Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/*
 * Copyright (c) 2017, NXP
 * Copyright (c) 2020-2021 Vestas Wind Systems A/S
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT nxp_kinetis_ftm_pwm

#include <zephyr/drivers/clock_control.h>
#include <errno.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/irq.h>
#include <soc.h>
#include <fsl_ftm.h>
#include <fsl_clock.h>
#include <zephyr/drivers/pinctrl.h>

#include <zephyr/logging/log.h>

LOG_MODULE_REGISTER(pwm_mcux_ftm, CONFIG_PWM_LOG_LEVEL);

#define MAX_CHANNELS ARRAY_SIZE(FTM0->CONTROLS)

/* PWM capture operates on channel pairs */
#define MAX_CAPTURE_PAIRS (MAX_CHANNELS / 2U)
#define PAIR_1ST_CH(pair) (pair * 2U)
#define PAIR_2ND_CH(pair) (PAIR_1ST_CH(pair) + 1)

struct mcux_ftm_config {
	FTM_Type *base;
	const struct device *clock_dev;
	clock_control_subsys_t clock_subsys;
	ftm_clock_source_t ftm_clock_source;
	ftm_clock_prescale_t prescale;
	uint8_t channel_count;
	ftm_pwm_mode_t mode;
#ifdef CONFIG_PWM_CAPTURE
	void (*irq_config_func)(const struct device *dev);
#endif /* CONFIG_PWM_CAPTURE */
	const struct pinctrl_dev_config *pincfg;
};

struct mcux_ftm_capture_data {
	ftm_dual_edge_capture_param_t param;
	pwm_capture_callback_handler_t callback;
	void *user_data;
	uint32_t first_edge_overflows;
	uint16_t first_edge_cnt;
	bool first_edge_overflow;
	bool pulse_capture;
};

struct mcux_ftm_data {
	uint32_t clock_freq;
	uint32_t period_cycles;
	ftm_chnl_pwm_config_param_t channel[MAX_CHANNELS];
#ifdef CONFIG_PWM_CAPTURE
	uint32_t overflows;
	struct mcux_ftm_capture_data capture[MAX_CAPTURE_PAIRS];
#endif /* CONFIG_PWM_CAPTURE */
};

static int mcux_ftm_set_cycles(const struct device *dev, uint32_t channel,
			       uint32_t period_cycles, uint32_t pulse_cycles,
			       pwm_flags_t flags)
{
	const struct mcux_ftm_config *config = dev->config;
	struct mcux_ftm_data *data = dev->data;
	status_t status;
#ifdef CONFIG_PWM_CAPTURE
	uint32_t pair = channel / 2U;
	uint32_t irqs;
#endif /* CONFIG_PWM_CAPTURE */

	if (period_cycles == 0U) {
		LOG_ERR("Channel can not be set to inactive level");
		return -ENOTSUP;
	}

	if (period_cycles > UINT16_MAX) {
		LOG_ERR("Period cycles must be less or equal than %u", UINT16_MAX);
		return -EINVAL;
	}

	if (channel >= config->channel_count) {
		LOG_ERR("Invalid channel");
		return -ENOTSUP;
	}

#ifdef CONFIG_PWM_CAPTURE
	irqs = FTM_GetEnabledInterrupts(config->base);
	if (irqs & BIT(PAIR_2ND_CH(pair))) {
		LOG_ERR("Cannot set PWM, capture in progress on pair %d", pair);
		return -EBUSY;
	}
#endif /* CONFIG_PWM_CAPTURE */

	data->channel[channel].dutyValue = pulse_cycles;

	if ((flags & PWM_POLARITY_INVERTED) == 0) {
		data->channel[channel].level = kFTM_HighTrue;
	} else {
		data->channel[channel].level = kFTM_LowTrue;
	}

	LOG_DBG("pulse_cycles=%d, period_cycles=%d, flags=%d",
		pulse_cycles, period_cycles, flags);

	if (period_cycles != data->period_cycles) {
#ifdef CONFIG_PWM_CAPTURE
		if (irqs & BIT_MASK(ARRAY_SIZE(data->channel))) {
			LOG_ERR("Cannot change period, capture in progress");
			return -EBUSY;
		}
#endif /* CONFIG_PWM_CAPTURE */

		if (data->period_cycles != 0) {
			/* Only warn when not changing from zero */
			LOG_WRN("Changing period cycles from %d to %d"
				" affects all %d channels in %s",
				data->period_cycles, period_cycles,
				config->channel_count, dev->name);
		}

		data->period_cycles = period_cycles;

		FTM_StopTimer(config->base);
		FTM_SetTimerPeriod(config->base, period_cycles);

		FTM_SetSoftwareTrigger(config->base, true);
		FTM_StartTimer(config->base, config->ftm_clock_source);
	}

	status = FTM_SetupPwmMode(config->base, data->channel,
				  config->channel_count, config->mode);
	if (status != kStatus_Success) {
		LOG_ERR("Could not set up pwm");
		return -ENOTSUP;
	}
	FTM_SetSoftwareTrigger(config->base, true);

	return 0;
}

#ifdef CONFIG_PWM_CAPTURE
static int mcux_ftm_configure_capture(const struct device *dev,
				      uint32_t channel, pwm_flags_t flags,
				      pwm_capture_callback_handler_t cb,
				      void *user_data)
{
	const struct mcux_ftm_config *config = dev->config;
	struct mcux_ftm_data *data = dev->data;
	ftm_dual_edge_capture_param_t *param;
	uint32_t pair = channel / 2U;

	if (channel & 0x1U) {
		LOG_ERR("PWM capture only supported on even channels");
		return -ENOTSUP;
	}

	if (pair >= ARRAY_SIZE(data->capture)) {
		LOG_ERR("Invalid channel pair %d", pair);
		return -EINVAL;
	}

	if (FTM_GetEnabledInterrupts(config->base) & BIT(PAIR_2ND_CH(pair))) {
		LOG_ERR("Capture already active on channel pair %d", pair);
		return -EBUSY;
	}

	if (!(flags & PWM_CAPTURE_TYPE_MASK)) {
		LOG_ERR("No capture type specified");
		return -EINVAL;
	}

	if ((flags & PWM_CAPTURE_TYPE_MASK) == PWM_CAPTURE_TYPE_BOTH) {
		LOG_ERR("Cannot capture both period and pulse width");
		return -ENOTSUP;
	}

	data->capture[pair].callback = cb;
	data->capture[pair].user_data = user_data;
	param = &data->capture[pair].param;

	if ((flags & PWM_CAPTURE_MODE_MASK) == PWM_CAPTURE_MODE_CONTINUOUS) {
		param->mode = kFTM_Continuous;
	} else {
		param->mode = kFTM_OneShot;
	}

	if (flags & PWM_CAPTURE_TYPE_PERIOD) {
		data->capture[pair].pulse_capture = false;

		if (flags & PWM_POLARITY_INVERTED) {
			param->currChanEdgeMode = kFTM_FallingEdge;
			param->nextChanEdgeMode = kFTM_FallingEdge;
		} else {
			param->currChanEdgeMode = kFTM_RisingEdge;
			param->nextChanEdgeMode = kFTM_RisingEdge;
		}
	} else {
		data->capture[pair].pulse_capture = true;

		if (flags & PWM_POLARITY_INVERTED) {
			param->currChanEdgeMode = kFTM_FallingEdge;
			param->nextChanEdgeMode = kFTM_RisingEdge;
		} else {
			param->currChanEdgeMode = kFTM_RisingEdge;
			param->nextChanEdgeMode = kFTM_FallingEdge;
		}
	}

	return 0;
}

static int mcux_ftm_enable_capture(const struct device *dev, uint32_t channel)
{
	const struct mcux_ftm_config *config = dev->config;
	struct mcux_ftm_data *data = dev->data;
	uint32_t pair = channel / 2U;

	if (channel & 0x1U) {
		LOG_ERR("PWM capture only supported on even channels");
		return -ENOTSUP;
	}

	if (pair >= ARRAY_SIZE(data->capture)) {
		LOG_ERR("Invalid channel pair %d", pair);
		return -EINVAL;
	}

	if (!data->capture[pair].callback) {
		LOG_ERR("PWM capture not configured");
		return -EINVAL;
	}

	if (FTM_GetEnabledInterrupts(config->base) & BIT(PAIR_2ND_CH(pair))) {
		LOG_ERR("Capture already active on channel pair %d", pair);
		return -EBUSY;
	}

	FTM_ClearStatusFlags(config->base, BIT(PAIR_1ST_CH(pair)) |
			     BIT(PAIR_2ND_CH(pair)));

	FTM_SetupDualEdgeCapture(config->base, pair, &data->capture[pair].param,
				 CONFIG_PWM_CAPTURE_MCUX_FTM_FILTER_VALUE);

	FTM_EnableInterrupts(config->base, BIT(PAIR_1ST_CH(pair)) |
			     BIT(PAIR_2ND_CH(pair)));

	return 0;
}

static int mcux_ftm_disable_capture(const struct device *dev, uint32_t channel)
{
	const struct mcux_ftm_config *config = dev->config;
	struct mcux_ftm_data *data = dev->data;
	uint32_t pair = channel / 2U;

	if (channel & 0x1U) {
		LOG_ERR("PWM capture only supported on even channels");
		return -ENOTSUP;
	}

	if (pair >= ARRAY_SIZE(data->capture)) {
		LOG_ERR("Invalid channel pair %d", pair);
		return -EINVAL;
	}

	FTM_DisableInterrupts(config->base, BIT(PAIR_1ST_CH(pair)) |
			      BIT(PAIR_2ND_CH(pair)));

	/* Clear Dual Edge Capture Enable bit */
	config->base->COMBINE &= ~(1UL << (FTM_COMBINE_DECAP0_SHIFT +
		(FTM_COMBINE_COMBINE1_SHIFT * pair)));

	return 0;
}

static void mcux_ftm_capture_first_edge(const struct device *dev, uint32_t channel,
					uint16_t cnt, bool overflow)
{
	const struct mcux_ftm_config *config = dev->config;
	struct mcux_ftm_data *data = dev->data;
	struct mcux_ftm_capture_data *capture;
	uint32_t pair = channel / 2U;

	__ASSERT_NO_MSG(pair < ARRAY_SIZE(data->capture));
	capture = &data->capture[pair];

	FTM_DisableInterrupts(config->base, BIT(PAIR_1ST_CH(pair)));

	capture->first_edge_cnt = cnt;
	capture->first_edge_overflows = data->overflows;
	capture->first_edge_overflow = overflow;

	LOG_DBG("pair = %d, 1st cnt = %u, 1st ovf = %d", pair, cnt, overflow);
}

static void mcux_ftm_capture_second_edge(const struct device *dev, uint32_t channel,
					 uint16_t cnt, bool overflow)

{
	const struct mcux_ftm_config *config = dev->config;
	struct mcux_ftm_data *data = dev->data;
	uint32_t second_edge_overflows = data->overflows;
	struct mcux_ftm_capture_data *capture;
	uint32_t pair = channel / 2U;
	uint32_t overflows;
	uint32_t first_cnv;
	uint32_t second_cnv;
	uint32_t cycles = 0;
	int status = 0;

	__ASSERT_NO_MSG(pair < ARRAY_SIZE(data->capture));
	capture = &data->capture[pair];

	first_cnv = config->base->CONTROLS[PAIR_1ST_CH(pair)].CnV;
	second_cnv = config->base->CONTROLS[PAIR_2ND_CH(pair)].CnV;

	if (capture->pulse_capture) {
		/* Clear both edge flags for pulse capture to capture first edge overflow counter */
		FTM_ClearStatusFlags(config->base, BIT(PAIR_1ST_CH(pair)) | BIT(PAIR_2ND_CH(pair)));
	} else {
		/* Only clear second edge flag for period capture as next first edge is this edge */
		FTM_ClearStatusFlags(config->base, BIT(PAIR_2ND_CH(pair)));
	}

	if (unlikely(capture->first_edge_overflow && first_cnv > capture->first_edge_cnt)) {
		/* Compensate for the overflow registered in the same IRQ */
		capture->first_edge_overflows--;
	}

	if (unlikely(overflow && second_cnv > cnt)) {
		/* Compensate for the overflow registered in the same IRQ */
		second_edge_overflows--;
	}

	overflows = second_edge_overflows - capture->first_edge_overflows;

	/* Calculate cycles, check for overflows */
	if (overflows > 0) {
		if (u32_mul_overflow(overflows, config->base->MOD, &cycles)) {
			LOG_ERR("overflow while calculating cycles");
			status = -ERANGE;
		} else {
			cycles -= first_cnv;
			if (u32_add_overflow(cycles, second_cnv, &cycles)) {
				LOG_ERR("overflow while calculating cycles");
				cycles = 0;
				status = -ERANGE;
			}
		}
	} else {
		cycles = second_cnv - first_cnv;
	}

	LOG_DBG("pair = %d, 1st ovfs = %u, 2nd ovfs = %u, ovfs = %u, 1st cnv = %u, "
		"2nd cnv = %u, cycles = %u, 2nd cnt = %u, 2nd ovf = %d",
		pair, capture->first_edge_overflows, second_edge_overflows, overflows, first_cnv,
		second_cnv, cycles, cnt, overflow);

	if (capture->pulse_capture) {
		capture->callback(dev, pair, 0, cycles, status,
				  capture->user_data);
	} else {
		capture->callback(dev, pair, cycles, 0, status,
				  capture->user_data);
	}

	if (capture->param.mode == kFTM_OneShot) {
		/* One-shot capture done */
		FTM_DisableInterrupts(config->base, BIT(PAIR_2ND_CH(pair)));
	} else if (capture->pulse_capture) {
		/* Prepare for first edge of next pulse capture */
		FTM_EnableInterrupts(config->base, BIT(PAIR_1ST_CH(pair)));
	} else {
		/* First edge of next period capture is second edge of this capture (this edge) */
		capture->first_edge_cnt = cnt;
		capture->first_edge_overflows = second_edge_overflows;
		capture->first_edge_overflow = false;
	}
}

static bool mcux_ftm_handle_overflow(const struct device *dev)
{
	const struct mcux_ftm_config *config = dev->config;
	struct mcux_ftm_data *data = dev->data;

	if (FTM_GetStatusFlags(config->base) & kFTM_TimeOverflowFlag) {
		data->overflows++;
		FTM_ClearStatusFlags(config->base, kFTM_TimeOverflowFlag);
		return true;
	}

	return false;
}

static void mcux_ftm_irq_handler(const struct device *dev, uint32_t chan_start, uint32_t chan_end)
{
	const struct mcux_ftm_config *config = dev->config;
	bool overflow;
	uint32_t flags;
	uint32_t irqs;
	uint16_t cnt;
	uint32_t ch;

	flags = FTM_GetStatusFlags(config->base);
	irqs = FTM_GetEnabledInterrupts(config->base);
	cnt = config->base->CNT;

	overflow = mcux_ftm_handle_overflow(dev);

	for (ch = chan_start; ch < chan_end; ch++) {
		if ((flags & BIT(ch)) && (irqs & BIT(ch))) {
			if (ch & 1) {
				mcux_ftm_capture_second_edge(dev, ch, cnt, overflow);
			} else {
				mcux_ftm_capture_first_edge(dev, ch, cnt, overflow);
			}
		}
	}
}
#endif /* CONFIG_PWM_CAPTURE */

static int mcux_ftm_get_cycles_per_sec(const struct device *dev,
				       uint32_t channel, uint64_t *cycles)
{
	const struct mcux_ftm_config *config = dev->config;
	struct mcux_ftm_data *data = dev->data;

	*cycles = data->clock_freq >> config->prescale;

	return 0;
}

static int mcux_ftm_init(const struct device *dev)
{
	const struct mcux_ftm_config *config = dev->config;
	struct mcux_ftm_data *data = dev->data;
	ftm_chnl_pwm_config_param_t *channel = data->channel;
	ftm_config_t ftm_config;
	int i;
	int err;

	err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
	if (err != 0) {
		return err;
	}

	if (config->channel_count > ARRAY_SIZE(data->channel)) {
		LOG_ERR("Invalid channel count");
		return -EINVAL;
	}

	if (!device_is_ready(config->clock_dev)) {
		LOG_ERR("clock control device not ready");
		return -ENODEV;
	}

	if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
				   &data->clock_freq)) {
		LOG_ERR("Could not get clock frequency");
		return -EINVAL;
	}

	for (i = 0; i < config->channel_count; i++) {
		channel->chnlNumber = i;
		channel->level = kFTM_NoPwmSignal;
		channel->dutyValue = 0;
		channel->firstEdgeValue = 0;
		channel++;
	}

	FTM_GetDefaultConfig(&ftm_config);
	ftm_config.prescale = config->prescale;

	FTM_Init(config->base, &ftm_config);

#ifdef CONFIG_PWM_CAPTURE
	config->irq_config_func(dev);
	FTM_EnableInterrupts(config->base,
			     kFTM_TimeOverflowInterruptEnable);

	data->period_cycles = 0xFFFFU;
	FTM_SetTimerPeriod(config->base, data->period_cycles);
	FTM_SetSoftwareTrigger(config->base, true);
	FTM_StartTimer(config->base, config->ftm_clock_source);
#endif /* CONFIG_PWM_CAPTURE */

	return 0;
}

static const struct pwm_driver_api mcux_ftm_driver_api = {
	.set_cycles = mcux_ftm_set_cycles,
	.get_cycles_per_sec = mcux_ftm_get_cycles_per_sec,
#ifdef CONFIG_PWM_CAPTURE
	.configure_capture = mcux_ftm_configure_capture,
	.enable_capture = mcux_ftm_enable_capture,
	.disable_capture = mcux_ftm_disable_capture,
#endif /* CONFIG_PWM_CAPTURE */
};

#define TO_FTM_PRESCALE_DIVIDE(val) _DO_CONCAT(kFTM_Prescale_Divide_, val)

#ifdef CONFIG_PWM_CAPTURE
#if IS_EQ(DT_NUM_IRQS(DT_DRV_INST(0)), 1)
static void mcux_ftm_isr(const struct device *dev)
{
	const struct mcux_ftm_config *cfg = dev->config;

	mcux_ftm_irq_handler(dev, 0, cfg->channel_count);
}

#define FTM_CONFIG_FUNC(n) \
static void mcux_ftm_config_func_##n(const struct device *dev) \
{ \
	IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
		    mcux_ftm_isr, DEVICE_DT_INST_GET(n), 0); \
	irq_enable(DT_INST_IRQN(n)); \
}
#else /* Multiple interrupts */
#define FTM_ISR_FUNC_NAME(suffix) _DO_CONCAT(mcux_ftm_isr_, suffix)
#define FTM_ISR_FUNC(chan_start, chan_end) \
static void mcux_ftm_isr_##chan_start##_##chan_end(const struct device *dev) \
{ \
	mcux_ftm_irq_handler(dev, chan_start, chan_end + 1); \
}

#define FTM_ISR_CONFIG(node_id, prop, idx) \
do { \
	IRQ_CONNECT(DT_IRQ_BY_IDX(node_id, idx, irq), \
		    DT_IRQ_BY_IDX(node_id, idx, priority), \
		    FTM_ISR_FUNC_NAME(DT_STRING_TOKEN_BY_IDX(node_id, prop, idx)), \
		    DEVICE_DT_GET(node_id), \
		    0); \
	irq_enable(DT_IRQ_BY_IDX(node_id, idx, irq)); \
} while (false);

#define FTM_CONFIG_FUNC(n) \
static void mcux_ftm_config_func_##n(const struct device *dev) \
{ \
	DT_INST_FOREACH_PROP_ELEM(n, interrupt_names, FTM_ISR_CONFIG) \
}

#if DT_INST_IRQ_HAS_NAME(0, overflow)
static void mcux_ftm_isr_overflow(const struct device *dev)
{
	mcux_ftm_handle_overflow(dev);
}
#endif
#if DT_INST_IRQ_HAS_NAME(0, 0_1)
FTM_ISR_FUNC(0, 1)
#endif
#if DT_INST_IRQ_HAS_NAME(0, 2_3)
FTM_ISR_FUNC(2, 3)
#endif
#if DT_INST_IRQ_HAS_NAME(0, 4_5)
FTM_ISR_FUNC(4, 5)
#endif
#if DT_INST_IRQ_HAS_NAME(0, 6_7)
FTM_ISR_FUNC(6, 7)
#endif
#endif /* IS_EQ(DT_NUM_IRQS(DT_DRV_INST(0)), 1) */
#define FTM_CFG_CAPTURE_INIT(n) \
	.irq_config_func = mcux_ftm_config_func_##n
#define FTM_INIT_CFG(n)	FTM_DECLARE_CFG(n, FTM_CFG_CAPTURE_INIT(n))
#else /* !CONFIG_PWM_CAPTURE */
#define FTM_CONFIG_FUNC(n)
#define FTM_CFG_CAPTURE_INIT
#define FTM_INIT_CFG(n)	FTM_DECLARE_CFG(n, FTM_CFG_CAPTURE_INIT)
#endif /* !CONFIG_PWM_CAPTURE */

#define FTM_DECLARE_CFG(n, CAPTURE_INIT) \
static const struct mcux_ftm_config mcux_ftm_config_##n = { \
	.base = (FTM_Type *)DT_INST_REG_ADDR(n),\
	.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
	.clock_subsys = (clock_control_subsys_t) \
		DT_INST_CLOCKS_CELL(n, name), \
	.ftm_clock_source = kFTM_FixedClock, \
	.prescale = TO_FTM_PRESCALE_DIVIDE(DT_INST_PROP(n, prescaler)),\
	.channel_count = FSL_FEATURE_FTM_CHANNEL_COUNTn((FTM_Type *) \
		DT_INST_REG_ADDR(n)), \
	.mode = kFTM_EdgeAlignedPwm, \
	.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
	CAPTURE_INIT \
}

#define FTM_DEVICE(n) \
	PINCTRL_DT_INST_DEFINE(n); \
	static struct mcux_ftm_data mcux_ftm_data_##n; \
	static const struct mcux_ftm_config mcux_ftm_config_##n; \
	DEVICE_DT_INST_DEFINE(n, &mcux_ftm_init,		       \
			    NULL, &mcux_ftm_data_##n, \
			    &mcux_ftm_config_##n, \
			    POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, \
			    &mcux_ftm_driver_api); \
	FTM_CONFIG_FUNC(n) \
	FTM_INIT_CFG(n);

DT_INST_FOREACH_STATUS_OKAY(FTM_DEVICE)