Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/*
 * Copyright (c) 2018 Workaround GmbH
 * Copyright (c) 2018 Allterco Robotics
 * Copyright (c) 2018 Linaro Limited
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Source file for the STM32 RTC driver
 *
 */

#define DT_DRV_COMPAT st_stm32_rtc

#include <time.h>

#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <stm32_ll_exti.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_rtc.h>
#include <zephyr/drivers/counter.h>
#include <zephyr/sys/timeutil.h>
#include <zephyr/pm/device.h>

#include <zephyr/logging/log.h>
#include <zephyr/irq.h>

#include "stm32_hsem.h"

LOG_MODULE_REGISTER(counter_rtc_stm32, CONFIG_COUNTER_LOG_LEVEL);

/* Seconds from 1970-01-01T00:00:00 to 2000-01-01T00:00:00 */
#define T_TIME_OFFSET 946684800

#if defined(CONFIG_SOC_SERIES_STM32L4X)
#define RTC_EXTI_LINE	LL_EXTI_LINE_18
#elif defined(CONFIG_SOC_SERIES_STM32C0X) \
	|| defined(CONFIG_SOC_SERIES_STM32G0X)
#define RTC_EXTI_LINE	LL_EXTI_LINE_19
#elif defined(CONFIG_SOC_SERIES_STM32F4X) \
	|| defined(CONFIG_SOC_SERIES_STM32F0X) \
	|| defined(CONFIG_SOC_SERIES_STM32F1X) \
	|| defined(CONFIG_SOC_SERIES_STM32F2X) \
	|| defined(CONFIG_SOC_SERIES_STM32F3X) \
	|| defined(CONFIG_SOC_SERIES_STM32F7X) \
	|| defined(CONFIG_SOC_SERIES_STM32WBX) \
	|| defined(CONFIG_SOC_SERIES_STM32G4X) \
	|| defined(CONFIG_SOC_SERIES_STM32L0X) \
	|| defined(CONFIG_SOC_SERIES_STM32L1X) \
	|| defined(CONFIG_SOC_SERIES_STM32L5X) \
	|| defined(CONFIG_SOC_SERIES_STM32H7X) \
	|| defined(CONFIG_SOC_SERIES_STM32H5X) \
	|| defined(CONFIG_SOC_SERIES_STM32WLX)
#define RTC_EXTI_LINE	LL_EXTI_LINE_17
#endif

#if defined(CONFIG_SOC_SERIES_STM32F1X)
#define COUNTER_NO_DATE
#endif

#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI
/* LSI */
#define RTCCLK_FREQ STM32_LSI_FREQ
#else
/* LSE */
#define RTCCLK_FREQ STM32_LSE_FREQ
#endif /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI */

#if !defined(CONFIG_SOC_SERIES_STM32F1X)
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
#define RTC_ASYNCPRE BIT_MASK(7)
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
/* Get the highest possible clock for the subsecond register */
#define RTC_ASYNCPRE 1
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else /* CONFIG_SOC_SERIES_STM32F1X */
#define RTC_ASYNCPRE (RTCCLK_FREQ - 1)
#endif /* CONFIG_SOC_SERIES_STM32F1X */

/* Adjust the second sync prescaler to get 1Hz on ck_spre */
#define RTC_SYNCPRE ((RTCCLK_FREQ / (1 + RTC_ASYNCPRE)) - 1)

#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
typedef uint32_t tick_t;
#else
typedef uint64_t tick_t;
#endif

struct rtc_stm32_config {
	struct counter_config_info counter_info;
	LL_RTC_InitTypeDef ll_rtc_config;
	const struct stm32_pclken *pclken;
};

struct rtc_stm32_data {
	counter_alarm_callback_t callback;
	uint32_t ticks;
	void *user_data;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
	bool irq_on_late;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
};

static inline ErrorStatus ll_func_init_alarm(RTC_TypeDef *rtc, uint32_t format,
					     LL_RTC_AlarmTypeDef *alarmStruct)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
	return LL_RTC_ALARM_Init(rtc, format, alarmStruct);
#else
	return LL_RTC_ALMA_Init(rtc, format, alarmStruct);
#endif
}

static inline void ll_func_clear_alarm_flag(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
	LL_RTC_ClearFlag_ALR(rtc);
#else
	LL_RTC_ClearFlag_ALRA(rtc);
#endif
}

static inline uint32_t ll_func_is_active_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
	return LL_RTC_IsActiveFlag_ALR(rtc);
#else
	return LL_RTC_IsActiveFlag_ALRA(rtc);
#endif
}

static inline void ll_func_enable_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
	LL_RTC_EnableIT_ALR(rtc);
#else
	LL_RTC_EnableIT_ALRA(rtc);
#endif
}

static inline void ll_func_disable_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
	LL_RTC_DisableIT_ALR(rtc);
#else
	LL_RTC_DisableIT_ALRA(rtc);
#endif
}

#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static inline uint32_t ll_func_isenabled_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
	return LL_RTC_IsEnabledIT_ALR(rtc);
#else
	return LL_RTC_IsEnabledIT_ALRA(rtc);
#endif
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */

static inline void ll_func_enable_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
	ARG_UNUSED(rtc);
#else
	LL_RTC_ALMA_Enable(rtc);
#endif
}

static inline void ll_func_disable_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
	ARG_UNUSED(rtc);
#else
	LL_RTC_ALMA_Disable(rtc);
#endif
}

static void rtc_stm32_irq_config(const struct device *dev);


static int rtc_stm32_start(const struct device *dev)
{
#if defined(CONFIG_SOC_SERIES_STM32WBAX)
	const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
	const struct rtc_stm32_config *cfg = dev->config;

	/* Enable RTC bus clock */
	if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
		LOG_ERR("clock op failed\n");
		return -EIO;
	}
#else
	ARG_UNUSED(dev);

	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
	LL_RCC_EnableRTC();
	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
#endif

	return 0;
}


static int rtc_stm32_stop(const struct device *dev)
{
#if defined(CONFIG_SOC_SERIES_STM32WBAX)
	const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
	const struct rtc_stm32_config *cfg = dev->config;

	/* Enable RTC bus clock */
	if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
		LOG_ERR("clock op failed\n");
		return -EIO;
	}
#else
	ARG_UNUSED(dev);

	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
	LL_RCC_DisableRTC();
	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
#endif

	return 0;
}

#if !defined(COUNTER_NO_DATE)
tick_t rtc_stm32_read(const struct device *dev)
{
	struct tm now = { 0 };
	time_t ts;
	uint32_t rtc_date, rtc_time;
	tick_t ticks;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
	uint32_t rtc_subseconds;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
	ARG_UNUSED(dev);

	/* Read time and date registers. Make sure value of the previous register
	 * hasn't been changed while reading the next one.
	 */
	do {
		rtc_date = LL_RTC_DATE_Get(RTC);

#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
		do {
			rtc_time = LL_RTC_TIME_Get(RTC);
			rtc_subseconds = LL_RTC_TIME_GetSubSecond(RTC);
		} while (rtc_time != LL_RTC_TIME_Get(RTC));
#else /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
		rtc_time = LL_RTC_TIME_Get(RTC);
#endif

	} while (rtc_date != LL_RTC_DATE_Get(RTC));

	/* Convert calendar datetime to UNIX timestamp */
	/* RTC start time: 1st, Jan, 2000 */
	/* time_t start:   1st, Jan, 1970 */
	now.tm_year = 100 +
			__LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_YEAR(rtc_date));
	/* tm_mon allowed values are 0-11 */
	now.tm_mon = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MONTH(rtc_date)) - 1;
	now.tm_mday = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_DAY(rtc_date));

	now.tm_hour = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_HOUR(rtc_time));
	now.tm_min = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MINUTE(rtc_time));
	now.tm_sec = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_SECOND(rtc_time));

	ts = timeutil_timegm(&now);

	/* Return number of seconds since RTC init */
	ts -= T_TIME_OFFSET;

	__ASSERT(sizeof(time_t) == 8, "unexpected time_t definition");

	ticks = ts * counter_get_frequency(dev);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
	/* The RTC counts up, except for the subsecond register which counts
	 * down starting from the sync prescaler value. Add already counted
	 * ticks.
	 */
	ticks += RTC_SYNCPRE - rtc_subseconds;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */

	return ticks;
}
#else /* defined(COUNTER_NO_DATE) */
tick_t rtc_stm32_read(const struct device *dev)
{
	uint32_t rtc_time, ticks;

	ARG_UNUSED(dev);

	rtc_time = LL_RTC_TIME_Get(RTC);

	ticks = rtc_time;

	return ticks;
}
#endif /* !defined(COUNTER_NO_DATE) */

static int rtc_stm32_get_value(const struct device *dev, uint32_t *ticks)
{
	*ticks = (uint32_t)rtc_stm32_read(dev);
	return 0;
}

#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static int rtc_stm32_get_value_64(const struct device *dev, uint64_t *ticks)
{
	*ticks = rtc_stm32_read(dev);
	return 0;
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */

#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static void rtc_stm32_set_int_pending(void)
{
	NVIC_SetPendingIRQ(DT_INST_IRQN(0));
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */

static int rtc_stm32_set_alarm(const struct device *dev, uint8_t chan_id,
				const struct counter_alarm_cfg *alarm_cfg)
{
#if !defined(COUNTER_NO_DATE)
	struct tm alarm_tm;
	time_t alarm_val_s;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
	uint32_t alarm_val_ss;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else
	uint32_t remain;
#endif
	LL_RTC_AlarmTypeDef rtc_alarm;
	struct rtc_stm32_data *data = dev->data;

	tick_t now = rtc_stm32_read(dev);
	tick_t ticks = alarm_cfg->ticks;

	if (data->callback != NULL) {
		LOG_DBG("Alarm busy\n");
		return -EBUSY;
	}


	data->callback = alarm_cfg->callback;
	data->user_data = alarm_cfg->user_data;

#if !defined(COUNTER_NO_DATE)
	if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) == 0) {
		/* Add +1 in order to compensate the partially started tick.
		 * Alarm will expire between requested ticks and ticks+1.
		 * In case only 1 tick is requested, it will avoid
		 * that tick+1 event occurs before alarm setting is finished.
		 */
		ticks += now + 1;
		alarm_val_s = (time_t)(ticks / counter_get_frequency(dev)) + T_TIME_OFFSET;
	} else {
		alarm_val_s = (time_t)(ticks / counter_get_frequency(dev));
	}
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
	alarm_val_ss = ticks % counter_get_frequency(dev);
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */

#else
	if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) == 0) {
		remain = ticks + now + 1;
	} else {
		remain = ticks;
	}

	/* In F1X, an interrupt occurs when the counter expires,
	 * not when the counter matches, so set -1
	 */
	remain--;
#endif

#if !defined(COUNTER_NO_DATE)
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
	LOG_DBG("Set Alarm: %d\n", ticks);
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
	LOG_DBG("Set Alarm: %llu\n", ticks);
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */

	gmtime_r(&alarm_val_s, &alarm_tm);

	/* Apply ALARM_A */
	rtc_alarm.AlarmTime.TimeFormat = LL_RTC_TIME_FORMAT_AM_OR_24;
	rtc_alarm.AlarmTime.Hours = alarm_tm.tm_hour;
	rtc_alarm.AlarmTime.Minutes = alarm_tm.tm_min;
	rtc_alarm.AlarmTime.Seconds = alarm_tm.tm_sec;

	rtc_alarm.AlarmMask = LL_RTC_ALMA_MASK_NONE;
	rtc_alarm.AlarmDateWeekDaySel = LL_RTC_ALMA_DATEWEEKDAYSEL_DATE;
	rtc_alarm.AlarmDateWeekDay = alarm_tm.tm_mday;
#else
	rtc_alarm.AlarmTime.Hours = remain / 3600;
	remain -= rtc_alarm.AlarmTime.Hours * 3600;
	rtc_alarm.AlarmTime.Minutes = remain / 60;
	remain -= rtc_alarm.AlarmTime.Minutes * 60;
	rtc_alarm.AlarmTime.Seconds = remain;
#endif

	LL_RTC_DisableWriteProtection(RTC);
	ll_func_disable_alarm(RTC);
	LL_RTC_EnableWriteProtection(RTC);

	if (ll_func_init_alarm(RTC, LL_RTC_FORMAT_BIN, &rtc_alarm) != SUCCESS) {
		return -EIO;
	}

	LL_RTC_DisableWriteProtection(RTC);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
	/* Care about all bits of the subsecond register */
	LL_RTC_ALMA_SetSubSecondMask(RTC, 0xF);
	LL_RTC_ALMA_SetSubSecond(RTC, RTC_SYNCPRE - alarm_val_ss);
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
	ll_func_enable_alarm(RTC);
	ll_func_clear_alarm_flag(RTC);
	ll_func_enable_interrupt_alarm(RTC);
	LL_RTC_EnableWriteProtection(RTC);

#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
	/* The reference manual says:
	 * "Each change of the RTC_CR register is taken into account after
	 * 1 to 2 RTCCLK clock cycles due to clock synchronization."
	 * It means we need at least two cycles after programming the CR
	 * register. It is confirmed experimentally.
	 *
	 * It should happen only if one tick alarm is requested and a tick
	 * occurs while processing the function. Trigger the irq manually in
	 * this case.
	 */
	now = rtc_stm32_read(dev);
	if ((ticks - now < 2) || (now > ticks)) {
		data->irq_on_late = 1;
		rtc_stm32_set_int_pending();
	}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */

	return 0;
}


static int rtc_stm32_cancel_alarm(const struct device *dev, uint8_t chan_id)
{
	struct rtc_stm32_data *data = dev->data;

	LL_RTC_DisableWriteProtection(RTC);
	ll_func_clear_alarm_flag(RTC);
	ll_func_disable_interrupt_alarm(RTC);
	ll_func_disable_alarm(RTC);
	LL_RTC_EnableWriteProtection(RTC);

	data->callback = NULL;

	return 0;
}


static uint32_t rtc_stm32_get_pending_int(const struct device *dev)
{
	return ll_func_is_active_alarm(RTC) != 0;
}


static uint32_t rtc_stm32_get_top_value(const struct device *dev)
{
	const struct counter_config_info *info = dev->config;

	return info->max_top_value;
}


static int rtc_stm32_set_top_value(const struct device *dev,
				   const struct counter_top_cfg *cfg)
{
	const struct counter_config_info *info = dev->config;

	if ((cfg->ticks != info->max_top_value) ||
		!(cfg->flags & COUNTER_TOP_CFG_DONT_RESET)) {
		return -ENOTSUP;
	} else {
		return 0;
	}


}

void rtc_stm32_isr(const struct device *dev)
{
	struct rtc_stm32_data *data = dev->data;
	counter_alarm_callback_t alarm_callback = data->callback;

	uint32_t now = rtc_stm32_read(dev);

	if (ll_func_is_active_alarm(RTC) != 0
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
	    || (data->irq_on_late && ll_func_isenabled_interrupt_alarm(RTC))
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
	) {

		LL_RTC_DisableWriteProtection(RTC);
		ll_func_clear_alarm_flag(RTC);
		ll_func_disable_interrupt_alarm(RTC);
		ll_func_disable_alarm(RTC);
		LL_RTC_EnableWriteProtection(RTC);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
		data->irq_on_late = 0;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */

		if (alarm_callback != NULL) {
			data->callback = NULL;
			alarm_callback(dev, 0, now, data->user_data);
		}
	}

#if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4)
	LL_C2_EXTI_ClearFlag_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32C0X) \
	|| defined(CONFIG_SOC_SERIES_STM32G0X) \
	|| defined(CONFIG_SOC_SERIES_STM32L5X) \
	|| defined(CONFIG_SOC_SERIES_STM32H5X)
	LL_EXTI_ClearRisingFlag_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32WBAX)
	/* in STM32U5 family RTC is not connected to EXTI */
#else
	LL_EXTI_ClearFlag_0_31(RTC_EXTI_LINE);
#endif
}


static int rtc_stm32_init(const struct device *dev)
{
	const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
	const struct rtc_stm32_config *cfg = dev->config;
	struct rtc_stm32_data *data = dev->data;

	data->callback = NULL;

	if (!device_is_ready(clk)) {
		LOG_ERR("clock control device not ready");
		return -ENODEV;
	}

	/* Enable RTC bus clock */
	if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
		LOG_ERR("clock op failed\n");
		return -EIO;
	}

	/* Enable Backup access */
	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || \
	defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
	LL_PWR_EnableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */

	/* Enable RTC clock source */
	if (clock_control_configure(clk,
				    (clock_control_subsys_t) &cfg->pclken[1],
				    NULL) != 0) {
		LOG_ERR("clock configure failed\n");
		return -EIO;
	}

#if !defined(CONFIG_SOC_SERIES_STM32WBAX)
	LL_RCC_EnableRTC();
#endif

	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);

#if !defined(CONFIG_COUNTER_RTC_STM32_SAVE_VALUE_BETWEEN_RESETS)
	if (LL_RTC_DeInit(RTC) != SUCCESS) {
		return -EIO;
	}
#endif

	if (LL_RTC_Init(RTC, ((LL_RTC_InitTypeDef *)
			      &cfg->ll_rtc_config)) != SUCCESS) {
		return -EIO;
	}

#ifdef RTC_CR_BYPSHAD
	LL_RTC_DisableWriteProtection(RTC);
	LL_RTC_EnableShadowRegBypass(RTC);
	LL_RTC_EnableWriteProtection(RTC);
#endif /* RTC_CR_BYPSHAD */

#if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4)
	LL_C2_EXTI_EnableIT_0_31(RTC_EXTI_LINE);
	LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32WBAX)
	/* in STM32U5 family RTC is not connected to EXTI */
#else
	LL_EXTI_EnableIT_0_31(RTC_EXTI_LINE);
	LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE);
#endif

	rtc_stm32_irq_config(dev);

	return 0;
}

static struct rtc_stm32_data rtc_data;

#if DT_INST_NUM_CLOCKS(0) == 1
#warning STM32 RTC needs a kernel source clock. Please define it in dts file
static const struct stm32_pclken rtc_clk[] = {
	STM32_CLOCK_INFO(0, DT_DRV_INST(0)),
	/* Use Kconfig to configure source clocks fields (Deprecated) */
	/* Fortunately, values are consistent across enabled series */
#ifdef CONFIG_COUNTER_RTC_STM32_CLOCK_LSE
	{.bus = STM32_SRC_LSE, .enr = RTC_SEL(1)}
#else
	{.bus = STM32_SRC_LSI, .enr = RTC_SEL(2)}
#endif
};
#else
static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0);
#endif

static const struct rtc_stm32_config rtc_config = {
	.counter_info = {
		.max_top_value = UINT32_MAX,
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
		/* freq = 1Hz for not subsec based driver */
		.freq = RTCCLK_FREQ / ((RTC_ASYNCPRE + 1) * (RTC_SYNCPRE + 1)),
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
		.freq = RTCCLK_FREQ / (RTC_ASYNCPRE + 1),
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
		.flags = COUNTER_CONFIG_INFO_COUNT_UP,
		.channels = 1,
	},
	.ll_rtc_config = {
		.AsynchPrescaler = RTC_ASYNCPRE,
#if !defined(CONFIG_SOC_SERIES_STM32F1X)
		.HourFormat = LL_RTC_HOURFORMAT_24HOUR,
		.SynchPrescaler = RTC_SYNCPRE,
#else /* CONFIG_SOC_SERIES_STM32F1X */
		.OutPutSource = LL_RTC_CALIB_OUTPUT_NONE,
#endif /* CONFIG_SOC_SERIES_STM32F1X */
	},
	.pclken = rtc_clk,
};

#ifdef CONFIG_PM_DEVICE
static int rtc_stm32_pm_action(const struct device *dev,
			       enum pm_device_action action)
{
	const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
	const struct rtc_stm32_config *cfg = dev->config;

	switch (action) {
	case PM_DEVICE_ACTION_RESUME:
		/* Enable RTC bus clock */
		if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
			LOG_ERR("clock op failed\n");
			return -EIO;
		}
		break;
	case PM_DEVICE_ACTION_SUSPEND:
		break;
	default:
		return -ENOTSUP;
	}

	return 0;
}
#endif /* CONFIG_PM_DEVICE */

static const struct counter_driver_api rtc_stm32_driver_api = {
	.start = rtc_stm32_start,
	.stop = rtc_stm32_stop,
	.get_value = rtc_stm32_get_value,
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
	.get_value_64 = rtc_stm32_get_value_64,
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
	.set_alarm = rtc_stm32_set_alarm,
	.cancel_alarm = rtc_stm32_cancel_alarm,
	.set_top_value = rtc_stm32_set_top_value,
	.get_pending_int = rtc_stm32_get_pending_int,
	.get_top_value = rtc_stm32_get_top_value,
};

PM_DEVICE_DT_INST_DEFINE(0, rtc_stm32_pm_action);

DEVICE_DT_INST_DEFINE(0, &rtc_stm32_init, PM_DEVICE_DT_INST_GET(0),
		    &rtc_data, &rtc_config, PRE_KERNEL_1,
		    CONFIG_COUNTER_INIT_PRIORITY, &rtc_stm32_driver_api);

static void rtc_stm32_irq_config(const struct device *dev)
{
	IRQ_CONNECT(DT_INST_IRQN(0),
		    DT_INST_IRQ(0, priority),
		    rtc_stm32_isr, DEVICE_DT_INST_GET(0), 0);
	irq_enable(DT_INST_IRQN(0));
}