Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | /*
* Copyright (c) 2022 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/ztest.h>
#include <zephyr/kernel.h>
#include <zephyr/toolchain.h>
#include <zephyr/sys/printk.h>
#include <zephyr/sys/util.h>
#include <zephyr/device.h>
#include <zephyr/drivers/dai.h>
#include <zephyr/drivers/dma.h>
#include <soc.h>
/* sof ssp bespoke data */
struct sof_dai_ssp_params {
uint32_t reserved0;
uint16_t reserved1;
uint16_t mclk_id;
uint32_t mclk_rate;
uint32_t fsync_rate;
uint32_t bclk_rate;
uint32_t tdm_slots;
uint32_t rx_slots;
uint32_t tx_slots;
uint32_t sample_valid_bits;
uint16_t tdm_slot_width;
uint16_t reserved2;
uint32_t mclk_direction;
uint16_t frame_pulse_width;
uint16_t tdm_per_slot_padding_flag;
uint32_t clks_control;
uint32_t quirks;
uint32_t bclk_delay;
} __packed;
static const struct device *const dev_dai_ssp =
DEVICE_DT_GET(DT_NODELABEL(ssp0));
static const struct device *const dev_dma_dw =
DEVICE_DT_GET(DT_NODELABEL(lpgpdma0));
static struct dai_config config;
static struct sof_dai_ssp_params ssp_config;
#define BUF_SIZE 48
#define XFER_SIZE BUF_SIZE * 4
#define XFERS 2
K_SEM_DEFINE(xfer_sem, 0, 1);
static struct dma_config dma_cfg = {0};
static struct dma_block_config dma_block_cfgs[XFERS];
static struct dma_config dma_cfg_rx = {0};
static struct dma_block_config dma_block_cfgs_rx[XFERS];
/* 1ms frame of 48Hz sine in 48kHz, thus 48 x 32 bit samples */
static int32_t sine_buf[BUF_SIZE] = {
0x00000000, 0x10b5150f, 0x2120fb83, 0x30fbc54d,
0x40000000, 0x4debe4fe, 0x5a82799a, 0x658c9a2d,
0x6ed9eba1, 0x7641af3d, 0x7ba3751d, 0x7ee7aa4c,
0x7fffffff, 0x7ee7aa4c, 0x7ba3751d, 0x7641af3d,
0x6ed9eba1, 0x658c9a2d, 0x5a82799a, 0x4debe4fe,
0x40000000, 0x30fbc54d, 0x2120fb83, 0x10b5150f,
0x00000000, 0xef4aeaf1, 0xdedf047d, 0xcf043ab3,
0xc0000000, 0xb2141b02, 0xa57d8666, 0x9a7365d3,
0x9126145f, 0x89be50c3, 0x845c8ae3, 0x811855b4,
0x80000000, 0x811855b4, 0x845c8ae3, 0x89be50c3,
0x9126145f, 0x9a7365d3, 0xa57d8666, 0xb2141b02,
0xc0000000, 0xcf043ab3, 0xdedf047d, 0xef4aeaf1,
};
static __aligned(32) int32_t rx_data[XFERS][BUF_SIZE] = { { 0 } };
static void dma_callback(const struct device *dma_dev, void *user_data,
uint32_t channel, int status)
{
if (status < 0) {
TC_PRINT("tx callback status %d\n", status);
} else {
TC_PRINT("tx giving up\n");
}
}
static void dma_callback_rx(const struct device *dma_dev, void *user_data,
uint32_t channel, int status)
{
if (status < 0) {
TC_PRINT("rx callback status %d\n", status);
} else {
TC_PRINT("rx giving xfer_sem\n");
k_sem_give(&xfer_sem);
}
}
static int config_output_dma(const struct dai_properties *props, uint32_t *chan_id)
{
dma_cfg.dma_slot = props->dma_hs_id;
dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
dma_cfg.dest_handshake = 0;
dma_cfg.source_handshake = 0;
dma_cfg.cyclic = 1;
dma_cfg.source_data_size = 1;
dma_cfg.dest_data_size = 1;
dma_cfg.source_burst_length = 1;
dma_cfg.dest_burst_length = 1;
dma_cfg.user_data = NULL;
dma_cfg.dma_callback = dma_callback;
dma_cfg.block_count = XFERS;
dma_cfg.head_block = dma_block_cfgs;
dma_cfg.complete_callback_en = false; /* per block completion */
*chan_id = dma_request_channel(dev_dma_dw, NULL);
if (*chan_id < 0) {
TC_PRINT("Platform does not support dma request channel\n");
return -1;
}
memset(dma_block_cfgs, 0, sizeof(dma_block_cfgs));
for (int i = 0; i < XFERS; i++) {
dma_block_cfgs[i].block_size = XFER_SIZE;
dma_block_cfgs[i].source_address = (uint32_t)sine_buf;
dma_block_cfgs[i].dest_address = props->fifo_address;
TC_PRINT("dma block %d block_size %d, source addr %x, dest addr %x\n",
i, BUF_SIZE, dma_block_cfgs[i].source_address,
dma_block_cfgs[i].dest_address);
if (i < XFERS - 1) {
dma_block_cfgs[i].next_block = &dma_block_cfgs[i+1];
TC_PRINT("set next block pointer to %p\n", dma_block_cfgs[i].next_block);
}
}
return 0;
}
static int config_input_dma(const struct dai_properties *props, uint32_t *chan_id_rx)
{
dma_cfg_rx.dma_slot = props->dma_hs_id;
dma_cfg_rx.channel_direction = PERIPHERAL_TO_MEMORY;
dma_cfg_rx.dest_handshake = 0;
dma_cfg_rx.source_handshake = 0;
dma_cfg_rx.cyclic = 1;
dma_cfg_rx.source_data_size = 1;
dma_cfg_rx.dest_data_size = 1;
dma_cfg_rx.source_burst_length = 1;
dma_cfg_rx.dest_burst_length = 1;
dma_cfg_rx.user_data = NULL;
dma_cfg_rx.dma_callback = dma_callback_rx;
dma_cfg_rx.block_count = XFERS;
dma_cfg_rx.head_block = dma_block_cfgs_rx;
dma_cfg_rx.complete_callback_en = false; /* per block completion */
*chan_id_rx = dma_request_channel(dev_dma_dw, NULL);
if (*chan_id_rx < 0) {
TC_PRINT("Platform does not support dma request channel\n");
return -1;
}
memset(dma_block_cfgs_rx, 0, sizeof(dma_block_cfgs_rx));
memset(rx_data, 0, sizeof(rx_data));
for (int i = 0; i < XFERS; i++) {
dma_block_cfgs_rx[i].block_size = XFER_SIZE;
dma_block_cfgs_rx[i].source_address = props->fifo_address;
dma_block_cfgs_rx[i].dest_address = (uint32_t)rx_data[i];
TC_PRINT("dma block %d block_size %d, source addr %x, dest addr %x\n",
i, BUF_SIZE, dma_block_cfgs_rx[i].source_address,
dma_block_cfgs_rx[i].dest_address);
if (i < XFERS - 1) {
dma_block_cfgs_rx[i].next_block = &dma_block_cfgs_rx[i+1];
TC_PRINT("set next block pointer to %p\n", dma_block_cfgs_rx[i].next_block);
}
}
return 0;
}
static int check_transmission(void)
{
int32_t buffer[2 * BUF_SIZE];
bool pattern_found = false;
int32_t pattern[4];
int start_index;
int i, j;
TC_PRINT("Checking transmission:\n");
/* let's make things easier */
for (i = 0; i < BUF_SIZE; i++) {
buffer[i] = rx_data[0][i];
buffer[BUF_SIZE + i] = rx_data[1][i];
}
for (i = 0; i < 4; i++) {
pattern[i] = sine_buf[i];
}
TC_PRINT("tx_data (will be sent 2 times):\n");
for (i = 0; i < BUF_SIZE; i += 8) {
for (j = 0; j < 8; j++) {
TC_PRINT("0x%08x ", sine_buf[i + j]);
}
TC_PRINT("\n");
}
TC_PRINT("\n");
TC_PRINT("rx_data:\n");
for (i = 0; i < BUF_SIZE * 2; i += 8) {
for (j = 0; j < 8; j++) {
TC_PRINT("0x%08x ", buffer[i + j]);
}
TC_PRINT("\n");
}
TC_PRINT("\n");
/* search for pattern only on first half */
for (i = 0; i < BUF_SIZE; i++) {
if (buffer[i] == pattern[0] &&
buffer[i + 1] == pattern[1] &&
buffer[i + 2] == pattern[2] &&
buffer[i + 3] == pattern[3]) {
pattern_found = true;
start_index = i;
break;
}
}
if (!pattern_found) {
TC_PRINT("pattern not found in rx buffer\n");
return TC_FAIL;
}
TC_PRINT("pattern found in rx buffer an index %d value %x\n", start_index,
buffer[start_index]);
for (i = 0; i < BUF_SIZE; i++) {
TC_PRINT("tx 0x%08x rx 0x%08x\n", buffer[start_index + i], sine_buf[i]);
if (buffer[start_index + i] != sine_buf[i]) {
break;
}
}
if (i < BUF_SIZE - 1) {
TC_PRINT("transfer differs at index %d\n", i);
return TC_FAIL;
}
return TC_PASS;
}
ZTEST(adsp_ssp, test_adsp_ssp_transfer)
{
const struct dai_properties *props;
static int chan_id_rx;
static int chan_id;
props = dai_get_properties(dev_dai_ssp, DAI_DIR_TX, 0);
if (!props) {
TC_PRINT("Cannot get dai tx properties\n");
return;
}
if (config_output_dma(props, &chan_id)) {
TC_PRINT("ERROR: config tx dma (%d)\n", chan_id);
return;
}
TC_PRINT("Configuring the dma tx transfer on channel %d\n", chan_id);
if (dma_config(dev_dma_dw, chan_id, &dma_cfg)) {
TC_PRINT("ERROR: dma tx config (%d)\n", chan_id);
return;
}
props = dai_get_properties(dev_dai_ssp, DAI_DIR_RX, 0);
if (!props) {
TC_PRINT("Cannot get dai rx properties\n");
return;
}
if (config_input_dma(props, &chan_id_rx)) {
TC_PRINT("ERROR: config rx dma (%d)\n", chan_id);
return;
}
TC_PRINT("Configuring the dma rx transfer on channel %d\n", chan_id_rx);
if (dma_config(dev_dma_dw, chan_id_rx, &dma_cfg_rx)) {
TC_PRINT("ERROR: transfer config (%d)\n", chan_id_rx);
return;
}
TC_PRINT("Starting the transfer on channels %d and %d and waiting completion\n", chan_id,
chan_id_rx);
if (dai_trigger(dev_dai_ssp, DAI_DIR_RX, DAI_TRIGGER_PRE_START)) {
TC_PRINT("ERROR: dai rx pre start\n");
return;
}
if (dai_trigger(dev_dai_ssp, DAI_DIR_TX, DAI_TRIGGER_PRE_START)) {
TC_PRINT("ERROR: dai tx pre start\n");
return;
}
if (dma_start(dev_dma_dw, chan_id_rx)) {
TC_PRINT("ERROR: dma rx transfer start (%d)\n", chan_id);
return;
}
if (dma_start(dev_dma_dw, chan_id)) {
TC_PRINT("ERROR: dma tx transfer start (%d)\n", chan_id);
return;
}
if (dai_trigger(dev_dai_ssp, DAI_DIR_RX, DAI_TRIGGER_START)) {
TC_PRINT("ERROR: rx dai start\n");
return;
}
if (dai_trigger(dev_dai_ssp, DAI_DIR_TX, DAI_TRIGGER_START)) {
TC_PRINT("ERROR: tx dai start\n");
return;
}
if (k_sem_take(&xfer_sem, K_MSEC(1000)) != 0) {
TC_PRINT("timed out waiting for xfers\n");
return;
}
dma_stop(dev_dma_dw, chan_id_rx);
dma_stop(dev_dma_dw, chan_id);
dai_trigger(dev_dai_ssp, DAI_DIR_RX, DAI_TRIGGER_STOP);
dai_trigger(dev_dai_ssp, DAI_DIR_TX, DAI_TRIGGER_STOP);
check_transmission();
}
ZTEST(adsp_ssp, test_adsp_ssp_config_set)
{
int ret;
/* generic config */
config.type = DAI_INTEL_SSP;
config.dai_index = 0;
config.channels = 2;
config.rate = 48000;
/*
* 1st byte = "ssp mode" = 1 = SOF_DAI_FMT_I2S = I2S mode
* 3rd byte = "frame mode" = 0 = SOF_DAI_FMT_NB_NF = normal bit clock + frame
* 4th byte = "clocks mode" = 4 = SOF_DAI_FMT_CBC_CFC =
* codec bclk consumer & frame consumer
*/
config.format = 0x00004001;
config.options = 0;
config.word_size = 0;
config.block_size = 0;
/* bespoke config */
ssp_config.mclk_id = 0;
ssp_config.mclk_rate = 24576000;
ssp_config.fsync_rate = 48000;
ssp_config.bclk_rate = 3072000;
ssp_config.tdm_slots = 2;
ssp_config.rx_slots = 3;
ssp_config.tx_slots = 3;
ssp_config.sample_valid_bits = 32;
ssp_config.tdm_slot_width = 32;
ssp_config.mclk_direction = 0;
ssp_config.frame_pulse_width = 0;
ssp_config.tdm_per_slot_padding_flag = 0;
ssp_config.clks_control = 0;
ssp_config.quirks = 1 << 6; /* loopback bit on */
ssp_config.bclk_delay = 0;
ret = dai_config_set(dev_dai_ssp, &config, &ssp_config);
zassert_equal(ret, TC_PASS);
}
static void test_adsp_ssp_probe(void)
{
int ret;
ret = dai_probe(dev_dai_ssp);
zassert_equal(ret, TC_PASS);
}
static void *adsp_ssp_setup(void)
{
k_object_access_grant(dev_dai_ssp, k_current_get());
zassert_true(device_is_ready(dev_dai_ssp), "device SSP_0 is not ready");
zassert_true(device_is_ready(dev_dma_dw), "device DMA 0 is not ready");
test_adsp_ssp_probe();
return NULL;
}
bool adsp_clock_source_is_supported(int source)
{
return true;
}
uint32_t adsp_clock_source_frequency(int source)
{
return 0;
}
ZTEST_SUITE(adsp_ssp, NULL, adsp_ssp_setup, NULL, NULL, NULL);
|