Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/* dma.c - DMA test source file */

/*
 * Copyright (c) 2016 Intel Corporation.
 * Copyright (c) 2021 Linaro Limited.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Verify zephyr dma memory to memory transfer loops
 * @details
 * - Test Steps
 *   -# Set dma channel configuration including source/dest addr, burstlen
 *   -# Set direction memory-to-memory
 *   -# Start transfer
 *   -# Move to next dest addr
 *   -# Back to first step
 * - Expected Results
 *   -# Data is transferred correctly from src to dest, for each loop
 */

#include <zephyr/kernel.h>

#include <zephyr/device.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/pm/device.h>
#include <zephyr/ztest.h>

/* in millisecond */
#define SLEEPTIME 250

#define TRANSFER_LOOPS (4)

static __aligned(32) uint8_t tx_data[CONFIG_DMA_LOOP_TRANSFER_SIZE];
static __aligned(32) uint8_t rx_data[TRANSFER_LOOPS][CONFIG_DMA_LOOP_TRANSFER_SIZE] = { { 0 } };

volatile uint32_t transfer_count;
volatile uint32_t done;
static struct dma_config dma_cfg = {0};
static struct dma_block_config dma_block_cfg = {0};
static int test_case_id;

static void test_transfer(const struct device *dev, uint32_t id)
{
	transfer_count++;
	if (transfer_count < TRANSFER_LOOPS) {
		dma_block_cfg.block_size = sizeof(tx_data);
#ifdef CONFIG_DMA_64BIT
		dma_block_cfg.source_address = (uint64_t)tx_data;
		dma_block_cfg.dest_address = (uint64_t)rx_data[transfer_count];
#else
		dma_block_cfg.source_address = (uint32_t)tx_data;
		dma_block_cfg.dest_address = (uint32_t)rx_data[transfer_count];
#endif

		zassert_false(dma_config(dev, id, &dma_cfg),
					"Not able to config transfer %d",
					transfer_count + 1);
		zassert_false(dma_start(dev, id),
					"Not able to start next transfer %d",
					transfer_count + 1);
	}
}

static void dma_user_callback(const struct device *dma_dev, void *arg,
			      uint32_t id, int status)
{
	/* test case is done so ignore the interrupt */
	if (done) {
		return;
	}

	zassert_false(status < 0, "DMA could not proceed, an error occurred\n");

#ifdef CONFIG_DMAMUX_STM32
	/* the channel is the DMAMUX's one
	 * the device is the DMAMUX, given through
	 * the stream->user_data by the dma_stm32_irq_handler
	 */
	test_transfer((const struct device *)arg, id);
#else
	test_transfer(dma_dev, id);
#endif /* CONFIG_DMAMUX_STM32 */
}

static int test_loop(const struct device *dma)
{
	static int chan_id;

	test_case_id = 0;
	TC_PRINT("DMA memory to memory transfer started\n");

	memset(tx_data, 0, sizeof(tx_data));

	for (int i = 0; i < CONFIG_DMA_LOOP_TRANSFER_SIZE; i++) {
		tx_data[i] = i;
	}

	memset(rx_data, 0, sizeof(rx_data));

	if (!device_is_ready(dma)) {
		TC_PRINT("dma controller device is not ready\n");
		return TC_FAIL;
	}

	TC_PRINT("Preparing DMA Controller: %s\n", dma->name);
	dma_cfg.channel_direction = MEMORY_TO_MEMORY;
	dma_cfg.source_data_size = 1U;
	dma_cfg.dest_data_size = 1U;
	dma_cfg.source_burst_length = 1U;
	dma_cfg.dest_burst_length = 1U;
#ifdef CONFIG_DMAMUX_STM32
	dma_cfg.user_data = (void *)dma;
#else
	dma_cfg.user_data = NULL;
#endif /* CONFIG_DMAMUX_STM32 */
	dma_cfg.dma_callback = dma_user_callback;
	dma_cfg.block_count = 1U;
	dma_cfg.head_block = &dma_block_cfg;

#ifdef CONFIG_DMA_MCUX_TEST_SLOT_START
	dma_cfg.dma_slot = CONFIG_DMA_MCUX_TEST_SLOT_START;
#endif

	chan_id = dma_request_channel(dma, NULL);
	if (chan_id < 0) {
		TC_PRINT("this platform do not support the dma channel\n");
		chan_id = CONFIG_DMA_LOOP_TRANSFER_CHANNEL_NR;
	}
	transfer_count = 0;
	done = 0;
	TC_PRINT("Starting the transfer on channel %d and waiting for 1 second\n", chan_id);
	dma_block_cfg.block_size = sizeof(tx_data);
#ifdef CONFIG_DMA_64BIT
	dma_block_cfg.source_address = (uint64_t)tx_data;
	dma_block_cfg.dest_address = (uint64_t)rx_data[transfer_count];
#else
	dma_block_cfg.source_address = (uint32_t)tx_data;
	dma_block_cfg.dest_address = (uint32_t)rx_data[transfer_count];
#endif

	if (dma_config(dma, chan_id, &dma_cfg)) {
		TC_PRINT("ERROR: transfer config (%d)\n", chan_id);
		return TC_FAIL;
	}

	if (dma_start(dma, chan_id)) {
		TC_PRINT("ERROR: transfer start (%d)\n", chan_id);
		return TC_FAIL;
	}

	k_sleep(K_MSEC(SLEEPTIME));

	if (transfer_count < TRANSFER_LOOPS) {
		transfer_count = TRANSFER_LOOPS;
		TC_PRINT("ERROR: unfinished transfer\n");
		if (dma_stop(dma, chan_id)) {
			TC_PRINT("ERROR: transfer stop\n");
		}
		return TC_FAIL;
	}

	TC_PRINT("Each RX buffer should contain the full TX buffer string.\n");

	for (int i = 0; i < TRANSFER_LOOPS; i++) {
		TC_PRINT("RX data Loop %d\n", i);
		if (memcmp(tx_data, rx_data[i], CONFIG_DMA_LOOP_TRANSFER_SIZE)) {
			return TC_FAIL;
		}
	}

	TC_PRINT("Finished DMA: %s\n", dma->name);
	return TC_PASS;
}

static int test_loop_suspend_resume(const struct device *dma)
{
	static int chan_id;
	int res = 0;

	test_case_id = 1;
	TC_PRINT("DMA memory to memory transfer started\n");

	memset(tx_data, 0, sizeof(tx_data));

	for (int i = 0; i < CONFIG_DMA_LOOP_TRANSFER_SIZE; i++) {
		tx_data[i] = i;
	}

	memset(rx_data, 0, sizeof(rx_data));

	if (!device_is_ready(dma)) {
		TC_PRINT("dma controller device is not ready\n");
		return TC_FAIL;
	}

	TC_PRINT("Preparing DMA Controller: %s\n", dma->name);
	dma_cfg.channel_direction = MEMORY_TO_MEMORY;
	dma_cfg.source_data_size = 1U;
	dma_cfg.dest_data_size = 1U;
	dma_cfg.source_burst_length = 1U;
	dma_cfg.dest_burst_length = 1U;
#ifdef CONFIG_DMAMUX_STM32
	dma_cfg.user_data = (struct device *)dma;
#else
	dma_cfg.user_data = NULL;
#endif /* CONFIG_DMAMUX_STM32 */
	dma_cfg.dma_callback = dma_user_callback;
	dma_cfg.block_count = 1U;
	dma_cfg.head_block = &dma_block_cfg;

#ifdef CONFIG_DMA_MCUX_TEST_SLOT_START
	dma_cfg.dma_slot = CONFIG_DMA_MCUX_TEST_SLOT_START;
#endif

	chan_id = dma_request_channel(dma, NULL);
	if (chan_id < 0) {
		TC_PRINT("this platform do not support the dma channel\n");
		chan_id = CONFIG_DMA_LOOP_TRANSFER_CHANNEL_NR;
	}
	transfer_count = 0;
	done = 0;
	TC_PRINT("Starting the transfer on channel %d and waiting for 1 second\n", chan_id);
	dma_block_cfg.block_size = sizeof(tx_data);
#ifdef CONFIG_DMA_64BIT
	dma_block_cfg.source_address = (uint64_t)tx_data;
	dma_block_cfg.dest_address = (uint64_t)rx_data[transfer_count];
#else
	dma_block_cfg.source_address = (uint32_t)tx_data;
	dma_block_cfg.dest_address = (uint32_t)rx_data[transfer_count];
#endif

	unsigned int irq_key;

	if (dma_config(dma, chan_id, &dma_cfg)) {
		TC_PRINT("ERROR: transfer config (%d)\n", chan_id);
		return TC_FAIL;
	}

	if (dma_start(dma, chan_id)) {
		TC_PRINT("ERROR: transfer start (%d)\n", chan_id);
		return TC_FAIL;
	}

	/* Try multiple times to suspend the transfers */
	uint32_t tc = transfer_count;

	do {
		irq_key = irq_lock();
		res = dma_suspend(dma, chan_id);
		if (res == -ENOSYS) {
			done = 1;
			TC_PRINT("suspend not supported\n");
			dma_stop(dma, chan_id);
			return TC_PASS;
		}
		tc = transfer_count;
		irq_unlock(irq_key);
		k_busy_wait(100);
	} while (tc != transfer_count);

	/* If we failed to suspend we failed */
	if (transfer_count == TRANSFER_LOOPS) {
		TC_PRINT("ERROR: failed to suspend transfers\n");
		if (dma_stop(dma, chan_id)) {
			TC_PRINT("ERROR: transfer stop\n");
		}
		return TC_FAIL;
	}
	TC_PRINT("suspended after %d transfers occurred\n", transfer_count);

	/* Now sleep */
	k_sleep(K_MSEC(SLEEPTIME));

	/* If we failed to suspend we failed */
	if (transfer_count == TRANSFER_LOOPS) {
		TC_PRINT("ERROR: failed to suspend transfers\n");
		if (dma_stop(dma, chan_id)) {
			TC_PRINT("ERROR: transfer stop\n");
		}
		return TC_FAIL;
	}
	TC_PRINT("resuming after %d transfers occurred\n", transfer_count);

	res = dma_resume(dma, chan_id);
	TC_PRINT("Resumed transfers\n");
	if (res != 0) {
		TC_PRINT("ERROR: resume failed, channel %d, result %d", chan_id, res);
		if (dma_stop(dma, chan_id)) {
			TC_PRINT("ERROR: transfer stop\n");
		}
		return TC_FAIL;
	}

	k_sleep(K_MSEC(SLEEPTIME));

	TC_PRINT("Transfer count %d\n", transfer_count);
	if (transfer_count < TRANSFER_LOOPS) {
		transfer_count = TRANSFER_LOOPS;
		TC_PRINT("ERROR: unfinished transfer\n");
		if (dma_stop(dma, chan_id)) {
			TC_PRINT("ERROR: transfer stop\n");
		}
		return TC_FAIL;
	}

	TC_PRINT("Each RX buffer should contain the full TX buffer string.\n");

	for (int i = 0; i < TRANSFER_LOOPS; i++) {
		TC_PRINT("RX data Loop %d\n", i);
		if (memcmp(tx_data, rx_data[i], CONFIG_DMA_LOOP_TRANSFER_SIZE)) {
			return TC_FAIL;
		}
	}

	TC_PRINT("Finished DMA: %s\n", dma->name);
	return TC_PASS;
}

/**
 * @brief Check if the device is in valid power state.
 *
 * @param dev Device instance.
 * @param expected Device expected power state.
 *
 * @retval true If device is in correct power state.
 * @retval false If device is not in correct power state.
 */
static bool check_dev_power_state(const struct device *dev, enum pm_device_state expected)
{
#if CONFIG_PM_DEVICE_RUNTIME
	enum pm_device_state state;

	if (pm_device_state_get(dev, &state) == 0) {
		if (expected != state) {
			TC_PRINT("ERROR: device %s is incorrect power state"
				 " (current state = %s, expected = %s)\n",
				 dev->name, pm_device_state_str(state),
				 pm_device_state_str(expected));
			return false;
		}

		return true;
	}

	TC_PRINT("ERROR: unable to get power state of %s", dev->name);
	return false;
#else
	return true;
#endif /* CONFIG_PM_DEVICE_RUNTIME */
}

static int test_loop_repeated_start_stop(const struct device *dma)
{
	static int chan_id;
	enum pm_device_state init_state = pm_device_on_power_domain(dma) ?
					  PM_DEVICE_STATE_OFF : PM_DEVICE_STATE_SUSPENDED;

	test_case_id = 0;
	TC_PRINT("DMA memory to memory transfer started\n");
	TC_PRINT("Preparing DMA Controller\n");

	memset(tx_data, 0, sizeof(tx_data));

	memset(rx_data, 0, sizeof(rx_data));

	if (!device_is_ready(dma)) {
		TC_PRINT("dma controller device is not ready\n");
		return TC_FAIL;
	}

	dma_cfg.channel_direction = MEMORY_TO_MEMORY;
	dma_cfg.source_data_size = 1U;
	dma_cfg.dest_data_size = 1U;
	dma_cfg.source_burst_length = 1U;
	dma_cfg.dest_burst_length = 1U;
#ifdef CONFIG_DMAMUX_STM32
	dma_cfg.user_data = (void *)dma;
#else
	dma_cfg.user_data = NULL;
#endif /* CONFIG_DMAMUX_STM32 */
	dma_cfg.dma_callback = dma_user_callback;
	dma_cfg.block_count = 1U;
	dma_cfg.head_block = &dma_block_cfg;

#ifdef CONFIG_DMA_MCUX_TEST_SLOT_START
	dma_cfg.dma_slot = CONFIG_DMA_MCUX_TEST_SLOT_START;
#endif

	if (!check_dev_power_state(dma, PM_DEVICE_STATE_OFF)) {
		return TC_FAIL;
	}

	chan_id = dma_request_channel(dma, NULL);
	if (chan_id < 0) {
		TC_PRINT("this platform do not support the dma channel\n");
		chan_id = CONFIG_DMA_LOOP_TRANSFER_CHANNEL_NR;
	}
	transfer_count = 0;
	done = 0;
	TC_PRINT("Starting the transfer on channel %d and waiting for 1 second\n", chan_id);
	dma_block_cfg.block_size = sizeof(tx_data);
#ifdef CONFIG_DMA_64BIT
	dma_block_cfg.source_address = (uint64_t)tx_data;
	dma_block_cfg.dest_address = (uint64_t)rx_data[transfer_count];
#else
	dma_block_cfg.source_address = (uint32_t)tx_data;
	dma_block_cfg.dest_address = (uint32_t)rx_data[transfer_count];
#endif

	if (dma_config(dma, chan_id, &dma_cfg)) {
		TC_PRINT("ERROR: transfer config (%d)\n", chan_id);
		return TC_FAIL;
	}

	if (dma_stop(dma, chan_id)) {
		TC_PRINT("ERROR: transfer stop on stopped channel (%d)\n", chan_id);
		return TC_FAIL;
	}

	if (!check_dev_power_state(dma, init_state)) {
		return TC_FAIL;
	}

	if (dma_start(dma, chan_id)) {
		TC_PRINT("ERROR: transfer start (%d)\n", chan_id);
		return TC_FAIL;
	}

	if (!check_dev_power_state(dma, PM_DEVICE_STATE_ACTIVE)) {
		return TC_FAIL;
	}

	k_sleep(K_MSEC(SLEEPTIME));

	if (transfer_count < TRANSFER_LOOPS) {
		transfer_count = TRANSFER_LOOPS;
		TC_PRINT("ERROR: unfinished transfer\n");
		if (dma_stop(dma, chan_id)) {
			TC_PRINT("ERROR: transfer stop\n");
		}
		return TC_FAIL;
	}

	TC_PRINT("Each RX buffer should contain the full TX buffer string.\n");

	for (int i = 0; i < TRANSFER_LOOPS; i++) {
		TC_PRINT("RX data Loop %d\n", i);
		if (memcmp(tx_data, rx_data[i], CONFIG_DMA_LOOP_TRANSFER_SIZE)) {
			return TC_FAIL;
		}
	}

	TC_PRINT("Finished: DMA\n");

	if (dma_stop(dma, chan_id)) {
		TC_PRINT("ERROR: transfer stop (%d)\n", chan_id);
		return TC_FAIL;
	}

	if (!check_dev_power_state(dma, init_state)) {
		return TC_FAIL;
	}

	if (dma_stop(dma, chan_id)) {
		TC_PRINT("ERROR: repeated transfer stop (%d)\n", chan_id);
		return TC_FAIL;
	}

	return TC_PASS;
}

#define DMA_NAME(i, _)	tst_dma ## i
#define DMA_LIST	LISTIFY(CONFIG_DMA_LOOP_TRANSFER_NUMBER_OF_DMAS, DMA_NAME, (,))

#define TEST_LOOP(dma_name)                                                                        \
	ZTEST(dma_m2m_loop, test_ ## dma_name ## _m2m_loop)                                        \
	{                                                                                          \
		const struct device *dma = DEVICE_DT_GET(DT_NODELABEL(dma_name));                  \
		zassert_true((test_loop(dma) == TC_PASS));                                         \
	}

FOR_EACH(TEST_LOOP, (), DMA_LIST);

#define TEST_LOOP_SUSPEND_RESUME(dma_name)                                                         \
	ZTEST(dma_m2m_loop, test_ ## dma_name ## _m2m_loop_suspend_resume)                         \
	{                                                                                          \
		const struct device *dma = DEVICE_DT_GET(DT_NODELABEL(dma_name));                  \
		zassert_true((test_loop_suspend_resume(dma) == TC_PASS));                          \
	}

FOR_EACH(TEST_LOOP_SUSPEND_RESUME, (), DMA_LIST);

#define TEST_LOOP_REPEATED_START_STOP(dma_name)                                                    \
	ZTEST(dma_m2m_loop, test_ ## dma_name ## _m2m_loop_repeated_start_stop)                    \
	{                                                                                          \
		const struct device *dma = DEVICE_DT_GET(DT_NODELABEL(dma_name));                  \
		zassert_true((test_loop_repeated_start_stop(dma) == TC_PASS));                     \
	}

FOR_EACH(TEST_LOOP_REPEATED_START_STOP, (), DMA_LIST);