define SSP_CR0_FRF_MSB 5
#define SSP_CR0_FRF_LSB 4
#define SSP_CR0_DSS_MSB 3
#define SSP_CR0_DSS_LSB 0
/* Data size select */
#define SSP_CR0_MASK_DSS SSP_MASK(CR0, DSS)
/* Frame format */
#define SSP_CR0_MASK_FRF SSP_MASK(CR0, FRF)
/* Polarity */
#define SSP_CR0_MASK_SPO SSP_MASK(CR0, SPO)
/* Phase */
#define SSP_CR0_MASK_SPH SSP_MASK(CR0, SPH)
/* Serial Clock Rate */
#define SSP_CR0_MASK_SCR SSP_MASK(CR0, SCR)
/*
* Control Register 1
*/
#define SSP_CR1_SOD_MSB 3
#define SSP_CR1_SOD_LSB 3
#define SSP_CR1_MS_MSB 2
#define SSP_CR1_MS_LSB 2
#define SSP_CR1_SSE_MSB 1
#define SSP_CR1_SSE_LSB 1
#define SSP_CR1_LBM_MSB 0
#define SSP_CR1_LBM_LSB 0
/* Loopback Mode */
#define SSP_CR1_MASK_LBM SSP_MASK(CR1, LBM)
/* Port Enable */
#define SSP_CR1_MASK_SSE SSP_MASK(CR1, SSE)
/* Controller/Peripheral (Master/Slave) select */
#define SSP_CR1_MASK_MS SSP_MASK(CR1, MS)
/* Peripheral (Slave) mode output disabled */
#define SSP_CR1_MASK_SOD SSP_MASK(CR1, SOD)
/*
* Status Register
*/
#define SSP_SR_BSY_MSB 4
#define SSP_SR_BSY_LSB 4
#define SSP_SR_RFF_MSB 3
#define SSP_SR_RFF_LSB 3
#define SSP_SR_RNE_MSB 2
#define SSP_SR_RNE_LSB 2
#define SSP_SR_TNF_MSB 1
#define SSP_SR_TNF_LSB 1
#define SSP_SR_TFE_MSB 0
#define SSP_SR_TFE_LSB 0
/* TX FIFO empty */
#define SSP_SR_MASK_TFE SSP_MASK(SR, TFE)
/* TX FIFO not full */
#define SSP_SR_MASK_TNF SSP_MASK(SR, TNF)
/* RX FIFO not empty */
#define SSP_SR_MASK_RNE SSP_MASK(SR, RNE)
/* RX FIFO full */
#define SSP_SR_MASK_RFF SSP_MASK(SR, RFF)
/* Busy Flag */
#define SSP_SR_MASK_BSY SSP_MASK(SR, BSY)
/*
* Clock Prescale Register
*/
#define SSP_CPSR_CPSDVSR_MSB 7
#define SSP_CPSR_CPSDVSR_LSB 0
/* Clock prescale divider */
#define SSP_CPSR_MASK_CPSDVSR SSP_MASK(CPSR, CPSDVSR)
/*
* Interrupt Mask Set/Clear Register
*/
#define SSP_IMSC_TXIM_MSB 3
#define SSP_IMSC_TXIM_LSB 3
#define SSP_IMSC_RXIM_MSB 2
#define SSP_IMSC_RXIM_LSB 2
#define SSP_IMSC_RTIM_MSB 1
#define SSP_IMSC_RTIM_LSB 1
#define SSP_IMSC_RORIM_MSB 0
#define SSP_IMSC_RORIM_LSB 0
/* Receive Overrun Interrupt mask */
#define SSP_IMSC_MASK_RORIM SSP_MASK(IMSC, RORIM)
/* Receive timeout Interrupt mask */
#define SSP_IMSC_MASK_RTIM SSP_MASK(IMSC, RTIM)
/* Receive FIFO Interrupt mask */
#define SSP_IMSC_MASK_RXIM SSP_MASK(IMSC, RXIM)
/* Transmit FIFO Interrupt mask */
#define SSP_IMSC_MASK_TXIM SSP_MASK(IMSC, TXIM)
/*
* Raw Interrupt Status Register
*/
#define SSP_RIS_TXRIS_MSB 3
#define SSP_RIS_TXRIS_LSB 3
#define SSP_RIS_RXRIS_MSB 2
#define SSP_RIS_RXRIS_LSB 2
#define SSP_RIS_RTRIS_MSB 1
#define SSP_RIS_RTRIS_LSB 1
#define SSP_RIS_RORRIS_MSB 0
#define SSP_RIS_RORRIS_LSB 0
/* Receive Overrun Raw Interrupt status */
#define SSP_RIS_MASK_RORRIS SSP_MASK(RIS, RORRIS)
/* Receive Timeout Raw Interrupt status */
#define SSP_RIS_MASK_RTRIS SSP_MASK(RIS, RTRIS)
/* Receive FIFO Raw Interrupt status */
#define SSP_RIS_MASK_RXRIS SSP_MASK(RIS, RXRIS)
/* Transmit FIFO Raw Interrupt status */
#define SSP_RIS_MASK_TXRIS SSP_MASK(RIS, TXRIS)
/*
* Masked Interrupt Status Register
*/
#define SSP_MIS_TXMIS_MSB 3
#define SSP_MIS_TXMIS_LSB 3
#define SSP_MIS_RXMIS_MSB 2
#define SSP_MIS_RXMIS_LSB 2
#define SSP_MIS_RTMIS_MSB 1
#define SSP_MIS_RTMIS_LSB 1
#define SSP_MIS_RORMIS_MSB 0
#define SSP_MIS_RORMIS_LSB 0
/* Receive Overrun Masked Interrupt status */
#define SSP_MIS_MASK_RORMIS SSP_MASK(MIS, RORMIS)
/* Receive Timeout Masked Interrupt status */
#define SSP_MIS_MASK_RTMIS SSP_MASK(MIS, RTMIS)
/* Receive FIFO Masked Interrupt status */
#define SSP_MIS_MASK_RXMIS SSP_MASK(MIS, RXMIS)
/* Transmit FIFO Masked Interrupt status */
#define SSP_MIS_MASK_TXMIS SSP_MASK(MIS, TXMIS)
/*
* Interrupt Clear Register
*/
#define SSP_ICR_RTIC_MSB 1
#define SSP_ICR_RTIC_LSB 1
#define SSP_ICR_RORIC_MSB 0
#define SSP_ICR_RORIC_LSB 0
/* Receive Overrun Raw Clear Interrupt bit */
#define SSP_ICR_MASK_RORIC SSP_MASK(ICR, RORIC)
/* Receive Timeout Clear Interrupt bit */
#define SSP_ICR_MASK_RTIC SSP_MASK(ICR, RTIC)
/*
* DMA Control Register
*/
#define SSP_DMACR_TXDMAE_MSB 1
#define SSP_DMACR_TXDMAE_LSB 1
#define SSP_DMACR_RXDMAE_MSB 0
#define SSP_DMACR_RXDMAE_LSB 0
/* Receive DMA Enable bit */
#define SSP_DMACR_MASK_RXDMAE SSP_MASK(DMACR, RXDMAE)
/* Transmit DMA Enable bit */
#define SSP_DMACR_MASK_TXDMAE SSP_MASK(DMACR, TXDMAE)
/* End register definitions */
/*
* Clock Parameter ranges
*/
#define CPSDVR_MIN 0x02
#define CPSDVR_MAX 0xFE
#define SCR_MIN 0x00
#define SCR_MAX 0xFF
/* Fifo depth */
#define SSP_FIFO_DEPTH 8
/*
* Register READ/WRITE macros
*/
#define SSP_READ_REG(reg) (*((volatile uint32_t *)reg))
#define SSP_WRITE_REG(reg, val) (*((volatile uint32_t *)reg) = val)
#define SSP_CLEAR_REG(reg, val) (*((volatile uint32_t *)reg) &= ~(val))
/*
* Status check macros
*/
#define SSP_BUSY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_BSY)
#define SSP_RX_FIFO_NOT_EMPTY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_RNE)
#define SSP_TX_FIFO_EMPTY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_TFE)
#define SSP_TX_FIFO_NOT_FULL(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_TNF)
#if defined(CONFIG_SPI_PL022_DMA)
enum spi_pl022_dma_direction {
TX = 0,
RX,
NUM_OF_DIRECTION
};
struct spi_pl022_dma_config {
const struct device *dev;
uint32_t channel;
uint32_t channel_config;
uint32_t slot;
};
struct spi_pl022_dma_data {
struct dma_config config;
struct dma_block_config block;
uint32_t count;
bool callbacked;
};
#endif
/*
* Max frequency
*/
#define MAX_FREQ_CONTROLLER_MODE(pclk) ((pclk) / 2)
#define MAX_FREQ_PERIPHERAL_MODE(pclk) ((pclk) / 12)
struct spi_pl022_cfg {
const uint32_t reg;
const uint32_t pclk;
const bool dma_enabled;
#if IS_ENABLED(CONFIG_CLOCK_CONTROL)
const struct device *clk_dev;
const clock_control_subsys_t clk_id;
#endif
#if IS_ENABLED(CONFIG_RESET)
const struct reset_dt_spec reset;
#endif
#if defined(CONFIG_PINCTRL)
const struct pinctrl_dev_config *pincfg;
#endif
#if defined(CONFIG_SPI_PL022_INTERRUPT)
void (*irq_config)(const struct device *port);
#endif
#if defined(CONFIG_SPI_PL022_DMA)
const struct spi_pl022_dma_config dma[NUM_OF_DIRECTION];
#endif
};
struct spi_pl022_data {
struct spi_context ctx;
uint32_t tx_count;
uint32_t rx_count;
struct k_spinlock lock;
#if defined(CONFIG_SPI_PL022_DMA)
struct spi_pl022_dma_data dma[NUM_OF_DIRECTION];
#endif
};
#if defined(CONFIG_SPI_PL022_DMA)
static uint32_t dummy_tx;
static uint32_t dummy_rx;
#endif
/* Helper Functions */
static inline uint32_t spi_pl022_calc_prescale(const uint32_t pclk, const uint32_t baud)
{
uint32_t prescale;
/* prescale only can take even number */
for (prescale = CPSDVR_MIN; prescale < CPSDVR_MAX; prescale += 2) {
if (pclk < (prescale + 2) * CPSDVR_MAX * baud) {
break;
}
}
return prescale;
}
static inline uint32_t spi_pl022_calc_postdiv(const uint32_t pclk,
const uint32_t baud, const uint32_t prescale)
{
uint32_t postdiv;
for (postdiv = SCR_MAX + 1; postdiv > SCR_MIN + 1; --postdiv) {
if (pclk / (prescale * (postdiv - 1)) > baud) {
break;
}
}
return postdiv - 1;
}
static int spi_pl022_configure(const struct device *dev,
const struct spi_config *spicfg)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
const uint16_t op = spicfg->operation;
uint32_t prescale;
uint32_t postdiv;
uint32_t pclk = 0;
uint32_t cr0;
uint32_t cr1;
int ret;
if (spi_context_configured(&data->ctx, spicfg)) {
return 0;
}
#if IS_ENABLED(CONFIG_CLOCK_CONTROL)
ret = clock_control_get_rate(cfg->clk_dev, cfg->clk_id, &pclk);
if (ret < 0 || pclk == 0) {
return -EINVAL;
}
#endif
if (spicfg->frequency > MAX_FREQ_CONTROLLER_MODE(pclk)) {
LOG_ERR("Frequency is up to %u in controller mode.",
MAX_FREQ_CONTROLLER_MODE(pclk));
return -ENOTSUP;
}
if (op & SPI_TRANSFER_LSB) {
LOG_ERR("LSB-first not supported");
return -ENOTSUP;
}
/* Half-duplex mode has not been implemented */
if (op & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
/* Peripheral mode has not been implemented */
if (SPI_OP_MODE_GET(op) != SPI_OP_MODE_MASTER) {
LOG_ERR("Peripheral mode is not supported");
return -ENOTSUP;
}
/* Word sizes other than 8 bits has not been implemented */
if (SPI_WORD_SIZE_GET(op) != 8) {
LOG_ERR("Word sizes other than 8 bits are not supported");
return -ENOTSUP;
}
/* configure registers */
prescale = spi_pl022_calc_prescale(pclk, spicfg->frequency);
postdiv = spi_pl022_calc_postdiv(pclk, spicfg->frequency, prescale);
cr0 = 0;
cr0 |= (postdiv << SSP_CR0_SCR_LSB);
cr0 |= (SPI_WORD_SIZE_GET(op) - 1);
cr0 |= (op & SPI_MODE_CPOL) ? SSP_CR0_MASK_SPO : 0;
cr0 |= (op & SPI_MODE_CPHA) ? SSP_CR0_MASK_SPH : 0;
cr1 = 0;
cr1 |= SSP_CR1_MASK_SSE; /* Always enable SPI */
cr1 |= (op & SPI_MODE_LOOP) ? SSP_CR1_MASK_LBM : 0;
SSP_WRITE_REG(SSP_CPSR(cfg->reg), prescale);
SSP_WRITE_REG(SSP_CR0(cfg->reg), cr0);
SSP_WRITE_REG(SSP_CR1(cfg->reg), cr1);
#if defined(CONFIG_SPI_PL022_INTERRUPT)
if (!cfg->dma_enabled) {
SSP_WRITE_REG(SSP_IMSC(cfg->reg),
SSP_IMSC_MASK_RORIM | SSP_IMSC_MASK_RTIM | SSP_IMSC_MASK_RXIM);
}
#endif
data->ctx.config = spicfg;
return 0;
}
static inline bool spi_pl022_transfer_ongoing(struct spi_pl022_data *data)
{
return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx);
}
#if defined(CONFIG_SPI_PL022_DMA)
static void spi_pl022_dma_callback(const struct device *dma_dev, void *arg, uint32_t channel,
int status);
static size_t spi_pl022_dma_enabled_num(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
return cfg->dma_enabled ? 2 : 0;
}
static uint32_t spi_pl022_dma_setup(const struct device *dev, const uint32_t dir)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
struct dma_config *dma_cfg = &data->dma[dir].config;
struct dma_block_config *block_cfg = &data->dma[dir].block;
const struct spi_pl022_dma_config *dma = &cfg->dma[dir];
int ret;
memset(dma_cfg, 0, sizeof(struct dma_config));
memset(block_cfg, 0, sizeof(struct dma_block_config));
dma_cfg->source_burst_length = 1;
dma_cfg->dest_burst_length = 1;
dma_cfg->user_data = (void *)dev;
dma_cfg->block_count = 1U;
dma_cfg->head_block = block_cfg;
dma_cfg->dma_slot = cfg->dma[dir].slot;
dma_cfg->channel_direction = dir == TX ? MEMORY_TO_PERIPHERAL : PERIPHERAL_TO_MEMORY;
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
dma_cfg->source_data_size = 1;
dma_cfg->dest_data_size = 1;
} else {
dma_cfg->source_data_size = 2;
dma_cfg->dest_data_size = 2;
}
block_cfg->block_size = spi_context_max_continuous_chunk(&data->ctx);
if (dir == TX) {
dma_cfg->dma_callback = spi_pl022_dma_callback;
block_cfg->dest_address = SSP_DR(cfg->reg);
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
if (spi_context_tx_buf_on(&data->ctx)) {
block_cfg->source_address = (uint32_t)data->ctx.tx_buf;
block_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
block_cfg->source_address = (uint32_t)&dummy_tx;
block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
if (dir == RX) {
dma_cfg->dma_callback = spi_pl022_dma_callback;
block_cfg->source_address = SSP_DR(cfg->reg);
block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
if (spi_context_rx_buf_on(&data->ctx)) {
block_cfg->dest_address = (uint32_t)data->ctx.rx_buf;
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
block_cfg->dest_address = (uint32_t)&dummy_rx;
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
ret = dma_config(dma->dev, dma->channel, dma_cfg);
if (ret < 0) {
LOG_ERR("dma_config %p failed %d\n", dma->dev, ret);
return ret;
}
data->dma[dir].callbacked = false;
ret = dma_start(dma->dev, dma->channel);
if (ret < 0) {
LOG_ERR("dma_start %p failed %d\n", dma->dev, ret);
return ret;
}
return 0;
}
static int spi_pl022_start_dma_transceive(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
int ret = 0;
SSP_CLEAR_REG(SSP_DMACR(cfg->reg), SSP_DMACR_MASK_RXDMAE | SSP_DMACR_MASK_TXDMAE);
for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
ret = spi_pl022_dma_setup(dev, i);
if (ret < 0) {
goto on_error;
}
}
SSP_WRITE_REG(SSP_DMACR(cfg->reg), SSP_DMACR_MASK_RXDMAE | SSP_DMACR_MASK_TXDMAE);
on_error:
if (ret < 0) {
for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
}
}
return ret;
}
static bool spi_pl022_chunk_transfer_finished(const struct device *dev)
{
struct spi_pl022_data *data = dev->data;
struct spi_pl022_dma_data *dma = data->dma;
const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
return (MIN(dma[TX].count, dma[RX].count) >= chunk_len);
}
static void spi_pl022_complete(const struct device *dev, int status)
{
struct spi_pl022_data *data = dev->data;
const struct spi_pl022_cfg *cfg = dev->config;
for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
}
spi_context_complete(&data->ctx, dev, status);
}
static void spi_pl022_dma_callback(const struct device *dma_dev, void *arg, uint32_t channel,
int status)
{
const struct device *dev = (const struct device *)arg;
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
bool complete = false;
k_spinlock_key_t key;
size_t chunk_len;
int err = 0;
if (status < 0) {
key = k_spin_lock(&data->lock);
LOG_ERR("dma:%p ch:%d callback gets error: %d", dma_dev, channel, status);
spi_pl022_complete(dev, status);
k_spin_unlock(&data->lock, key);
return;
}
key = k_spin_lock(&data->lock);
chunk_len = spi_context_max_continuous_chunk(&data->ctx);
for (size_t i = 0; i < ARRAY_SIZE(cfg->dma); i++) {
if (dma_dev == cfg->dma[i].dev && channel == cfg->dma[i].channel) {
data->dma[i].count += chunk_len;
data->dma[i].callbacked = true;
}
}
/* Check transfer finished.
* The transmission of this chunk is complete if both the dma[TX].count
* and the dma[RX].count reach greater than or equal to the chunk_len.
* chunk_len is zero here means the transfer is already complete.
*/
if (spi_pl022_chunk_transfer_finished(dev)) {
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
spi_context_update_tx(&data->ctx, 1, chunk_len);
spi_context_update_rx(&data->ctx, 1, chunk_len);
} else {
spi_context_update_tx(&data->ctx, 2, chunk_len);
spi_context_update_rx(&data->ctx, 2, chunk_len);
}
if (spi_pl022_transfer_ongoing(data)) {
/* Next chunk is available, reset the count and
* continue processing
*/
data->dma[TX].count = 0;
data->dma[RX].count = 0;
} else {
/* All data is processed, complete the process */
complete = true;
}
}
if (!complete && data->dma[TX].callbacked && data->dma[RX].callbacked) {
err = spi_pl022_start_dma_transceive(dev);
if (err) {
complete = true;
}
}
if (complete) {
spi_pl022_complete(dev, err);
}
k_spin_unlock(&data->lock, key);
}
#endif /* DMA */
#if defined(CONFIG_SPI_PL022_INTERRUPT)
static void spi_pl022_async_xfer(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
/* Process by per chunk */
size_t chunk_len = spi_context_max_continuous_chunk(ctx);
uint32_t txrx;
/* Read RX FIFO */
while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg) && (data->rx_count < chunk_len)) {
txrx = SSP_READ_REG(SSP_DR(cfg->reg));
/* Discard received data if rx buffer not assigned */
if (ctx->rx_buf) {
*(((uint8_t *)ctx->rx_buf) + data->rx_count) = (uint8_t)txrx;
}
data->rx_count++;
}
/* Check transfer finished.
* The transmission of this chunk is complete if both the tx_count
* and the rx_count reach greater than or equal to the chunk_len.
* chunk_len is zero here means the transfer is already complete.
*/
if (MIN(data->tx_count, data->rx_count) >= chunk_len && chunk_len > 0) {
spi_context_update_tx(ctx, 1, chunk_len);
spi_context_update_rx(ctx, 1, chunk_len);
if (spi_pl022_transfer_ongoing(data)) {
/* Next chunk is available, reset the count and continue processing */
data->tx_count = 0;
data->rx_count = 0;
chunk_len = spi_context_max_continuous_chunk(ctx);
} else {
/* All data is processed, complete the process */
spi_context_complete(ctx, dev, 0);
return;
}
}
/* Fill up TX FIFO */
for (uint32_t i = 0; i < SSP_FIFO_DEPTH; i++) {
if ((data->tx_count < chunk_len) && SSP_TX_FIFO_NOT_FULL(cfg->reg)) {
/* Send 0 in the case of read only operation */
txrx = 0;
if (ctx->tx_buf) {
txrx = *(((uint8_t *)ctx->tx_buf) + data->tx_count);
}
SSP_WRITE_REG(SSP_DR(cfg->reg), txrx);
data->tx_count++;
} else {
break;
}
}
}
static void spi_pl022_start_async_xfer(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
/* Ensure writable */
while (!SSP_TX_FIFO_EMPTY(cfg->reg))
;
/* Drain RX FIFO */
while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg))
SSP_READ_REG(SSP_DR(cfg->reg));
data->tx_count = 0;
data->rx_count = 0;
SSP_WRITE_REG(SSP_ICR(cfg->reg), SSP_ICR_MASK_RORIC | SSP_ICR_MASK_RTIC);
spi_pl022_async_xfer(dev);
}
static void spi_pl022_isr(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
uint32_t mis = SSP_READ_REG(SSP_MIS(cfg->reg));
if (mis & SSP_MIS_MASK_RORMIS) {
SSP_WRITE_REG(SSP_IMSC(cfg->reg), 0);
spi_context_complete(ctx, dev, -EIO);
} else {
spi_pl022_async_xfer(dev);
}
SSP_WRITE_REG(SSP_ICR(cfg->reg), SSP_ICR_MASK_RORIC | SSP_ICR_MASK_RTIC);
}
#else
static void spi_pl022_xfer(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
const void *txbuf = data->ctx.tx_buf;
void *rxbuf = data->ctx.rx_buf;
uint32_t txrx;
size_t fifo_cnt = 0;
data->tx_count = 0;
data->rx_count = 0;
/* Ensure writable */
while (!SSP_TX_FIFO_EMPTY(cfg->reg))
;
/* Drain RX FIFO */
while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg))
SSP_READ_REG(SSP_DR(cfg->reg));
while (data->rx_count < chunk_len || data->tx_count < chunk_len) {
/* Fill up fifo with available TX data */
while (SSP_TX_FIFO_NOT_FULL(cfg->reg) && data->tx_count < chunk_len &&
fifo_cnt < SSP_FIFO_DEPTH) {
/* Send 0 in the case of read only operation */
txrx = 0;
if (txbuf) {
txrx = ((uint8_t *)txbuf)[data->tx_count];
}
SSP_WRITE_REG(SSP_DR(cfg->reg), txrx);
data->tx_count++;
fifo_cnt++;
}
while (data->rx_count < chunk_len && fifo_cnt > 0) {
if (!SSP_RX_FIFO_NOT_EMPTY(cfg->reg))
continue;
txrx = SSP_READ_REG(SSP_DR(cfg->reg));
/* Discard received data if rx buffer not assigned */
if (rxbuf) {
((uint8_t *)rxbuf)[data->rx_count] = (uint8_t)txrx;
}
data->rx_count++;
fifo_cnt--;
}
}
}
#endif
static int spi_pl022_transceive_impl(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
int ret;
spi_context_lock(&data->ctx, (cb ? true : false), cb, userdata, config);
ret = spi_pl022_configure(dev, config);
if (ret < 0) {
goto error;
}
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(ctx, true);
if (cfg->dma_enabled) {
#if defined(CONFIG_SPI_PL022_DMA)
for (size_t i = 0; i < ARRAY_SIZE(data->dma); i++) {
struct dma_status stat = {.busy = true};
dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
while (stat.busy) {
dma_get_status(cfg->dma[i].dev,
cfg->dma[i].channel, &stat);
}
data->dma[i].count = 0;
}
ret = spi_pl022_start_dma_transceive(dev);
if (ret < 0) {
spi_context_cs_control(ctx, false);
goto error;
}
ret = spi_context_wait_for_completion(ctx);
#endif
} else
#if defined(CONFIG_SPI_PL022_INTERRUPT)
{
spi_pl022_start_async_xfer(dev);
ret = spi_context_wait_for_completion(ctx);
}
#else
{
do {
spi_pl022_xfer(dev);
spi_context_update_tx(ctx, 1, data->tx_count);
spi_context_update_rx(ctx, 1, data->rx_count);
} while (spi_pl022_transfer_ongoing(data));
#if defined(CONFIG_SPI_ASYNC)
spi_context_complete(&data->ctx, dev, ret);
#endif
}
#endif
spi_context_cs_control(ctx, false);
error:
spi_context_release(&data->ctx, ret);
return ret;
}
/* API Functions */
static int spi_pl022_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return spi_pl022_transceive_impl(dev, config, tx_bufs, rx_bufs, NULL, NULL);
}
#if defined(CONFIG_SPI_ASYNC)
static int spi_pl022_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return spi_pl022_transceive_impl(dev, config, tx_bufs, rx_bufs, cb, userdata);
}
#endif
static int spi_pl022_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_pl022_data *data = dev->data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_pl022_api = {
.transceive = spi_pl022_transceive,
#if defined(CONFIG_SPI_ASYNC)
.transceive_async = spi_pl022_transceive_async,
#endif
.release = spi_pl022_release
};
static int spi_pl022_init(const struct device *dev)
{
/* Initialize with lowest frequency */
const struct spi_config spicfg = {
.frequency = 0,
.operation = SPI_WORD_SET(8),
.slave = 0,
};
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
int ret;
#if IS_ENABLED(CONFIG_CLOCK_CONTROL)
if (cfg->clk_dev) {
ret = clock_control_on(cfg->clk_dev, cfg->clk_id);
if (ret < 0) {
LOG_ERR("Failed to enable the clock");
return ret;
}
}
#endif
#if IS_ENABLED(CONFIG_RESET)
if (cfg->reset.dev) {
ret = reset_line_toggle_dt(&cfg->reset);
if (ret < 0) {
return ret;
}
}
#endif
#if defined(CONFIG_PINCTRL)
ret = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("Failed to apply pinctrl state");
return ret;
}
#endif
if (cfg->dma_enabled) {
#if defined(CONFIG_SPI_PL022_DMA)
for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
uint32_t ch_filter = BIT(cfg->dma[i].channel);
if (!device_is_ready(cfg->dma[i].dev)) {
LOG_ERR("DMA %s not ready", cfg->dma[i].dev->name);
return -ENODEV;
}
ret = dma_request_channel(cfg->dma[i].dev, &ch_filter);
if (ret < 0) {
LOG_ERR("dma_request_channel failed %d", ret);
return ret;
}
}
#endif
} else {
#if defined(CONFIG_SPI_PL022_INTERRUPT)
cfg->irq_config(dev);
#endif
}
ret = spi_pl022_configure(dev, &spicfg);
if (ret < 0) {
LOG_ERR("Failed to configure spi");
return ret;
}
ret = spi_context_cs_configure_all(&data->ctx);
if (ret < 0) {
LOG_ERR("Failed to spi_context configure");
return ret;
}
/* Make sure the context is unlocked */
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
#define DMA_INITIALIZER(idx, dir) \
{ \
.dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(idx, dir)), \
.channel = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel), \
.slot = DT_INST_DMAS_CELL_BY_NAME(idx, dir, slot), \
.channel_config = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel_config), \
}
#define DMAS_DECL(idx) \
{ \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, tx), (DMA_INITIALIZER(idx, tx)), ({0})), \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, rx), (DMA_INITIALIZER(idx, rx)), ({0})), \
}
#define DMAS_ENABLED(idx) (DT_INST_DMAS_HAS_NAME(idx, tx) && DT_INST_DMAS_HAS_NAME(idx, rx))
#define CLOCK_ID_DECL(idx) \
IF_ENABLED(DT_INST_NODE_HAS_PROP(0, clocks), \
(static const clock_control_subsys_t pl022_clk_id##idx = \
(clock_control_subsys_t)DT_INST_PHA_BY_IDX(idx, clocks, 0, clk_id);)) \
#define SPI_PL022_INIT(idx) \
IF_ENABLED(CONFIG_PINCTRL, (PINCTRL_DT_INST_DEFINE(idx);)) \
IF_ENABLED(CONFIG_SPI_PL022_INTERRUPT, \
(static void spi_pl022_irq_config_##idx(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(idx), DT_INST_IRQ(idx, priority), \
spi_pl022_isr, DEVICE_DT_INST_GET(idx), 0); \
irq_enable(DT_INST_IRQN(idx)); \
})) \
IF_ENABLED(CONFIG_CLOCK_CONTROL, (CLOCK_ID_DECL(idx))) \
static struct spi_pl022_data spi_pl022_data_##idx = { \
SPI_CONTEXT_INIT_LOCK(spi_pl022_data_##idx, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_pl022_data_##idx, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(idx), ctx)}; \
static struct spi_pl022_cfg spi_pl022_cfg_##idx = { \
.reg = DT_INST_REG_ADDR(idx), \
IF_ENABLED(CONFIG_CLOCK_CONTROL, (IF_ENABLED(DT_INST_NODE_HAS_PROP(0, clocks), \
(.clk_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \
.clk_id = pl022_clk_id##idx,)))) \
IF_ENABLED(CONFIG_RESET, (IF_ENABLED(DT_INST_NODE_HAS_PROP(0, resets), \
(.reset = RESET_DT_SPEC_INST_GET(idx),)))) \
IF_ENABLED(CONFIG_PINCTRL, (.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx),)) \
IF_ENABLED(CONFIG_SPI_PL022_DMA, (.dma = DMAS_DECL(idx),)) COND_CODE_1( \
CONFIG_SPI_PL022_DMA, (.dma_enabled = DMAS_ENABLED(idx),), \
(.dma_enabled = false,)) \
IF_ENABLED(CONFIG_SPI_PL022_INTERRUPT, \
(.irq_config = spi_pl022_irq_config_##idx,))}; \
DEVICE_DT_INST_DEFINE(idx, spi_pl022_init, NULL, &spi_pl022_data_##idx, \
&spi_pl022_cfg_##idx, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_pl022_api);
DT_INST_FOREACH_STATUS_OKAY(SPI_PL022_INIT)
|