Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 | /*
* Copyright (c) 2018 Kokoon Technology Limited
* Copyright (c) 2019 Song Qiang <songqiang1304521@gmail.com>
* Copyright (c) 2019 Endre Karlson
* Copyright (c) 2020 Teslabs Engineering S.L.
* Copyright (c) 2021 Marius Scholtz, RIC Electronics
* Copyright (c) 2023 Hein Wessels, Nobleo Technology
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_adc
#include <errno.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <stm32_ll_adc.h>
#if defined(CONFIG_SOC_SERIES_STM32U5X)
#include <stm32_ll_pwr.h>
#endif /* CONFIG_SOC_SERIES_STM32U5X */
#ifdef CONFIG_ADC_STM32_DMA
#include <zephyr/drivers/dma/dma_stm32.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/toolchain.h>
#include <stm32_ll_dma.h>
#endif
#define ADC_CONTEXT_USES_KERNEL_TIMER
#define ADC_CONTEXT_ENABLE_ON_COMPLETE
#include "adc_context.h"
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_stm32);
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/dt-bindings/adc/stm32_adc.h>
#include <zephyr/irq.h>
#include <zephyr/mem_mgmt/mem_attr.h>
#ifdef CONFIG_SOC_SERIES_STM32H7X
#include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h>
#endif
#ifdef CONFIG_NOCACHE_MEMORY
#include <zephyr/linker/linker-defs.h>
#elif defined(CONFIG_CACHE_MANAGEMENT)
#include <zephyr/arch/cache.h>
#endif /* CONFIG_NOCACHE_MEMORY */
#if defined(CONFIG_SOC_SERIES_STM32F3X)
#if defined(ADC1_V2_5)
/* ADC1_V2_5 is the ADC version for STM32F37x */
#define STM32F3X_ADC_V2_5
#elif defined(ADC5_V1_1)
/* ADC5_V1_1 is the ADC version for other STM32F3x */
#define STM32F3X_ADC_V1_1
#endif
#endif
/*
* Other ADC versions:
* ADC_VER_V5_V90 -> STM32H72x/H73x
* ADC_VER_V5_X -> STM32H74x/H75x && U5
* ADC_VER_V5_3 -> STM32H7Ax/H7Bx
* compat st_stm32f1_adc -> STM32F1, F37x (ADC1_V2_5)
* compat st_stm32f4_adc -> STM32F2, F4, F7, L1
*/
#define ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(value) \
(DT_INST_FOREACH_STATUS_OKAY_VARGS(IS_EQ_PROP_OR, \
num_sampling_time_common_channels,\
0, value) 0)
#define ANY_ADC_SEQUENCER_TYPE_IS(value) \
(DT_INST_FOREACH_STATUS_OKAY_VARGS(IS_EQ_PROP_OR, \
st_adc_sequencer,\
0, value) 0)
#define IS_EQ_PROP_OR(inst, prop, default_value, compare_value) \
IS_EQ(DT_INST_PROP_OR(inst, prop, default_value), compare_value) ||
/* reference voltage for the ADC */
#define STM32_ADC_VREF_MV DT_INST_PROP(0, vref_mv)
#if ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE)
#define RANK(n) LL_ADC_REG_RANK_##n
static const uint32_t table_rank[] = {
RANK(1),
RANK(2),
RANK(3),
RANK(4),
RANK(5),
RANK(6),
RANK(7),
RANK(8),
RANK(9),
RANK(10),
RANK(11),
RANK(12),
RANK(13),
RANK(14),
RANK(15),
RANK(16),
#if defined(LL_ADC_REG_RANK_17)
RANK(17),
RANK(18),
RANK(19),
RANK(20),
RANK(21),
RANK(22),
RANK(23),
RANK(24),
RANK(25),
RANK(26),
RANK(27),
#if defined(LL_ADC_REG_RANK_28)
RANK(28),
#endif /* LL_ADC_REG_RANK_28 */
#endif /* LL_ADC_REG_RANK_17 */
};
#define SEQ_LEN(n) LL_ADC_REG_SEQ_SCAN_ENABLE_##n##RANKS
/* Length of this array signifies the maximum sequence length */
static const uint32_t table_seq_len[] = {
LL_ADC_REG_SEQ_SCAN_DISABLE,
SEQ_LEN(2),
SEQ_LEN(3),
SEQ_LEN(4),
SEQ_LEN(5),
SEQ_LEN(6),
SEQ_LEN(7),
SEQ_LEN(8),
SEQ_LEN(9),
SEQ_LEN(10),
SEQ_LEN(11),
SEQ_LEN(12),
SEQ_LEN(13),
SEQ_LEN(14),
SEQ_LEN(15),
SEQ_LEN(16),
#if defined(LL_ADC_REG_SEQ_SCAN_ENABLE_17RANKS)
SEQ_LEN(17),
SEQ_LEN(18),
SEQ_LEN(19),
SEQ_LEN(20),
SEQ_LEN(21),
SEQ_LEN(22),
SEQ_LEN(23),
SEQ_LEN(24),
SEQ_LEN(25),
SEQ_LEN(26),
SEQ_LEN(27),
#if defined(LL_ADC_REG_SEQ_SCAN_ENABLE_28RANKS)
SEQ_LEN(28),
#endif /* LL_ADC_REG_SEQ_SCAN_ENABLE_28RANKS */
#endif /* LL_ADC_REG_SEQ_SCAN_ENABLE_17RANKS */
};
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE) */
/* Number of different sampling time values */
#define STM32_NB_SAMPLING_TIME 8
#ifdef CONFIG_ADC_STM32_DMA
struct stream {
const struct device *dma_dev;
uint32_t channel;
struct dma_config dma_cfg;
struct dma_block_config dma_blk_cfg;
uint8_t priority;
bool src_addr_increment;
bool dst_addr_increment;
};
#endif /* CONFIG_ADC_STM32_DMA */
struct adc_stm32_data {
struct adc_context ctx;
const struct device *dev;
uint16_t *buffer;
uint16_t *repeat_buffer;
uint8_t resolution;
uint32_t channels;
uint8_t channel_count;
uint8_t samples_count;
int8_t acq_time_index[2];
#ifdef CONFIG_ADC_STM32_DMA
volatile int dma_error;
struct stream dma;
#endif
};
struct adc_stm32_cfg {
ADC_TypeDef *base;
void (*irq_cfg_func)(void);
const struct stm32_pclken *pclken;
size_t pclk_len;
uint32_t clk_prescaler;
const struct pinctrl_dev_config *pcfg;
const uint16_t sampling_time_table[STM32_NB_SAMPLING_TIME];
int8_t num_sampling_time_common_channels;
int8_t sequencer_type;
int8_t res_table_size;
const uint32_t res_table[];
};
#ifdef CONFIG_ADC_STM32_DMA
static void adc_stm32_enable_dma_support(ADC_TypeDef *adc)
{
/* Allow ADC to create DMA request and set to one-shot mode as implemented in HAL drivers */
#if defined(CONFIG_SOC_SERIES_STM32H7X)
#if defined(ADC_VER_V5_V90)
if (adc == ADC3) {
LL_ADC_REG_SetDMATransferMode(adc,
ADC3_CFGR_DMACONTREQ(LL_ADC_REG_DMA_TRANSFER_LIMITED));
LL_ADC_EnableDMAReq(adc);
} else {
LL_ADC_REG_SetDataTransferMode(adc,
ADC_CFGR_DMACONTREQ(LL_ADC_REG_DMA_TRANSFER_LIMITED));
}
#elif defined(ADC_VER_V5_X)
LL_ADC_REG_SetDataTransferMode(adc, LL_ADC_REG_DMA_TRANSFER_LIMITED);
#else
#error "Unsupported ADC version"
#endif
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) /* defined(CONFIG_SOC_SERIES_STM32H7X) */
#error "The STM32F1 ADC + DMA is not yet supported"
#else /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
/* Default mechanism for other MCUs */
LL_ADC_REG_SetDMATransfer(adc, LL_ADC_REG_DMA_TRANSFER_LIMITED);
#endif
}
static int adc_stm32_dma_start(const struct device *dev,
void *buffer, size_t channel_count)
{
const struct adc_stm32_cfg *config = dev->config;
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
struct adc_stm32_data *data = dev->data;
struct dma_block_config *blk_cfg;
int ret;
struct stream *dma = &data->dma;
blk_cfg = &dma->dma_blk_cfg;
/* prepare the block */
blk_cfg->block_size = channel_count * sizeof(int16_t);
/* Source and destination */
blk_cfg->source_address = (uint32_t)LL_ADC_DMA_GetRegAddr(adc, LL_ADC_DMA_REG_REGULAR_DATA);
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
blk_cfg->source_reload_en = 0;
blk_cfg->dest_address = (uint32_t)buffer;
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
blk_cfg->dest_reload_en = 0;
/* Manually set the FIFO threshold to 1/4 because the
* dmamux DTS entry does not contain fifo threshold
*/
blk_cfg->fifo_mode_control = 0;
/* direction is given by the DT */
dma->dma_cfg.head_block = blk_cfg;
dma->dma_cfg.user_data = data;
ret = dma_config(data->dma.dma_dev, data->dma.channel,
&dma->dma_cfg);
if (ret != 0) {
LOG_ERR("Problem setting up DMA: %d", ret);
return ret;
}
adc_stm32_enable_dma_support(adc);
data->dma_error = 0;
ret = dma_start(data->dma.dma_dev, data->dma.channel);
if (ret != 0) {
LOG_ERR("Problem starting DMA: %d", ret);
return ret;
}
LOG_DBG("DMA started");
return ret;
}
#endif /* CONFIG_ADC_STM32_DMA */
#if defined(CONFIG_ADC_STM32_DMA) && defined(CONFIG_SOC_SERIES_STM32H7X)
/* Returns true if given buffer is in a non-cacheable SRAM region.
* This is determined using the device tree, meaning the .nocache region won't work.
* The entire buffer must be in a single region.
* An example of how the SRAM region can be defined in the DTS:
* &sram4 {
* zephyr,memory-attr = <( DT_MEM_ARM(ATTR_MPU_RAM_NOCACHE) | ... )>;
* };
*/
static bool buf_in_nocache(uintptr_t buf, size_t len_bytes)
{
bool buf_within_nocache = false;
#ifdef CONFIG_NOCACHE_MEMORY
buf_within_nocache = (buf >= ((uintptr_t)_nocache_ram_start)) &&
((buf + len_bytes - 1) <= ((uintptr_t)_nocache_ram_end));
if (buf_within_nocache) {
return true;
}
#endif /* CONFIG_NOCACHE_MEMORY */
buf_within_nocache = mem_attr_check_buf(
(void *)buf, len_bytes, DT_MEM_ARM(ATTR_MPU_RAM_NOCACHE)) == 0;
return buf_within_nocache;
}
#endif /* defined(CONFIG_ADC_STM32_DMA) && defined(CONFIG_SOC_SERIES_STM32H7X) */
static int check_buffer(const struct adc_sequence *sequence,
uint8_t active_channels)
{
size_t needed_buffer_size;
needed_buffer_size = active_channels * sizeof(uint16_t);
if (sequence->options) {
needed_buffer_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed_buffer_size) {
LOG_ERR("Provided buffer is too small (%u/%u)",
sequence->buffer_size, needed_buffer_size);
return -ENOMEM;
}
#if defined(CONFIG_ADC_STM32_DMA) && defined(CONFIG_SOC_SERIES_STM32H7X)
/* Buffer is forced to be in non-cacheable SRAM region to avoid cache maintenance */
if (!buf_in_nocache((uintptr_t)sequence->buffer, needed_buffer_size)) {
LOG_ERR("Supplied buffer is not in a non-cacheable region according to DTS.");
return -EINVAL;
}
#endif
return 0;
}
/*
* Enable ADC peripheral, and wait until ready if required by SOC.
*/
static int adc_stm32_enable(ADC_TypeDef *adc)
{
if (LL_ADC_IsEnabled(adc) == 1UL) {
return 0;
}
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
LL_ADC_ClearFlag_ADRDY(adc);
LL_ADC_Enable(adc);
/*
* Enabling ADC modules in many series may fail if they are
* still not stabilized, this will wait for a short time (about 1ms)
* to ensure ADC modules are properly enabled.
*/
uint32_t count_timeout = 0;
while (LL_ADC_IsActiveFlag_ADRDY(adc) == 0) {
#ifdef CONFIG_SOC_SERIES_STM32F0X
/* For F0, continue to write ADEN=1 until ADRDY=1 */
if (LL_ADC_IsEnabled(adc) == 0UL) {
LL_ADC_Enable(adc);
}
#endif /* CONFIG_SOC_SERIES_STM32F0X */
count_timeout++;
k_busy_wait(100);
if (count_timeout >= 10) {
return -ETIMEDOUT;
}
}
#else
/*
* On STM32F1, F2, F37x, F4, F7 and L1, do not re-enable the ADC.
* On F1 and F37x if ADON holds 1 (LL_ADC_IsEnabled is true) and 1 is
* written, then conversion starts. That's not what is expected.
*/
LL_ADC_Enable(adc);
#endif
return 0;
}
static void adc_stm32_start_conversion(const struct device *dev)
{
const struct adc_stm32_cfg *config = dev->config;
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
LOG_DBG("Starting conversion");
#if !defined(CONFIG_SOC_SERIES_STM32F1X) && \
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
LL_ADC_REG_StartConversion(adc);
#else
LL_ADC_REG_StartConversionSWStart(adc);
#endif
}
/*
* Disable ADC peripheral, and wait until it is disabled
*/
static void adc_stm32_disable(ADC_TypeDef *adc)
{
if (LL_ADC_IsEnabled(adc) != 1UL) {
return;
}
/* Stop ongoing conversion if any
* Software must poll ADSTART (or JADSTART) until the bit is reset before assuming
* the ADC is completely stopped.
*/
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
if (LL_ADC_REG_IsConversionOngoing(adc)) {
LL_ADC_REG_StopConversion(adc);
while (LL_ADC_REG_IsConversionOngoing(adc)) {
}
}
#endif
#if !defined(CONFIG_SOC_SERIES_STM32C0X) && \
!defined(CONFIG_SOC_SERIES_STM32F0X) && \
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc) && \
!defined(CONFIG_SOC_SERIES_STM32G0X) && \
!defined(CONFIG_SOC_SERIES_STM32L0X) && \
!defined(CONFIG_SOC_SERIES_STM32WBAX) && \
!defined(CONFIG_SOC_SERIES_STM32WLX)
if (LL_ADC_INJ_IsConversionOngoing(adc)) {
LL_ADC_INJ_StopConversion(adc);
while (LL_ADC_INJ_IsConversionOngoing(adc)) {
}
}
#endif
LL_ADC_Disable(adc);
/* Wait ADC is fully disabled so that we don't leave the driver into intermediate state
* which could prevent enabling the peripheral
*/
while (LL_ADC_IsEnabled(adc) == 1UL) {
}
}
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
#define HAS_CALIBRATION
/* Number of ADC clock cycles to wait before of after starting calibration */
#if defined(LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES)
#define ADC_DELAY_CALIB_ADC_CYCLES LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES
#elif defined(LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES)
#define ADC_DELAY_CALIB_ADC_CYCLES LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES
#elif defined(LL_ADC_DELAY_DISABLE_CALIB_ADC_CYCLES)
#define ADC_DELAY_CALIB_ADC_CYCLES LL_ADC_DELAY_DISABLE_CALIB_ADC_CYCLES
#endif
static void adc_stm32_calibration_delay(const struct device *dev)
{
/*
* Calibration of F1 and F3 (ADC1_V2_5) must start two cycles after ADON
* is set.
* Other ADC modules have to wait for some cycles after calibration to
* be enabled.
*/
const struct adc_stm32_cfg *config = dev->config;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
uint32_t adc_rate, wait_cycles;
if (clock_control_get_rate(clk,
(clock_control_subsys_t) &config->pclken[0], &adc_rate) < 0) {
LOG_ERR("ADC clock rate get error.");
}
if (adc_rate == 0) {
LOG_ERR("ADC Clock rate null");
return;
}
wait_cycles = SystemCoreClock / adc_rate *
ADC_DELAY_CALIB_ADC_CYCLES;
for (int i = wait_cycles; i >= 0; i--) {
}
}
static void adc_stm32_calibration_start(const struct device *dev)
{
const struct adc_stm32_cfg *config =
(const struct adc_stm32_cfg *)dev->config;
ADC_TypeDef *adc = config->base;
#if defined(STM32F3X_ADC_V1_1) || \
defined(CONFIG_SOC_SERIES_STM32L4X) || \
defined(CONFIG_SOC_SERIES_STM32L5X) || \
defined(CONFIG_SOC_SERIES_STM32H5X) || \
defined(CONFIG_SOC_SERIES_STM32WBX) || \
defined(CONFIG_SOC_SERIES_STM32G4X)
LL_ADC_StartCalibration(adc, LL_ADC_SINGLE_ENDED);
#elif defined(CONFIG_SOC_SERIES_STM32C0X) || \
defined(CONFIG_SOC_SERIES_STM32F0X) || \
DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) || \
defined(CONFIG_SOC_SERIES_STM32G0X) || \
defined(CONFIG_SOC_SERIES_STM32L0X) || \
defined(CONFIG_SOC_SERIES_STM32WLX) || \
defined(CONFIG_SOC_SERIES_STM32WBAX)
LL_ADC_StartCalibration(adc);
#elif defined(CONFIG_SOC_SERIES_STM32U5X)
LL_ADC_StartCalibration(adc, LL_ADC_CALIB_OFFSET);
#elif defined(CONFIG_SOC_SERIES_STM32H7X)
LL_ADC_StartCalibration(adc, LL_ADC_CALIB_OFFSET, LL_ADC_SINGLE_ENDED);
#endif
/* Make sure ADCAL is cleared before returning for proper operations
* on the ADC control register, for enabling the peripheral for example
*/
while (LL_ADC_IsCalibrationOnGoing(adc)) {
}
}
static int adc_stm32_calibrate(const struct device *dev)
{
const struct adc_stm32_cfg *config =
(const struct adc_stm32_cfg *)dev->config;
ADC_TypeDef *adc = config->base;
int err;
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
adc_stm32_disable(adc);
adc_stm32_calibration_start(dev);
adc_stm32_calibration_delay(dev);
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
err = adc_stm32_enable(adc);
if (err < 0) {
return err;
}
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
adc_stm32_calibration_delay(dev);
adc_stm32_calibration_start(dev);
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
#if defined(CONFIG_SOC_SERIES_STM32H7X) && \
defined(CONFIG_CPU_CORTEX_M7)
/*
* To ensure linearity the factory calibration values
* should be loaded on initialization.
*/
uint32_t channel_offset = 0U;
uint32_t linear_calib_buffer = 0U;
if (adc == ADC1) {
channel_offset = 0UL;
} else if (adc == ADC2) {
channel_offset = 8UL;
} else /*Case ADC3*/ {
channel_offset = 16UL;
}
/* Read factory calibration factors */
for (uint32_t count = 0UL; count < ADC_LINEAR_CALIB_REG_COUNT; count++) {
linear_calib_buffer = *(uint32_t *)(
ADC_LINEAR_CALIB_REG_1_ADDR + channel_offset + count
);
LL_ADC_SetCalibrationLinearFactor(
adc, LL_ADC_CALIB_LINEARITY_WORD1 << count,
linear_calib_buffer
);
}
#endif /* CONFIG_SOC_SERIES_STM32H7X */
return 0;
}
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc) */
#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
!defined(CONFIG_SOC_SERIES_STM32F1X) && \
!defined(CONFIG_SOC_SERIES_STM32F3X) && \
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
#define HAS_OVERSAMPLING
#define OVS_SHIFT(n) LL_ADC_OVS_SHIFT_RIGHT_##n
static const uint32_t table_oversampling_shift[] = {
LL_ADC_OVS_SHIFT_NONE,
OVS_SHIFT(1),
OVS_SHIFT(2),
OVS_SHIFT(3),
OVS_SHIFT(4),
OVS_SHIFT(5),
OVS_SHIFT(6),
OVS_SHIFT(7),
OVS_SHIFT(8),
#if defined(CONFIG_SOC_SERIES_STM32H7X) || \
defined(CONFIG_SOC_SERIES_STM32U5X)
OVS_SHIFT(9),
OVS_SHIFT(10),
#endif
};
#ifdef LL_ADC_OVS_RATIO_2
#define OVS_RATIO(n) LL_ADC_OVS_RATIO_##n
static const uint32_t table_oversampling_ratio[] = {
0,
OVS_RATIO(2),
OVS_RATIO(4),
OVS_RATIO(8),
OVS_RATIO(16),
OVS_RATIO(32),
OVS_RATIO(64),
OVS_RATIO(128),
OVS_RATIO(256),
};
#endif
/*
* Function to configure the oversampling scope. It is basically a wrapper over
* LL_ADC_SetOverSamplingScope() which in addition stops the ADC if needed.
*/
static void adc_stm32_oversampling_scope(ADC_TypeDef *adc, uint32_t ovs_scope)
{
#if defined(CONFIG_SOC_SERIES_STM32L0X) || \
defined(CONFIG_SOC_SERIES_STM32WLX)
/*
* setting OVS bits is conditioned to ADC state: ADC must be disabled
* or enabled without conversion on going : disable it, it will stop
*/
if (LL_ADC_GetOverSamplingScope(adc) == ovs_scope) {
return;
}
adc_stm32_disable(adc);
#endif
LL_ADC_SetOverSamplingScope(adc, ovs_scope);
}
/*
* Function to configure the oversampling ratio and shift. It is basically a
* wrapper over LL_ADC_SetOverSamplingRatioShift() which in addition stops the
* ADC if needed.
*/
static void adc_stm32_oversampling_ratioshift(ADC_TypeDef *adc, uint32_t ratio, uint32_t shift)
{
/*
* setting OVS bits is conditioned to ADC state: ADC must be disabled
* or enabled without conversion on going : disable it, it will stop
*/
if ((LL_ADC_GetOverSamplingRatio(adc) == ratio)
&& (LL_ADC_GetOverSamplingShift(adc) == shift)) {
return;
}
adc_stm32_disable(adc);
LL_ADC_ConfigOverSamplingRatioShift(adc, ratio, shift);
}
/*
* Function to configure the oversampling ratio and shift using stm32 LL
* ratio is directly the sequence->oversampling (a 2^n value)
* shift is the corresponding LL_ADC_OVS_SHIFT_RIGHT_x constant
*/
static int adc_stm32_oversampling(ADC_TypeDef *adc, uint8_t ratio)
{
if (ratio == 0) {
adc_stm32_oversampling_scope(adc, LL_ADC_OVS_DISABLE);
return 0;
} else if (ratio < ARRAY_SIZE(table_oversampling_shift)) {
adc_stm32_oversampling_scope(adc, LL_ADC_OVS_GRP_REGULAR_CONTINUED);
} else {
LOG_ERR("Invalid oversampling");
return -EINVAL;
}
uint32_t shift = table_oversampling_shift[ratio];
#if defined(CONFIG_SOC_SERIES_STM32H7X)
/* Certain variants of the H7, such as STM32H72x/H73x has ADC3
* as a separate entity and require special handling.
*/
#if defined(ADC_VER_V5_V90)
if (adc != ADC3) {
/* the LL function expects a value from 1 to 1024 */
adc_stm32_oversampling_ratioshift(adc, 1 << ratio, shift);
} else {
/* the LL function expects a value LL_ADC_OVS_RATIO_x */
adc_stm32_oversampling_ratioshift(adc, table_oversampling_ratio[ratio], shift);
}
#else
/* the LL function expects a value from 1 to 1024 */
adc_stm32_oversampling_ratioshift(adc, 1 << ratio, shift);
#endif /* defined(ADC_VER_V5_V90) */
#elif defined(CONFIG_SOC_SERIES_STM32U5X)
if (adc != ADC4) {
/* the LL function expects a value from 1 to 1024 */
adc_stm32_oversampling_ratioshift(adc, (1 << ratio), shift);
} else {
/* the LL function expects a value LL_ADC_OVS_RATIO_x */
adc_stm32_oversampling_ratioshift(adc, table_oversampling_ratio[ratio], shift);
}
#else /* CONFIG_SOC_SERIES_STM32H7X */
adc_stm32_oversampling_ratioshift(adc, table_oversampling_ratio[ratio], shift);
#endif /* CONFIG_SOC_SERIES_STM32H7X */
return 0;
}
#endif /* CONFIG_SOC_SERIES_STM32xxx */
#ifdef CONFIG_ADC_STM32_DMA
static void dma_callback(const struct device *dev, void *user_data,
uint32_t channel, int status)
{
/* user_data directly holds the adc device */
struct adc_stm32_data *data = user_data;
const struct adc_stm32_cfg *config = data->dev->config;
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
LOG_DBG("dma callback");
if (channel == data->dma.channel) {
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
if (LL_ADC_IsActiveFlag_OVR(adc) || (status >= 0)) {
#else
if (status >= 0) {
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
data->samples_count = data->channel_count;
data->buffer += data->channel_count;
/* Stop the DMA engine, only to start it again when the callback returns
* ADC_ACTION_REPEAT or ADC_ACTION_CONTINUE, or the number of samples
* haven't been reached Starting the DMA engine is done
* within adc_context_start_sampling
*/
dma_stop(data->dma.dma_dev, data->dma.channel);
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
LL_ADC_ClearFlag_OVR(adc);
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
/* No need to invalidate the cache because it's assumed that
* the address is in a non-cacheable SRAM region.
*/
adc_context_on_sampling_done(&data->ctx, dev);
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE,
PM_ALL_SUBSTATES);
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM,
PM_ALL_SUBSTATES);
}
} else if (status < 0) {
LOG_ERR("DMA sampling complete, but DMA reported error %d", status);
data->dma_error = status;
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
LL_ADC_REG_StopConversion(adc);
#endif
dma_stop(data->dma.dma_dev, data->dma.channel);
adc_context_complete(&data->ctx, status);
}
}
}
#endif /* CONFIG_ADC_STM32_DMA */
static uint8_t get_reg_value(const struct device *dev, uint32_t reg,
uint32_t shift, uint32_t mask)
{
const struct adc_stm32_cfg *config = dev->config;
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
uintptr_t addr = (uintptr_t)adc + reg;
return ((*(volatile uint32_t *)addr >> shift) & mask);
}
static void set_reg_value(const struct device *dev, uint32_t reg,
uint32_t shift, uint32_t mask, uint32_t value)
{
const struct adc_stm32_cfg *config = dev->config;
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
uintptr_t addr = (uintptr_t)adc + reg;
MODIFY_REG(*(volatile uint32_t *)addr, (mask << shift), (value << shift));
}
static int set_resolution(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct adc_stm32_cfg *config = dev->config;
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
uint8_t res_reg_addr = 0xFF;
uint8_t res_shift = 0;
uint8_t res_mask = 0;
uint8_t res_reg_val = 0;
int i;
for (i = 0; i < config->res_table_size; i++) {
if (sequence->resolution == STM32_ADC_GET_REAL_VAL(config->res_table[i])) {
res_reg_addr = STM32_ADC_GET_REG(config->res_table[i]);
res_shift = STM32_ADC_GET_SHIFT(config->res_table[i]);
res_mask = STM32_ADC_GET_MASK(config->res_table[i]);
res_reg_val = STM32_ADC_GET_REG_VAL(config->res_table[i]);
break;
}
}
if (i == config->res_table_size) {
LOG_ERR("Invalid resolution");
return -EINVAL;
}
/*
* Some MCUs (like STM32F1x) have no register to configure resolution.
* These MCUs have a register address value of 0xFF and should be
* ignored.
*/
if (res_reg_addr != 0xFF) {
/*
* We don't use LL_ADC_SetResolution and LL_ADC_GetResolution
* because they don't strictly use hardware resolution values
* and makes internal conversions for some series.
* (see stm32h7xx_ll_adc.h)
* Instead we set the register ourselves if needed.
*/
if (get_reg_value(dev, res_reg_addr, res_shift, res_mask) != res_reg_val) {
/*
* Writing ADC_CFGR1 register while ADEN bit is set
* resets RES[1:0] bitfield. We need to disable and enable adc.
*/
adc_stm32_disable(adc);
set_reg_value(dev, res_reg_addr, res_shift, res_mask, res_reg_val);
}
}
return 0;
}
static int set_sequencer(const struct device *dev)
{
const struct adc_stm32_cfg *config = dev->config;
struct adc_stm32_data *data = dev->data;
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
uint8_t channel_id;
uint8_t channel_index = 0;
uint32_t channels_mask = 0;
/* Iterate over selected channels in bitmask keeping track of:
* - channel_index: ranging from 0 -> ( data->channel_count - 1 )
* - channel_id: ordinal position of channel in data->channels bitmask
*/
for (uint32_t channels = data->channels; channels;
channels &= ~BIT(channel_id), channel_index++) {
channel_id = find_lsb_set(channels) - 1;
uint32_t channel = __LL_ADC_DECIMAL_NB_TO_CHANNEL(channel_id);
channels_mask |= channel;
#if ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE)
if (config->sequencer_type == FULLY_CONFIGURABLE) {
#if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32U5X)
/*
* Each channel in the sequence must be previously enabled in PCSEL.
* This register controls the analog switch integrated in the IO level.
*/
LL_ADC_SetChannelPreselection(adc, channel);
#endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32U5X */
LL_ADC_REG_SetSequencerRanks(adc, table_rank[channel_index], channel);
LL_ADC_REG_SetSequencerLength(adc, table_seq_len[channel_index]);
}
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE) */
}
#if ANY_ADC_SEQUENCER_TYPE_IS(NOT_FULLY_CONFIGURABLE)
if (config->sequencer_type == NOT_FULLY_CONFIGURABLE) {
LL_ADC_REG_SetSequencerChannels(adc, channels_mask);
#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
!defined(CONFIG_SOC_SERIES_STM32L0X) && \
!defined(CONFIG_SOC_SERIES_STM32U5X) && \
!defined(CONFIG_SOC_SERIES_STM32WBAX)
/*
* After modifying sequencer it is mandatory to wait for the
* assertion of CCRDY flag
*/
while (LL_ADC_IsActiveFlag_CCRDY(adc) == 0) {
}
LL_ADC_ClearFlag_CCRDY(adc);
#endif /* !CONFIG_SOC_SERIES_STM32F0X && !L0X && !U5X && !WBAX */
}
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(NOT_FULLY_CONFIGURABLE) */
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) || \
DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
LL_ADC_SetSequencersScanMode(adc, LL_ADC_SEQ_SCAN_ENABLE);
#endif /* st_stm32f1_adc || st_stm32f4_adc */
return 0;
}
static int start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct adc_stm32_cfg *config = dev->config;
struct adc_stm32_data *data = dev->data;
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
int err;
data->buffer = sequence->buffer;
data->channels = sequence->channels;
data->channel_count = POPCOUNT(data->channels);
data->samples_count = 0;
if (data->channel_count == 0) {
LOG_ERR("No channels selected");
return -EINVAL;
}
#if ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE)
if (data->channel_count > ARRAY_SIZE(table_seq_len)) {
LOG_ERR("Too many channels for sequencer. Max: %d", ARRAY_SIZE(table_seq_len));
return -EINVAL;
}
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE) */
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && !defined(CONFIG_ADC_STM32_DMA)
/* Multiple samplings is only supported with DMA for F1 */
if (data->channel_count > 1) {
LOG_ERR("Without DMA, this device only supports single channel sampling");
return -EINVAL;
}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && !CONFIG_ADC_STM32_DMA */
/* Check and set the resolution */
err = set_resolution(dev, sequence);
if (err < 0) {
return err;
}
/* Configure the sequencer */
err = set_sequencer(dev);
if (err < 0) {
return err;
}
err = check_buffer(sequence, data->channel_count);
if (err) {
return err;
}
#ifdef HAS_OVERSAMPLING
err = adc_stm32_oversampling(adc, sequence->oversampling);
if (err) {
return err;
}
#else
if (sequence->oversampling) {
LOG_ERR("Oversampling not supported");
return -ENOTSUP;
}
#endif /* HAS_OVERSAMPLING */
if (sequence->calibrate) {
#if defined(HAS_CALIBRATION)
adc_stm32_calibrate(dev);
#else
LOG_ERR("Calibration not supported");
return -ENOTSUP;
#endif
}
/*
* Make sure the ADC is enabled as it might have been disabled earlier
* to set the resolution, to set the oversampling or to perform the
* calibration.
*/
adc_stm32_enable(adc);
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
LL_ADC_ClearFlag_OVR(adc);
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
#if !defined(CONFIG_ADC_STM32_DMA)
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
/* Trigger an ISR after each sampling (not just end of sequence) */
LL_ADC_REG_SetFlagEndOfConversion(adc, LL_ADC_REG_FLAG_EOC_UNITARY_CONV);
LL_ADC_EnableIT_EOCS(adc);
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
LL_ADC_EnableIT_EOS(adc);
#else
LL_ADC_EnableIT_EOC(adc);
#endif
#endif /* CONFIG_ADC_STM32_DMA */
/* This call will start the DMA */
adc_context_start_read(&data->ctx, sequence);
int result = adc_context_wait_for_completion(&data->ctx);
#ifdef CONFIG_ADC_STM32_DMA
/* check if there's anything wrong with dma start */
result = (data->dma_error ? data->dma_error : result);
#endif
return result;
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_stm32_data *data =
CONTAINER_OF(ctx, struct adc_stm32_data, ctx);
const struct device *dev = data->dev;
const struct adc_stm32_cfg *config = dev->config;
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
/* Remove warning for some series */
ARG_UNUSED(adc);
data->repeat_buffer = data->buffer;
#ifdef CONFIG_ADC_STM32_DMA
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
/* Make sure DMA bit of ADC register CR2 is set to 0 before starting a DMA transfer */
LL_ADC_REG_SetDMATransfer(adc, LL_ADC_REG_DMA_TRANSFER_NONE);
#endif
adc_stm32_dma_start(dev, data->buffer, data->channel_count);
#endif
adc_stm32_start_conversion(dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct adc_stm32_data *data =
CONTAINER_OF(ctx, struct adc_stm32_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
#ifndef CONFIG_ADC_STM32_DMA
static void adc_stm32_isr(const struct device *dev)
{
struct adc_stm32_data *data = dev->data;
const struct adc_stm32_cfg *config =
(const struct adc_stm32_cfg *)dev->config;
ADC_TypeDef *adc = config->base;
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
if (LL_ADC_IsActiveFlag_EOS(adc) == 1) {
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
if (LL_ADC_IsActiveFlag_EOCS(adc) == 1) {
#else
if (LL_ADC_IsActiveFlag_EOC(adc) == 1) {
#endif
*data->buffer++ = LL_ADC_REG_ReadConversionData32(adc);
/* ISR is triggered after each conversion, and at the end-of-sequence. */
if (++data->samples_count == data->channel_count) {
data->samples_count = 0;
adc_context_on_sampling_done(&data->ctx, dev);
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE,
PM_ALL_SUBSTATES);
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM,
PM_ALL_SUBSTATES);
}
}
}
LOG_DBG("%s ISR triggered.", dev->name);
}
#endif /* !CONFIG_ADC_STM32_DMA */
static void adc_context_on_complete(struct adc_context *ctx, int status)
{
struct adc_stm32_data *data =
CONTAINER_OF(ctx, struct adc_stm32_data, ctx);
const struct adc_stm32_cfg *config = data->dev->config;
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
ARG_UNUSED(status);
/* Reset acquisition time used for the sequence */
data->acq_time_index[0] = -1;
data->acq_time_index[1] = -1;
#if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32U5X)
/* Reset channel preselection register */
LL_ADC_SetChannelPreselection(adc, 0);
#else
ARG_UNUSED(adc);
#endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32U5X */
}
static int adc_stm32_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_stm32_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, false, NULL);
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
}
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#ifdef CONFIG_ADC_ASYNC
static int adc_stm32_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_stm32_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, true, async);
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
}
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif
static int adc_stm32_sampling_time_check(const struct device *dev, uint16_t acq_time)
{
const struct adc_stm32_cfg *config =
(const struct adc_stm32_cfg *)dev->config;
if (acq_time == ADC_ACQ_TIME_DEFAULT) {
return 0;
}
if (acq_time == ADC_ACQ_TIME_MAX) {
return STM32_NB_SAMPLING_TIME - 1;
}
for (int i = 0; i < STM32_NB_SAMPLING_TIME; i++) {
if (acq_time == ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS,
config->sampling_time_table[i])) {
return i;
}
}
LOG_ERR("Sampling time value not supported.");
return -EINVAL;
}
static int adc_stm32_sampling_time_setup(const struct device *dev, uint8_t id,
uint16_t acq_time)
{
const struct adc_stm32_cfg *config =
(const struct adc_stm32_cfg *)dev->config;
ADC_TypeDef *adc = config->base;
struct adc_stm32_data *data = dev->data;
int acq_time_index;
acq_time_index = adc_stm32_sampling_time_check(dev, acq_time);
if (acq_time_index < 0) {
return acq_time_index;
}
/*
* For all series we use the fact that the macros LL_ADC_SAMPLINGTIME_*
* that should be passed to the set functions are all coded on 3 bits
* with 0 shift (ie 0 to 7). So acq_time_index is equivalent to the
* macro we would use for the desired sampling time.
*/
switch (config->num_sampling_time_common_channels) {
case 0:
#if ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(0)
ARG_UNUSED(data);
LL_ADC_SetChannelSamplingTime(adc,
__LL_ADC_DECIMAL_NB_TO_CHANNEL(id),
(uint32_t)acq_time_index);
#endif
break;
case 1:
#if ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(1)
/* Only one sampling time can be selected for all channels.
* The first one we find is used, all others must match.
*/
if ((data->acq_time_index[0] == -1) ||
(acq_time_index == data->acq_time_index[0])) {
/* Reg is empty or value matches */
data->acq_time_index[0] = acq_time_index;
LL_ADC_SetSamplingTimeCommonChannels(adc,
(uint32_t)acq_time_index);
} else {
/* Reg is used and value does not match */
LOG_ERR("Multiple sampling times not supported");
return -EINVAL;
}
#endif
break;
case 2:
#if ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(2)
/* Two different sampling times can be selected for all channels.
* The first two we find are used, all others must match either one.
*/
if ((data->acq_time_index[0] == -1) ||
(acq_time_index == data->acq_time_index[0])) {
/* 1st reg is empty or value matches 1st reg */
data->acq_time_index[0] = acq_time_index;
LL_ADC_SetChannelSamplingTime(adc,
__LL_ADC_DECIMAL_NB_TO_CHANNEL(id),
LL_ADC_SAMPLINGTIME_COMMON_1);
LL_ADC_SetSamplingTimeCommonChannels(adc,
LL_ADC_SAMPLINGTIME_COMMON_1,
(uint32_t)acq_time_index);
} else if ((data->acq_time_index[1] == -1) ||
(acq_time_index == data->acq_time_index[1])) {
/* 2nd reg is empty or value matches 2nd reg */
data->acq_time_index[1] = acq_time_index;
LL_ADC_SetChannelSamplingTime(adc,
__LL_ADC_DECIMAL_NB_TO_CHANNEL(id),
LL_ADC_SAMPLINGTIME_COMMON_2);
LL_ADC_SetSamplingTimeCommonChannels(adc,
LL_ADC_SAMPLINGTIME_COMMON_2,
(uint32_t)acq_time_index);
} else {
/* Both regs are used, value does not match any of them */
LOG_ERR("Only two different sampling times supported");
return -EINVAL;
}
#endif
break;
default:
LOG_ERR("Number of common sampling time channels not supported");
return -EINVAL;
}
return 0;
}
static int adc_stm32_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
if (channel_cfg->differential) {
LOG_ERR("Differential channels are not supported");
return -EINVAL;
}
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Invalid channel gain");
return -EINVAL;
}
if (channel_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Invalid channel reference");
return -EINVAL;
}
if (adc_stm32_sampling_time_setup(dev, channel_cfg->channel_id,
channel_cfg->acquisition_time) != 0) {
LOG_ERR("Invalid sampling time");
return -EINVAL;
}
LOG_DBG("Channel setup succeeded!");
return 0;
}
/* This symbol takes the value 1 if one of the device instances */
/* is configured in dts with a domain clock */
#if STM32_DT_INST_DEV_DOMAIN_CLOCK_SUPPORT
#define STM32_ADC_DOMAIN_CLOCK_SUPPORT 1
#else
#define STM32_ADC_DOMAIN_CLOCK_SUPPORT 0
#endif
static int adc_stm32_set_clock(const struct device *dev)
{
const struct adc_stm32_cfg *config = dev->config;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
ARG_UNUSED(adc); /* Necessary to avoid warnings on some series */
if (clock_control_on(clk,
(clock_control_subsys_t) &config->pclken[0]) != 0) {
return -EIO;
}
if (IS_ENABLED(STM32_ADC_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) {
/* Enable ADC clock source */
if (clock_control_configure(clk,
(clock_control_subsys_t) &config->pclken[1],
NULL) != 0) {
return -EIO;
}
}
#if defined(CONFIG_SOC_SERIES_STM32F0X)
LL_ADC_SetClock(adc, config->clk_prescaler);
#elif defined(CONFIG_SOC_SERIES_STM32C0X) || \
defined(CONFIG_SOC_SERIES_STM32G0X) || \
defined(CONFIG_SOC_SERIES_STM32L0X) || \
(defined(CONFIG_SOC_SERIES_STM32WBX) && defined(ADC_SUPPORT_2_5_MSPS)) || \
defined(CONFIG_SOC_SERIES_STM32WLX)
if ((config->clk_prescaler == LL_ADC_CLOCK_SYNC_PCLK_DIV1) ||
(config->clk_prescaler == LL_ADC_CLOCK_SYNC_PCLK_DIV2) ||
(config->clk_prescaler == LL_ADC_CLOCK_SYNC_PCLK_DIV4)) {
LL_ADC_SetClock(adc, config->clk_prescaler);
} else {
LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(adc),
config->clk_prescaler);
LL_ADC_SetClock(adc, LL_ADC_CLOCK_ASYNC);
}
#elif !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(adc),
config->clk_prescaler);
#endif
return 0;
}
static int adc_stm32_init(const struct device *dev)
{
struct adc_stm32_data *data = dev->data;
const struct adc_stm32_cfg *config = dev->config;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
int err;
ARG_UNUSED(adc); /* Necessary to avoid warnings on some series */
LOG_DBG("Initializing %s", dev->name);
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
data->dev = dev;
/*
* For series that use common channels for sampling time, all
* conversion time for all channels on one ADC instance has to
* be the same.
* For series that use two common channels, there can be up to two
* conversion times selected for all channels in a sequence.
* This additional table is for checking that the conversion time
* selection of all channels respects these requirements.
*/
data->acq_time_index[0] = -1;
data->acq_time_index[1] = -1;
adc_stm32_set_clock(dev);
/* Configure dt provided device signals when available */
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
LOG_ERR("ADC pinctrl setup failed (%d)", err);
return err;
}
#if defined(CONFIG_SOC_SERIES_STM32U5X)
/* Enable the independent analog supply */
LL_PWR_EnableVDDA();
#endif /* CONFIG_SOC_SERIES_STM32U5X */
#ifdef CONFIG_ADC_STM32_DMA
if ((data->dma.dma_dev != NULL) &&
!device_is_ready(data->dma.dma_dev)) {
LOG_ERR("%s device not ready", data->dma.dma_dev->name);
return -ENODEV;
}
#endif
#if defined(CONFIG_SOC_SERIES_STM32L4X) || \
defined(CONFIG_SOC_SERIES_STM32L5X) || \
defined(CONFIG_SOC_SERIES_STM32WBX) || \
defined(CONFIG_SOC_SERIES_STM32G4X) || \
defined(CONFIG_SOC_SERIES_STM32H5X) || \
defined(CONFIG_SOC_SERIES_STM32H7X) || \
defined(CONFIG_SOC_SERIES_STM32U5X)
/*
* L4, WB, G4, H5, H7 and U5 series STM32 needs to be awaken from deep sleep
* mode, and restore its calibration parameters if there are some
* previously stored calibration parameters.
*/
LL_ADC_DisableDeepPowerDown(adc);
#endif
/*
* Many ADC modules need some time to be stabilized before performing
* any enable or calibration actions.
*/
#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
LL_ADC_EnableInternalRegulator(adc);
k_busy_wait(LL_ADC_DELAY_INTERNAL_REGUL_STAB_US);
#endif
if (config->irq_cfg_func) {
config->irq_cfg_func();
}
#if defined(HAS_CALIBRATION)
adc_stm32_calibrate(dev);
LL_ADC_REG_SetTriggerSource(adc, LL_ADC_REG_TRIG_SOFTWARE);
#endif /* HAS_CALIBRATION */
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int adc_stm32_suspend_setup(const struct device *dev)
{
const struct adc_stm32_cfg *config = dev->config;
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
int err;
/* Disable ADC */
adc_stm32_disable(adc);
#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
/* Disable ADC internal voltage regulator */
LL_ADC_DisableInternalRegulator(adc);
while (LL_ADC_IsInternalRegulatorEnabled(adc) == 1U) {
}
#endif
#if defined(CONFIG_SOC_SERIES_STM32L4X) || \
defined(CONFIG_SOC_SERIES_STM32L5X) || \
defined(CONFIG_SOC_SERIES_STM32WBX) || \
defined(CONFIG_SOC_SERIES_STM32G4X) || \
defined(CONFIG_SOC_SERIES_STM32H5X) || \
defined(CONFIG_SOC_SERIES_STM32H7X) || \
defined(CONFIG_SOC_SERIES_STM32U5X)
/*
* L4, WB, G4, H5, H7 and U5 series STM32 needs to be put into
* deep sleep mode.
*/
LL_ADC_EnableDeepPowerDown(adc);
#endif
#if defined(CONFIG_SOC_SERIES_STM32U5X)
/* Disable the independent analog supply */
LL_PWR_DisableVDDA();
#endif /* CONFIG_SOC_SERIES_STM32U5X */
/* Stop device clock. Note: fixed clocks are not handled yet. */
err = clock_control_off(clk, (clock_control_subsys_t)&config->pclken[0]);
if (err != 0) {
LOG_ERR("Could not disable ADC clock");
return err;
}
/* Move pins to sleep state */
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
if ((err < 0) && (err != -ENOENT)) {
/*
* If returning -ENOENT, no pins where defined for sleep mode :
* Do not output on console (might sleep already) when going to sleep,
* "ADC pinctrl sleep state not available"
* and don't block PM suspend.
* Else return the error.
*/
return err;
}
return 0;
}
static int adc_stm32_pm_action(const struct device *dev,
enum pm_device_action action)
{
switch (action) {
case PM_DEVICE_ACTION_RESUME:
return adc_stm32_init(dev);
case PM_DEVICE_ACTION_SUSPEND:
return adc_stm32_suspend_setup(dev);
default:
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
static const struct adc_driver_api api_stm32_driver_api = {
.channel_setup = adc_stm32_channel_setup,
.read = adc_stm32_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_stm32_read_async,
#endif
.ref_internal = STM32_ADC_VREF_MV, /* VREF is usually connected to VDD */
};
#if defined(CONFIG_SOC_SERIES_STM32F0X)
/* LL_ADC_CLOCK_ASYNC_DIV1 doesn't exist in F0 LL. Define it here. */
#define LL_ADC_CLOCK_ASYNC_DIV1 LL_ADC_CLOCK_ASYNC
#endif
/* st_prescaler property requires 2 elements : clock ASYNC/SYNC and DIV */
#define ADC_STM32_CLOCK(x) DT_INST_PROP(x, st_adc_clock_source)
#define ADC_STM32_DIV(x) DT_INST_PROP(x, st_adc_prescaler)
/* Macro to set the prefix depending on the 1st element: check if it is SYNC or ASYNC */
#define ADC_STM32_CLOCK_PREFIX(x) \
COND_CODE_1(IS_EQ(ADC_STM32_CLOCK(x), SYNC), \
(LL_ADC_CLOCK_SYNC_PCLK_DIV), \
(LL_ADC_CLOCK_ASYNC_DIV))
/* Concat prefix (1st element) and DIV value (2nd element) of st,adc-prescaler */
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
#define ADC_STM32_DT_PRESC(x) 0
#else
#define ADC_STM32_DT_PRESC(x) \
_CONCAT(ADC_STM32_CLOCK_PREFIX(x), ADC_STM32_DIV(x))
#endif
#if defined(CONFIG_ADC_STM32_DMA)
#define ADC_DMA_CHANNEL_INIT(index, src_dev, dest_dev) \
.dma = { \
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_IDX(index, 0)), \
.channel = STM32_DMA_SLOT_BY_IDX(index, 0, channel), \
.dma_cfg = { \
.dma_slot = STM32_DMA_SLOT_BY_IDX(index, 0, slot), \
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.source_burst_length = 1, /* SINGLE transfer */ \
.dest_burst_length = 1, /* SINGLE transfer */ \
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.dma_callback = dma_callback, \
.block_count = 2, \
}, \
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
}
#define ADC_STM32_IRQ_FUNC(index) \
.irq_cfg_func = NULL,
#else /* CONFIG_ADC_STM32_DMA */
/*
* For series that share interrupt lines for multiple ADC instances
* and have separate interrupt lines for other ADCs (example,
* STM32G473 has 5 ADC instances, ADC1 and ADC2 share IRQn 18 while
* ADC3, ADC4 and ADC5 use IRQns 47, 61 and 62 respectively), generate
* a single common ISR function for each IRQn and call adc_stm32_isr
* for each device using that interrupt line for all enabled ADCs.
*
* To achieve the above, a "first" ADC instance must be chosen for all
* ADC instances sharing the same IRQn. This "first" ADC instance
* generates the code for the common ISR and for installing and
* enabling it while any other ADC sharing the same IRQn skips this
* code generation and does nothing. The common ISR code is generated
* to include calls to adc_stm32_isr for all instances using that same
* IRQn. From the example above, four ISR functions would be generated
* for IRQn 18, 47, 61 and 62, with possible "first" ADC instances
* being ADC1, ADC3, ADC4 and ADC5 if all ADCs were enabled, with the
* ISR function 18 calling adc_stm32_isr for both ADC1 and ADC2.
*
* For some of the macros below, pseudo-code is provided to describe
* its function.
*/
/*
* return (irqn == device_irqn(index)) ? index : NULL
*/
#define FIRST_WITH_IRQN_INTERNAL(index, irqn) \
COND_CODE_1(IS_EQ(irqn, DT_INST_IRQN(index)), (index,), (EMPTY,))
/*
* Returns the "first" instance's index:
*
* instances = []
* for instance in all_active_adcs:
* instances.append(first_with_irqn_internal(device_irqn(index)))
* for instance in instances:
* if instance == NULL:
* instances.remove(instance)
* return instances[0]
*/
#define FIRST_WITH_IRQN(index) \
GET_ARG_N(1, LIST_DROP_EMPTY(DT_INST_FOREACH_STATUS_OKAY_VARGS(FIRST_WITH_IRQN_INTERNAL, \
DT_INST_IRQN(index))))
/*
* Provides code for calling adc_stm32_isr for an instance if its IRQn
* matches:
*
* if (irqn == device_irqn(index)):
* return "adc_stm32_isr(DEVICE_DT_INST_GET(index));"
*/
#define HANDLE_IRQS(index, irqn) \
COND_CODE_1(IS_EQ(irqn, DT_INST_IRQN(index)), (adc_stm32_isr(DEVICE_DT_INST_GET(index));), \
(EMPTY))
/*
* Name of the common ISR for a given IRQn (taken from a device with a
* given index). Example, for an ADC instance with IRQn 18, returns
* "adc_stm32_isr_18".
*/
#define ISR_FUNC(index) UTIL_CAT(adc_stm32_isr_, DT_INST_IRQN(index))
/*
* Macro for generating code for the common ISRs (by looping of all
* ADC instances that share the same IRQn as that of the given device
* by index) and the function for setting up the ISR.
*
* Here is where both "first" and non-"first" instances have code
* generated for their interrupts via HANDLE_IRQS.
*/
#define GENERATE_ISR_CODE(index) \
static void ISR_FUNC(index)(void) \
{ \
DT_INST_FOREACH_STATUS_OKAY_VARGS(HANDLE_IRQS, DT_INST_IRQN(index)) \
} \
\
static void UTIL_CAT(ISR_FUNC(index), _init)(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(index), DT_INST_IRQ(index, priority), ISR_FUNC(index), \
NULL, 0); \
irq_enable(DT_INST_IRQN(index)); \
}
/*
* Limit generating code to only the "first" instance:
*
* if (first_with_irqn(index) == index):
* generate_isr_code(index)
*/
#define GENERATE_ISR(index) \
COND_CODE_1(IS_EQ(index, FIRST_WITH_IRQN(index)), (GENERATE_ISR_CODE(index)), (EMPTY))
DT_INST_FOREACH_STATUS_OKAY(GENERATE_ISR)
/* Only "first" instances need to call the ISR setup function */
#define ADC_STM32_IRQ_FUNC(index) \
.irq_cfg_func = COND_CODE_1(IS_EQ(index, FIRST_WITH_IRQN(index)), \
(UTIL_CAT(ISR_FUNC(index), _init)), (NULL)),
#endif /* CONFIG_ADC_STM32_DMA */
#define ADC_DMA_CHANNEL(id, src, dest) \
COND_CODE_1(DT_INST_DMAS_HAS_IDX(id, 0), \
(ADC_DMA_CHANNEL_INIT(id, src, dest)), \
(/* Required for other adc instances without dma */))
#define ADC_STM32_INIT(index) \
\
PINCTRL_DT_INST_DEFINE(index); \
\
static const struct stm32_pclken pclken_##index[] = \
STM32_DT_INST_CLOCKS(index); \
\
static const struct adc_stm32_cfg adc_stm32_cfg_##index = { \
.base = (ADC_TypeDef *)DT_INST_REG_ADDR(index), \
ADC_STM32_IRQ_FUNC(index) \
.pclken = pclken_##index, \
.pclk_len = DT_INST_NUM_CLOCKS(index), \
.clk_prescaler = ADC_STM32_DT_PRESC(index), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
.sequencer_type = DT_INST_PROP(index, st_adc_sequencer), \
.sampling_time_table = DT_INST_PROP(index, sampling_times), \
.num_sampling_time_common_channels = \
DT_INST_PROP_OR(index, num_sampling_time_common_channels, 0),\
.res_table_size = DT_INST_PROP_LEN(index, resolutions), \
.res_table = DT_INST_PROP(index, resolutions), \
}; \
\
static struct adc_stm32_data adc_stm32_data_##index = { \
ADC_CONTEXT_INIT_TIMER(adc_stm32_data_##index, ctx), \
ADC_CONTEXT_INIT_LOCK(adc_stm32_data_##index, ctx), \
ADC_CONTEXT_INIT_SYNC(adc_stm32_data_##index, ctx), \
ADC_DMA_CHANNEL(index, PERIPHERAL, MEMORY) \
}; \
\
PM_DEVICE_DT_INST_DEFINE(index, adc_stm32_pm_action); \
\
DEVICE_DT_INST_DEFINE(index, \
&adc_stm32_init, PM_DEVICE_DT_INST_GET(index), \
&adc_stm32_data_##index, &adc_stm32_cfg_##index, \
POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
&api_stm32_driver_api);
DT_INST_FOREACH_STATUS_OKAY(ADC_STM32_INIT)
|