Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 | /*
* Copyright (c) 2022 Cypress Semiconductor Corporation (an Infineon company) or
* an affiliate of Cypress Semiconductor Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief UART driver for Infineon CAT1 MCU family.
*
* Note:
* - Uart ASYNC functionality is not implemented in current
* version of Uart CAT1 driver.
*/
#define DT_DRV_COMPAT infineon_cat1_uart
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/pinctrl.h>
#include <cyhal_uart.h>
#include <cyhal_utils_impl.h>
#include <cyhal_scb_common.h>
/* Data structure */
struct ifx_cat1_uart_data {
cyhal_uart_t obj; /* UART CYHAL object */
struct uart_config cfg;
cyhal_resource_inst_t hw_resource;
cyhal_clock_t clock;
#if CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t irq_cb; /* Interrupt Callback */
void *irq_cb_data; /* Interrupt Callback Arg */
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
/* Device config structure */
struct ifx_cat1_uart_config {
const struct pinctrl_dev_config *pcfg;
CySCB_Type *reg_addr;
struct uart_config dt_cfg;
uint8_t irq_priority;
};
/* Default Counter configuration structure */
static const cy_stc_scb_uart_config_t _cyhal_uart_default_config = {
.uartMode = CY_SCB_UART_STANDARD,
.enableMutliProcessorMode = false,
.smartCardRetryOnNack = false,
.irdaInvertRx = false,
.irdaEnableLowPowerReceiver = false,
.oversample = 12,
.enableMsbFirst = false,
.dataWidth = 8UL,
.parity = CY_SCB_UART_PARITY_NONE,
.stopBits = CY_SCB_UART_STOP_BITS_1,
.enableInputFilter = false,
.breakWidth = 11UL,
.dropOnFrameError = false,
.dropOnParityError = false,
.receiverAddress = 0x0UL,
.receiverAddressMask = 0x0UL,
.acceptAddrInFifo = false,
.enableCts = false,
.ctsPolarity = CY_SCB_UART_ACTIVE_LOW,
#if defined(COMPONENT_CAT1A) || defined(COMPONENT_CAT1B)
.rtsRxFifoLevel = 20UL,
#elif defined(COMPONENT_CAT2)
.rtsRxFifoLevel = 3UL,
#endif
.rtsPolarity = CY_SCB_UART_ACTIVE_LOW,
/* Level triggers when at least one element is in FIFO */
.rxFifoTriggerLevel = 0UL,
.rxFifoIntEnableMask = 0x0UL,
/* Level triggers when half-fifo is half empty */
.txFifoTriggerLevel = (CY_SCB_FIFO_SIZE / 2 - 1),
.txFifoIntEnableMask = 0x0UL
};
/* Helper API */
static cyhal_uart_parity_t _convert_uart_parity_z_to_cyhal(enum uart_config_parity parity)
{
cyhal_uart_parity_t cyhal_parity;
switch (parity) {
case UART_CFG_PARITY_NONE:
cyhal_parity = CYHAL_UART_PARITY_NONE;
break;
case UART_CFG_PARITY_ODD:
cyhal_parity = CYHAL_UART_PARITY_ODD;
break;
case UART_CFG_PARITY_EVEN:
cyhal_parity = CYHAL_UART_PARITY_EVEN;
break;
default:
cyhal_parity = CYHAL_UART_PARITY_NONE;
}
return cyhal_parity;
}
static uint32_t _convert_uart_stop_bits_z_to_cyhal(enum uart_config_stop_bits stop_bits)
{
uint32_t cyhal_stop_bits;
switch (stop_bits) {
case UART_CFG_STOP_BITS_1:
cyhal_stop_bits = 1u;
break;
case UART_CFG_STOP_BITS_2:
cyhal_stop_bits = 2u;
break;
default:
cyhal_stop_bits = 1u;
}
return cyhal_stop_bits;
}
static uint32_t _convert_uart_data_bits_z_to_cyhal(enum uart_config_data_bits data_bits)
{
uint32_t cyhal_data_bits;
switch (data_bits) {
case UART_CFG_DATA_BITS_5:
cyhal_data_bits = 1u;
break;
case UART_CFG_DATA_BITS_6:
cyhal_data_bits = 6u;
break;
case UART_CFG_DATA_BITS_7:
cyhal_data_bits = 7u;
break;
case UART_CFG_DATA_BITS_8:
cyhal_data_bits = 8u;
break;
case UART_CFG_DATA_BITS_9:
cyhal_data_bits = 9u;
break;
default:
cyhal_data_bits = 1u;
}
return cyhal_data_bits;
}
static int32_t _get_hw_block_num(CySCB_Type *reg_addr)
{
uint32_t i;
for (i = 0u; i < _SCB_ARRAY_SIZE; i++) {
if (_CYHAL_SCB_BASE_ADDRESSES[i] == reg_addr) {
return i;
}
}
return -1;
}
static int ifx_cat1_uart_poll_in(const struct device *dev, unsigned char *c)
{
cy_rslt_t rec;
struct ifx_cat1_uart_data *data = dev->data;
rec = cyhal_uart_getc(&data->obj, c, 0u);
return ((rec == CY_SCB_UART_RX_NO_DATA) ? -1 : 0);
}
static void ifx_cat1_uart_poll_out(const struct device *dev, unsigned char c)
{
struct ifx_cat1_uart_data *data = dev->data;
(void) cyhal_uart_putc(&data->obj, (uint32_t)c);
}
static int ifx_cat1_uart_err_check(const struct device *dev)
{
struct ifx_cat1_uart_data *data = dev->data;
uint32_t status = Cy_SCB_UART_GetRxFifoStatus(data->obj.base);
int errors = 0;
if (status & CY_SCB_UART_RX_OVERFLOW) {
errors |= UART_ERROR_OVERRUN;
}
if (status & CY_SCB_UART_RX_ERR_PARITY) {
errors |= UART_ERROR_PARITY;
}
if (status & CY_SCB_UART_RX_ERR_FRAME) {
errors |= UART_ERROR_FRAMING;
}
return errors;
}
static int ifx_cat1_uart_configure(const struct device *dev,
const struct uart_config *cfg)
{
__ASSERT_NO_MSG(cfg != NULL);
cy_rslt_t result;
struct ifx_cat1_uart_data *data = dev->data;
cyhal_uart_cfg_t uart_cfg = {
.data_bits = _convert_uart_data_bits_z_to_cyhal(cfg->data_bits),
.stop_bits = _convert_uart_stop_bits_z_to_cyhal(cfg->stop_bits),
.parity = _convert_uart_parity_z_to_cyhal(cfg->parity)
};
/* Store Uart Zephyr configuration (uart config) into data structure */
data->cfg = *cfg;
/* Configure parity, data and stop bits */
result = cyhal_uart_configure(&data->obj, &uart_cfg);
/* Configure the baud rate */
if (result == CY_RSLT_SUCCESS) {
result = cyhal_uart_set_baud(&data->obj, cfg->baudrate, NULL);
}
/* Enable RTS/CTS flow control */
if ((result == CY_RSLT_SUCCESS) && cfg->flow_ctrl) {
result = cyhal_uart_enable_flow_control(&data->obj, true, true);
}
return (result == CY_RSLT_SUCCESS) ? 0 : -ENOTSUP;
};
static int ifx_cat1_uart_config_get(const struct device *dev,
struct uart_config *cfg)
{
ARG_UNUSED(dev);
struct ifx_cat1_uart_data *const data = dev->data;
if (cfg == NULL) {
return -EINVAL;
}
*cfg = data->cfg;
return 0;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
/* Uart event callback for Interrupt driven mode */
static void _uart_event_callback_irq_mode(void *arg, cyhal_uart_event_t event)
{
ARG_UNUSED(event);
const struct device *dev = (const struct device *) arg;
struct ifx_cat1_uart_data *const data = dev->data;
if (data->irq_cb != NULL) {
data->irq_cb(dev, data->irq_cb_data);
}
}
/* Fill FIFO with data */
static int ifx_cat1_uart_fifo_fill(const struct device *dev,
const uint8_t *tx_data, int size)
{
struct ifx_cat1_uart_data *const data = dev->data;
size_t _size = (size_t) size;
(void)cyhal_uart_write(&data->obj, (uint8_t *) tx_data, &_size);
return (int) _size;
}
/* Read data from FIFO */
static int ifx_cat1_uart_fifo_read(const struct device *dev,
uint8_t *rx_data, const int size)
{
struct ifx_cat1_uart_data *const data = dev->data;
size_t _size = (size_t) size;
(void)cyhal_uart_read(&data->obj, rx_data, &_size);
return (int) _size;
}
/* Enable TX interrupt */
static void ifx_cat1_uart_irq_tx_enable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(&data->obj,
(cyhal_uart_event_t) CYHAL_UART_IRQ_TX_EMPTY,
config->irq_priority, 1);
}
/* Disable TX interrupt */
static void ifx_cat1_uart_irq_tx_disable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(&data->obj,
(cyhal_uart_event_t) CYHAL_UART_IRQ_TX_EMPTY,
config->irq_priority, 0);
}
/* Check if UART TX buffer can accept a new char */
static int ifx_cat1_uart_irq_tx_ready(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
uint32_t mask = Cy_SCB_GetTxInterruptStatusMasked(data->obj.base);
return (((mask & (CY_SCB_UART_TX_NOT_FULL | SCB_INTR_TX_EMPTY_Msk)) != 0u) ? 1 : 0);
}
/* Check if UART TX block finished transmission */
static int ifx_cat1_uart_irq_tx_complete(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
return (int) !(cyhal_uart_is_tx_active(&data->obj));
}
/* Enable RX interrupt */
static void ifx_cat1_uart_irq_rx_enable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(&data->obj,
(cyhal_uart_event_t) CYHAL_UART_IRQ_RX_NOT_EMPTY,
config->irq_priority, 1);
}
/* Disable TX interrupt */
static void ifx_cat1_uart_irq_rx_disable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(&data->obj,
(cyhal_uart_event_t) CYHAL_UART_IRQ_RX_NOT_EMPTY,
config->irq_priority, 0);
}
/* Check if UART RX buffer has a received char */
static int ifx_cat1_uart_irq_rx_ready(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
return cyhal_uart_readable(&data->obj) ? 1 : 0;
}
/* Enable Error interrupts */
static void ifx_cat1_uart_irq_err_enable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(&data->obj, (cyhal_uart_event_t)
(CYHAL_UART_IRQ_TX_ERROR | CYHAL_UART_IRQ_RX_ERROR),
config->irq_priority, 1);
}
/* Disable Error interrupts */
static void ifx_cat1_uart_irq_err_disable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(&data->obj, (cyhal_uart_event_t)
(CYHAL_UART_IRQ_TX_ERROR | CYHAL_UART_IRQ_RX_ERROR),
config->irq_priority, 0);
}
/* Check if any IRQs is pending */
static int ifx_cat1_uart_irq_is_pending(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
uint32_t intcause = Cy_SCB_GetInterruptCause(data->obj.base);
return (int) (intcause & (CY_SCB_TX_INTR | CY_SCB_RX_INTR));
}
/* Start processing interrupts in ISR.
* This function should be called the first thing in the ISR. Calling
* uart_irq_rx_ready(), uart_irq_tx_ready(), uart_irq_tx_complete()
* allowed only after this.
*/
static int ifx_cat1_uart_irq_update(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
int status = 1;
if (((ifx_cat1_uart_irq_is_pending(dev) & CY_SCB_RX_INTR) != 0u) &&
(Cy_SCB_UART_GetNumInRxFifo(data->obj.base) == 0u)) {
status = 0;
}
return status;
}
static void ifx_cat1_uart_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct ifx_cat1_uart_data *data = dev->data;
cyhal_uart_t *uart_obj = &data->obj;
/* Store user callback info */
data->irq_cb = cb;
data->irq_cb_data = cb_data;
/* Register a uart general callback handler */
cyhal_uart_register_callback(uart_obj, _uart_event_callback_irq_mode, (void *) dev);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static int ifx_cat1_uart_init(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cy_rslt_t result;
int ret;
cyhal_uart_configurator_t uart_init_cfg = {
.resource = &data->hw_resource,
.config = &_cyhal_uart_default_config,
.clock = &data->clock,
};
/* Dedicate SCB HW resource */
data->hw_resource.type = CYHAL_RSC_SCB;
data->hw_resource.block_num = _get_hw_block_num(config->reg_addr);
/* Configure dt provided device signals when available */
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
/* Allocates clock for selected IP block */
result = _cyhal_utils_allocate_clock(&data->clock, &data->hw_resource,
CYHAL_CLOCK_BLOCK_PERIPHERAL_16BIT, true);
if (result != CY_RSLT_SUCCESS) {
return -ENOTSUP;
}
/* Assigns a programmable divider to a selected IP block */
en_clk_dst_t clk_idx = _cyhal_scb_get_clock_index(uart_init_cfg.resource->block_num);
result = _cyhal_utils_peri_pclk_assign_divider(clk_idx, uart_init_cfg.clock);
if (result != CY_RSLT_SUCCESS) {
return -ENOTSUP;
}
/* Initialize the UART peripheral */
result = cyhal_uart_init_cfg(&data->obj, &uart_init_cfg);
if (result != CY_RSLT_SUCCESS) {
return -ENOTSUP;
}
/* Perform initial Uart configuration */
data->obj.is_clock_owned = true;
ret = ifx_cat1_uart_configure(dev, &config->dt_cfg);
return ret;
}
static const struct uart_driver_api ifx_cat1_uart_driver_api = {
.poll_in = ifx_cat1_uart_poll_in,
.poll_out = ifx_cat1_uart_poll_out,
.err_check = ifx_cat1_uart_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = ifx_cat1_uart_configure,
.config_get = ifx_cat1_uart_config_get,
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = ifx_cat1_uart_fifo_fill,
.fifo_read = ifx_cat1_uart_fifo_read,
.irq_tx_enable = ifx_cat1_uart_irq_tx_enable,
.irq_tx_disable = ifx_cat1_uart_irq_tx_disable,
.irq_tx_ready = ifx_cat1_uart_irq_tx_ready,
.irq_rx_enable = ifx_cat1_uart_irq_rx_enable,
.irq_rx_disable = ifx_cat1_uart_irq_rx_disable,
.irq_tx_complete = ifx_cat1_uart_irq_tx_complete,
.irq_rx_ready = ifx_cat1_uart_irq_rx_ready,
.irq_err_enable = ifx_cat1_uart_irq_err_enable,
.irq_err_disable = ifx_cat1_uart_irq_err_disable,
.irq_is_pending = ifx_cat1_uart_irq_is_pending,
.irq_update = ifx_cat1_uart_irq_update,
.irq_callback_set = ifx_cat1_uart_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
#define INFINEON_CAT1_UART_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
static struct ifx_cat1_uart_data ifx_cat1_uart##n##_data; \
\
static struct ifx_cat1_uart_config ifx_cat1_uart##n##_cfg = { \
.dt_cfg.baudrate = DT_INST_PROP(n, current_speed), \
.dt_cfg.parity = DT_INST_ENUM_IDX_OR(n, parity, UART_CFG_PARITY_NONE), \
.dt_cfg.stop_bits = DT_INST_ENUM_IDX_OR(n, stop_bits, UART_CFG_STOP_BITS_1), \
.dt_cfg.data_bits = DT_INST_ENUM_IDX_OR(n, data_bits, UART_CFG_DATA_BITS_8), \
.dt_cfg.flow_ctrl = DT_INST_PROP(n, hw_flow_control), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.reg_addr = (CySCB_Type *)DT_INST_REG_ADDR(n), \
.irq_priority = DT_INST_IRQ(n, priority) \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
&ifx_cat1_uart_init, NULL, \
&ifx_cat1_uart##n##_data, \
&ifx_cat1_uart##n##_cfg, PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&ifx_cat1_uart_driver_api);
DT_INST_FOREACH_STATUS_OKAY(INFINEON_CAT1_UART_INIT)
|