/*
* Copyright (c) 2022 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT zephyr_cdc_acm_uart
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/sys/ring_buffer.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/usb/usbd.h>
#include <zephyr/usb/usb_ch9.h>
#include <zephyr/usb/class/usb_cdc.h>
#include <zephyr/drivers/usb/udc.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(usbd_cdc_acm, CONFIG_USBD_CDC_ACM_LOG_LEVEL);
NET_BUF_POOL_FIXED_DEFINE(cdc_acm_ep_pool,
DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) * 2,
512, sizeof(struct udc_buf_info), NULL);
#define CDC_ACM_DEFAULT_LINECODING {sys_cpu_to_le32(115200), 0, 0, 8}
#define CDC_ACM_DEFAULT_BULK_EP_MPS 0
#define CDC_ACM_DEFAULT_INT_EP_MPS 16
#define CDC_ACM_DEFAULT_INT_INTERVAL 0x0A
#define CDC_ACM_CLASS_ENABLED 0
#define CDC_ACM_CLASS_SUSPENDED 1
#define CDC_ACM_IRQ_RX_ENABLED 2
#define CDC_ACM_IRQ_TX_ENABLED 3
#define CDC_ACM_RX_FIFO_BUSY 4
#define CDC_ACM_LOCK 5
static struct k_work_q cdc_acm_work_q;
static K_KERNEL_STACK_DEFINE(cdc_acm_stack,
CONFIG_USBD_CDC_ACM_STACK_SIZE);
struct cdc_acm_uart_fifo {
struct ring_buf *rb;
bool irq;
bool altered;
};
struct cdc_acm_uart_data {
/* Pointer to the associated USBD class node */
struct usbd_class_node *c_nd;
/* Line Coding Structure */
struct cdc_acm_line_coding line_coding;
/* SetControlLineState bitmap */
uint16_t line_state;
/* Serial state bitmap */
uint16_t serial_state;
/* UART actual configuration */
struct uart_config uart_cfg;
/* UART actual RTS state */
bool line_state_rts;
/* UART actual DTR state */
bool line_state_dtr;
/* UART API IRQ callback */
uart_irq_callback_user_data_t cb;
/* UART API user callback data */
void *cb_data;
/* UART API IRQ callback work */
struct k_work irq_cb_work;
struct cdc_acm_uart_fifo rx_fifo;
struct cdc_acm_uart_fifo tx_fifo;
/* USBD CDC ACM TX fifo work */
struct k_work tx_fifo_work;
/* USBD CDC ACM RX fifo work */
struct k_work rx_fifo_work;
atomic_t state;
struct k_sem notif_sem;
};
struct usbd_cdc_acm_desc {
struct usb_association_descriptor iad_cdc;
struct usb_if_descriptor if0;
struct cdc_header_descriptor if0_header;
struct cdc_cm_descriptor if0_cm;
struct cdc_acm_descriptor if0_acm;
struct cdc_union_descriptor if0_union;
struct usb_ep_descriptor if0_int_ep;
struct usb_if_descriptor if1;
struct usb_ep_descriptor if1_in_ep;
struct usb_ep_descriptor if1_out_ep;
struct usb_desc_header nil_desc;
} __packed;
static void cdc_acm_irq_rx_enable(const struct device *dev);
struct net_buf *cdc_acm_buf_alloc(const uint8_t ep)
{
struct net_buf *buf = NULL;
struct udc_buf_info *bi;
buf = net_buf_alloc(&cdc_acm_ep_pool, K_NO_WAIT);
if (!buf) {
return NULL;
}
bi = udc_get_buf_info(buf);
memset(bi, 0, sizeof(struct udc_buf_info));
bi->ep = ep;
return buf;
}
static ALWAYS_INLINE int cdc_acm_work_submit(struct k_work *work)
{
return k_work_submit_to_queue(&cdc_acm_work_q, work);
}
static ALWAYS_INLINE bool check_wq_ctx(const struct device *dev)
{
return k_current_get() == k_work_queue_thread_get(&cdc_acm_work_q);
}
static uint8_t cdc_acm_get_int_in(struct usbd_class_node *const c_nd)
{
struct usbd_cdc_acm_desc *desc = c_nd->data->desc;
return desc->if0_int_ep.bEndpointAddress;
}
static uint8_t cdc_acm_get_bulk_in(struct usbd_class_node *const c_nd)
{
struct usbd_cdc_acm_desc *desc = c_nd->data->desc;
return desc->if1_in_ep.bEndpointAddress;
}
static uint8_t cdc_acm_get_bulk_out(struct usbd_class_node *const c_nd)
{
struct usbd_cdc_acm_desc *desc = c_nd->data->desc;
return desc->if1_out_ep.bEndpointAddress;
}
static size_t cdc_acm_get_bulk_mps(struct usbd_class_node *const c_nd)
{
struct usbd_cdc_acm_desc *desc = c_nd->data->desc;
return desc->if1_out_ep.wMaxPacketSize;
}
static int usbd_cdc_acm_request(struct usbd_class_node *const c_nd,
struct net_buf *buf, int err)
{
struct usbd_contex *uds_ctx = c_nd->data->uds_ctx;
const struct device *dev = c_nd->data->priv;
struct cdc_acm_uart_data *data = dev->data;
struct udc_buf_info *bi;
bi = udc_get_buf_info(buf);
if (err) {
if (err == -ECONNABORTED) {
LOG_WRN("request ep 0x%02x, len %u cancelled",
bi->ep, buf->len);
} else {
LOG_ERR("request ep 0x%02x, len %u failed",
bi->ep, buf->len);
}
if (bi->ep == cdc_acm_get_bulk_out(c_nd)) {
atomic_clear_bit(&data->state, CDC_ACM_RX_FIFO_BUSY);
}
goto ep_request_error;
}
if (bi->ep == cdc_acm_get_bulk_out(c_nd)) {
/* RX transfer completion */
size_t done;
LOG_HEXDUMP_INF(buf->data, buf->len, "");
done = ring_buf_put(data->rx_fifo.rb, buf->data, buf->len);
if (done && data->cb) {
cdc_acm_work_submit(&data->irq_cb_work);
}
atomic_clear_bit(&data->state, CDC_ACM_RX_FIFO_BUSY);
cdc_acm_work_submit(&data->rx_fifo_work);
}
if (bi->ep == cdc_acm_get_bulk_in(c_nd)) {
/* TX transfer completion */
if (data->cb) {
cdc_acm_work_submit(&data->irq_cb_work);
}
}
if (bi->ep == cdc_acm_get_int_in(c_nd)) {
k_sem_give(&data->notif_sem);
}
ep_request_error:
return usbd_ep_buf_free(uds_ctx, buf);
}
static void usbd_cdc_acm_update(struct usbd_class_node *const c_nd,
uint8_t iface, uint8_t alternate)
{
LOG_DBG("New configuration, interface %u alternate %u",
iface, alternate);
}
static void usbd_cdc_acm_enable(struct usbd_class_node *const c_nd)
{
const struct device *dev = c_nd->data->priv;
struct cdc_acm_uart_data *data = dev->data;
atomic_set_bit(&data->state, CDC_ACM_CLASS_ENABLED);
LOG_INF("Configuration enabled");
if (atomic_test_bit(&data->state, CDC_ACM_IRQ_RX_ENABLED)) {
cdc_acm_irq_rx_enable(dev);
}
if (atomic_test_bit(&data->state, CDC_ACM_IRQ_TX_ENABLED)) {
/* TODO */
}
}
static void usbd_cdc_acm_disable(struct usbd_class_node *const c_nd)
{
const struct device *dev = c_nd->data->priv;
struct cdc_acm_uart_data *data = dev->data;
atomic_clear_bit(&data->state, CDC_ACM_CLASS_ENABLED);
atomic_clear_bit(&data->state, CDC_ACM_CLASS_SUSPENDED);
LOG_INF("Configuration disabled");
}
static void usbd_cdc_acm_suspended(struct usbd_class_node *const c_nd)
{
const struct device *dev = c_nd->data->priv;
struct cdc_acm_uart_data *data = dev->data;
/* FIXME: filter stray suspended events earlier */
atomic_set_bit(&data->state, CDC_ACM_CLASS_SUSPENDED);
}
static void usbd_cdc_acm_resumed(struct usbd_class_node *const c_nd)
{
const struct device *dev = c_nd->data->priv;
struct cdc_acm_uart_data *data = dev->data;
atomic_clear_bit(&data->state, CDC_ACM_CLASS_SUSPENDED);
}
static void cdc_acm_update_uart_cfg(struct cdc_acm_uart_data *const data)
{
struct uart_config *const cfg = &data->uart_cfg;
cfg->baudrate = sys_le32_to_cpu(data->line_coding.dwDTERate);
switch (data->line_coding.bCharFormat) {
case USB_CDC_LINE_CODING_STOP_BITS_1:
cfg->stop_bits = UART_CFG_STOP_BITS_1;
break;
case USB_CDC_LINE_CODING_STOP_BITS_1_5:
cfg->stop_bits = UART_CFG_STOP_BITS_1_5;
break;
case USB_CDC_LINE_CODING_STOP_BITS_2:
default:
cfg->stop_bits = UART_CFG_STOP_BITS_2;
break;
};
switch (data->line_coding.bParityType) {
case USB_CDC_LINE_CODING_PARITY_NO:
default:
cfg->parity = UART_CFG_PARITY_NONE;
break;
case USB_CDC_LINE_CODING_PARITY_ODD:
cfg->parity = UART_CFG_PARITY_ODD;
break;
case USB_CDC_LINE_CODING_PARITY_EVEN:
cfg->parity = UART_CFG_PARITY_EVEN;
break;
case USB_CDC_LINE_CODING_PARITY_MARK:
cfg->parity = UART_CFG_PARITY_MARK;
break;
case USB_CDC_LINE_CODING_PARITY_SPACE:
cfg->parity = UART_CFG_PARITY_SPACE;
break;
};
switch (data->line_coding.bDataBits) {
case USB_CDC_LINE_CODING_DATA_BITS_5:
cfg->data_bits = UART_CFG_DATA_BITS_5;
break;
case USB_CDC_LINE_CODING_DATA_BITS_6:
cfg->data_bits = UART_CFG_DATA_BITS_6;
break;
case USB_CDC_LINE_CODING_DATA_BITS_7:
cfg->data_bits = UART_CFG_DATA_BITS_7;
break;
case USB_CDC_LINE_CODING_DATA_BITS_8:
default:
cfg->data_bits = UART_CFG_DATA_BITS_8;
break;
};
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_NONE;
}
static void cdc_acm_update_linestate(struct cdc_acm_uart_data *const data)
{
if (data->line_state & SET_CONTROL_LINE_STATE_RTS) {
data->line_state_rts = true;
} else {
data->line_state_rts = false;
}
if (data->line_state & SET_CONTROL_LINE_STATE_DTR) {
data->line_state_dtr = true;
} else {
data->line_state_dtr = false;
}
}
static int usbd_cdc_acm_cth(struct usbd_class_node *const c_nd,
const struct usb_setup_packet *const setup,
struct net_buf *const buf)
{
const struct device *dev = c_nd->data->priv;
struct cdc_acm_uart_data *data = dev->data;
size_t min_len;
if (setup->bRequest == GET_LINE_CODING) {
if (buf == NULL) {
errno = -ENOMEM;
return 0;
}
min_len = MIN(sizeof(data->line_coding), setup->wLength);
net_buf_add_mem(buf, &data->line_coding, min_len);
return 0;
}
LOG_DBG("bmRequestType 0x%02x bRequest 0x%02x unsupported",
setup->bmRequestType, setup->bRequest);
errno = -ENOTSUP;
return 0;
}
static int usbd_cdc_acm_ctd(struct usbd_class_node *const c_nd,
const struct usb_setup_packet *const setup,
const struct net_buf *const buf)
{
const struct device *dev = c_nd->data->priv;
struct cdc_acm_uart_data *data = dev->data;
size_t len;
switch (setup->bRequest) {
case SET_LINE_CODING:
len = sizeof(data->line_coding);
if (setup->wLength != len) {
errno = -ENOTSUP;
return 0;
}
memcpy(&data->line_coding, buf->data, len);
cdc_acm_update_uart_cfg(data);
return 0;
case SET_CONTROL_LINE_STATE:
data->line_state = setup->wValue;
cdc_acm_update_linestate(data);
return 0;
default:
break;
}
LOG_DBG("bmRequestType 0x%02x bRequest 0x%02x unsupported",
setup->bmRequestType, setup->bRequest);
errno = -ENOTSUP;
return 0;
}
static int usbd_cdc_acm_init(struct usbd_class_node *const c_nd)
{
struct usbd_cdc_acm_desc *desc = c_nd->data->desc;
desc->iad_cdc.bFirstInterface = desc->if0.bInterfaceNumber;
desc->if0_union.bControlInterface = desc->if0.bInterfaceNumber;
desc->if0_union.bSubordinateInterface0 = desc->if1.bInterfaceNumber;
return 0;
}
static int cdc_acm_send_notification(const struct device *dev,
const uint16_t serial_state)
{
struct cdc_acm_notification notification = {
.bmRequestType = 0xA1,
.bNotificationType = USB_CDC_SERIAL_STATE,
.wValue = 0,
.wIndex = 0,
.wLength = sys_cpu_to_le16(sizeof(uint16_t)),
.data = sys_cpu_to_le16(serial_state),
};
struct cdc_acm_uart_data *data = dev->data;
struct usbd_class_node *c_nd = data->c_nd;
struct net_buf *buf;
uint8_t ep;
int ret;
if (!atomic_test_bit(&data->state, CDC_ACM_CLASS_ENABLED)) {
LOG_INF("USB configuration is not enabled");
return -EACCES;
}
if (atomic_test_bit(&data->state, CDC_ACM_CLASS_SUSPENDED)) {
LOG_INF("USB support is suspended (FIXME)");
return -EACCES;
}
ep = cdc_acm_get_int_in(c_nd);
buf = usbd_ep_buf_alloc(c_nd, ep, sizeof(struct cdc_acm_notification));
if (buf == NULL) {
return -ENOMEM;
}
net_buf_add_mem(buf, ¬ification, sizeof(struct cdc_acm_notification));
ret = usbd_ep_enqueue(c_nd, buf);
/* FIXME: support for sync transfers */
k_sem_take(&data->notif_sem, K_FOREVER);
return ret;
}
/*
* TX handler is triggered when the state of TX fifo has been altered.
*/
static void cdc_acm_tx_fifo_handler(struct k_work *work)
{
struct cdc_acm_uart_data *data;
struct usbd_class_node *c_nd;
struct net_buf *buf;
size_t len;
int ret;
data = CONTAINER_OF(work, struct cdc_acm_uart_data, tx_fifo_work);
c_nd = data->c_nd;
if (!atomic_test_bit(&data->state, CDC_ACM_CLASS_ENABLED)) {
LOG_DBG("USB configuration is not enabled");
return;
}
if (atomic_test_bit(&data->state, CDC_ACM_CLASS_SUSPENDED)) {
LOG_INF("USB support is suspended (FIXME: submit rwup)");
return;
}
if (atomic_test_and_set_bit(&data->state, CDC_ACM_LOCK)) {
cdc_acm_work_submit(&data->tx_fifo_work);
return;
}
buf = cdc_acm_buf_alloc(cdc_acm_get_bulk_in(c_nd));
if (buf == NULL) {
cdc_acm_work_submit(&data->tx_fifo_work);
goto tx_fifo_handler_exit;
}
len = ring_buf_get(data->tx_fifo.rb, buf->data, buf->size);
net_buf_add(buf, len);
ret = usbd_ep_enqueue(c_nd, buf);
if (ret) {
LOG_ERR("Failed to enqueue");
net_buf_unref(buf);
}
tx_fifo_handler_exit:
atomic_clear_bit(&data->state, CDC_ACM_LOCK);
}
/*
* RX handler should be conditionally triggered at:
* - (x) cdc_acm_irq_rx_enable()
* - (x) RX transfer completion
* - (x) the end of cdc_acm_irq_cb_handler
* - (x) USBD class API enable call
* - ( ) USBD class API resumed call (TODO)
*/
static void cdc_acm_rx_fifo_handler(struct k_work *work)
{
struct cdc_acm_uart_data *data;
struct usbd_class_node *c_nd;
struct net_buf *buf;
uint8_t ep;
int ret;
data = CONTAINER_OF(work, struct cdc_acm_uart_data, rx_fifo_work);
c_nd = data->c_nd;
if (!atomic_test_bit(&data->state, CDC_ACM_CLASS_ENABLED) ||
atomic_test_bit(&data->state, CDC_ACM_CLASS_SUSPENDED)) {
LOG_INF("USB configuration is not enabled or suspended");
return;
}
if (ring_buf_space_get(data->rx_fifo.rb) < cdc_acm_get_bulk_mps(c_nd)) {
LOG_INF("RX buffer to small, throttle");
return;
}
if (atomic_test_and_set_bit(&data->state, CDC_ACM_RX_FIFO_BUSY)) {
LOG_WRN("RX transfer already in progress");
return;
}
ep = cdc_acm_get_bulk_out(c_nd);
buf = cdc_acm_buf_alloc(ep);
if (buf == NULL) {
return;
}
ret = usbd_ep_enqueue(c_nd, buf);
if (ret) {
LOG_ERR("Failed to enqueue net_buf for 0x%02x", ep);
net_buf_unref(buf);
}
}
static void cdc_acm_irq_tx_enable(const struct device *dev)
{
struct cdc_acm_uart_data *const data = dev->data;
atomic_set_bit(&data->state, CDC_ACM_IRQ_TX_ENABLED);
if (ring_buf_is_empty(data->tx_fifo.rb)) {
LOG_INF("tx_en: trigger irq_cb_work");
cdc_acm_work_submit(&data->irq_cb_work);
}
}
static void cdc_acm_irq_tx_disable(const struct device *dev)
{
struct cdc_acm_uart_data *const data = dev->data;
atomic_clear_bit(&data->state, CDC_ACM_IRQ_TX_ENABLED);
}
static void cdc_acm_irq_rx_enable(const struct device *dev)
{
struct cdc_acm_uart_data *const data = dev->data;
atomic_set_bit(&data->state, CDC_ACM_IRQ_RX_ENABLED);
/* Permit buffer to be drained regardless of USB state */
if (!ring_buf_is_empty(data->rx_fifo.rb)) {
LOG_INF("rx_en: trigger irq_cb_work");
cdc_acm_work_submit(&data->irq_cb_work);
}
if (!atomic_test_bit(&data->state, CDC_ACM_RX_FIFO_BUSY)) {
LOG_INF("rx_en: trigger rx_fifo_work");
cdc_acm_work_submit(&data->rx_fifo_work);
}
}
static void cdc_acm_irq_rx_disable(const struct device *dev)
{
struct cdc_acm_uart_data *const data = dev->data;
atomic_clear_bit(&data->state, CDC_ACM_IRQ_RX_ENABLED);
}
static int cdc_acm_fifo_fill(const struct device *dev,
const uint8_t *const tx_data,
const int len)
{
struct cdc_acm_uart_data *const data = dev->data;
uint32_t done;
if (!check_wq_ctx(dev)) {
LOG_WRN("Invoked by inappropriate context");
__ASSERT_NO_MSG(false);
return 0;
}
done = ring_buf_put(data->tx_fifo.rb, tx_data, len);
if (done) {
data->tx_fifo.altered = true;
}
LOG_INF("UART dev %p, len %d, remaining space %u",
dev, len, ring_buf_space_get(data->tx_fifo.rb));
return done;
}
static int cdc_acm_fifo_read(const struct device *dev,
uint8_t *const rx_data,
const int size)
{
struct cdc_acm_uart_data *const data = dev->data;
uint32_t len;
LOG_INF("UART dev %p size %d length %u",
dev, size, ring_buf_size_get(data->rx_fifo.rb));
if (!check_wq_ctx(dev)) {
LOG_WRN("Invoked by inappropriate context");
__ASSERT_NO_MSG(false);
return 0;
}
len = ring_buf_get(data->rx_fifo.rb, rx_data, size);
if (len) {
data->rx_fifo.altered = true;
}
return len;
}
static int cdc_acm_irq_tx_ready(const struct device *dev)
{
struct cdc_acm_uart_data *const data = dev->data;
if (check_wq_ctx(dev)) {
if (ring_buf_space_get(data->tx_fifo.rb)) {
return 1;
}
} else {
LOG_WRN("Invoked by inappropriate context");
__ASSERT_NO_MSG(false);
}
return 0;
}
static int cdc_acm_irq_rx_ready(const struct device *dev)
{
struct cdc_acm_uart_data *const data = dev->data;
if (check_wq_ctx(dev)) {
if (!ring_buf_is_empty(data->rx_fifo.rb)) {
return 1;
}
} else {
LOG_WRN("Invoked by inappropriate context");
__ASSERT_NO_MSG(false);
}
return 0;
}
static int cdc_acm_irq_is_pending(const struct device *dev)
{
struct cdc_acm_uart_data *const data = dev->data;
if (check_wq_ctx(dev)) {
if (data->tx_fifo.irq || data->rx_fifo.irq) {
return 1;
}
} else {
LOG_WRN("Invoked by inappropriate context");
__ASSERT_NO_MSG(false);
}
return 0;
}
static int cdc_acm_irq_update(const struct device *dev)
{
struct cdc_acm_uart_data *const data = dev->data;
if (!check_wq_ctx(dev)) {
LOG_WRN("Invoked by inappropriate context");
__ASSERT_NO_MSG(false);
return 0;
}
if (atomic_test_bit(&data->state, CDC_ACM_IRQ_RX_ENABLED) &&
!ring_buf_is_empty(data->rx_fifo.rb)) {
data->rx_fifo.irq = true;
} else {
data->rx_fifo.irq = false;
}
if (atomic_test_bit(&data->state, CDC_ACM_IRQ_TX_ENABLED) &&
ring_buf_is_empty(data->tx_fifo.rb)) {
data->tx_fifo.irq = true;
} else {
data->tx_fifo.irq = false;
}
return 1;
}
/*
* IRQ handler should be conditionally triggered for the TX path at:
* - cdc_acm_irq_tx_enable()
* - TX transfer completion
* - TX buffer is empty
* - USBD class API enable and resumed calls
*
* for RX path, if enabled, at:
* - cdc_acm_irq_rx_enable()
* - RX transfer completion
* - RX buffer is not empty
*/
static void cdc_acm_irq_cb_handler(struct k_work *work)
{
struct cdc_acm_uart_data *data;
struct usbd_class_node *c_nd;
data = CONTAINER_OF(work, struct cdc_acm_uart_data, irq_cb_work);
c_nd = data->c_nd;
if (data->cb == NULL) {
LOG_ERR("IRQ callback is not set");
return;
}
if (atomic_test_and_set_bit(&data->state, CDC_ACM_LOCK)) {
LOG_ERR("Polling is in progress");
cdc_acm_work_submit(&data->irq_cb_work);
return;
}
data->tx_fifo.altered = false;
data->rx_fifo.altered = false;
data->rx_fifo.irq = false;
data->tx_fifo.irq = false;
if (atomic_test_bit(&data->state, CDC_ACM_IRQ_RX_ENABLED) ||
atomic_test_bit(&data->state, CDC_ACM_IRQ_TX_ENABLED)) {
data->cb(c_nd->data->priv, data->cb_data);
}
if (data->rx_fifo.altered) {
LOG_DBG("rx fifo altered, submit work");
cdc_acm_work_submit(&data->rx_fifo_work);
}
if (data->tx_fifo.altered) {
LOG_DBG("tx fifo altered, submit work");
cdc_acm_work_submit(&data->tx_fifo_work);
}
if (atomic_test_bit(&data->state, CDC_ACM_IRQ_RX_ENABLED) &&
!ring_buf_is_empty(data->rx_fifo.rb)) {
LOG_DBG("rx irq pending, submit irq_cb_work");
cdc_acm_work_submit(&data->irq_cb_work);
}
if (atomic_test_bit(&data->state, CDC_ACM_IRQ_TX_ENABLED) &&
ring_buf_is_empty(data->tx_fifo.rb)) {
LOG_DBG("tx irq pending, submit irq_cb_work");
cdc_acm_work_submit(&data->irq_cb_work);
}
atomic_clear_bit(&data->state, CDC_ACM_LOCK);
}
static void cdc_acm_irq_callback_set(const struct device *dev,
const uart_irq_callback_user_data_t cb,
void *const cb_data)
{
struct cdc_acm_uart_data *const data = dev->data;
data->cb = cb;
data->cb_data = cb_data;
}
static int cdc_acm_poll_in(const struct device *dev, unsigned char *const c)
{
struct cdc_acm_uart_data *const data = dev->data;
uint32_t len;
int ret = -1;
if (atomic_test_and_set_bit(&data->state, CDC_ACM_LOCK)) {
LOG_ERR("IRQ callback is used");
return -1;
}
if (ring_buf_is_empty(data->rx_fifo.rb)) {
goto poll_in_exit;
}
len = ring_buf_get(data->rx_fifo.rb, c, 1);
if (len) {
cdc_acm_work_submit(&data->rx_fifo_work);
ret = 0;
}
poll_in_exit:
atomic_clear_bit(&data->state, CDC_ACM_LOCK);
return ret;
}
static void cdc_acm_poll_out(const struct device *dev, const unsigned char c)
{
struct cdc_acm_uart_data *const data = dev->data;
if (atomic_test_and_set_bit(&data->state, CDC_ACM_LOCK)) {
LOG_ERR("IRQ callback is used");
return;
}
if (ring_buf_put(data->tx_fifo.rb, &c, 1)) {
goto poll_out_exit;
}
LOG_DBG("Ring buffer full, drain buffer");
if (!ring_buf_get(data->tx_fifo.rb, NULL, 1) ||
!ring_buf_put(data->tx_fifo.rb, &c, 1)) {
LOG_ERR("Failed to drain buffer");
__ASSERT_NO_MSG(false);
}
poll_out_exit:
atomic_clear_bit(&data->state, CDC_ACM_LOCK);
cdc_acm_work_submit(&data->tx_fifo_work);
}
#ifdef CONFIG_UART_LINE_CTRL
static int cdc_acm_line_ctrl_set(const struct device *dev,
const uint32_t ctrl, const uint32_t val)
{
struct cdc_acm_uart_data *const data = dev->data;
uint32_t flag = 0;
switch (ctrl) {
case USB_CDC_LINE_CTRL_BAUD_RATE:
/* Ignore since it can not be used for notification anyway */
return 0;
case USB_CDC_LINE_CTRL_DCD:
flag = USB_CDC_SERIAL_STATE_RXCARRIER;
break;
case USB_CDC_LINE_CTRL_DSR:
flag = USB_CDC_SERIAL_STATE_TXCARRIER;
break;
case USB_CDC_LINE_CTRL_BREAK:
flag = USB_CDC_SERIAL_STATE_BREAK;
break;
case USB_CDC_LINE_CTRL_RING_SIGNAL:
flag = USB_CDC_SERIAL_STATE_RINGSIGNAL;
break;
case USB_CDC_LINE_CTRL_FRAMING:
flag = USB_CDC_SERIAL_STATE_FRAMING;
break;
case USB_CDC_LINE_CTRL_PARITY:
flag = USB_CDC_SERIAL_STATE_PARITY;
break;
case USB_CDC_LINE_CTRL_OVER_RUN:
flag = USB_CDC_SERIAL_STATE_OVERRUN;
break;
default:
return -EINVAL;
}
if (val) {
data->serial_state |= flag;
} else {
data->serial_state &= ~flag;
}
return cdc_acm_send_notification(dev, data->serial_state);
}
static int cdc_acm_line_ctrl_get(const struct device *dev,
const uint32_t ctrl, uint32_t *const val)
{
struct cdc_acm_uart_data *const data = dev->data;
switch (ctrl) {
case UART_LINE_CTRL_BAUD_RATE:
*val = data->uart_cfg.baudrate;
return 0;
case UART_LINE_CTRL_RTS:
*val = data->line_state_rts;
return 0;
case UART_LINE_CTRL_DTR:
*val = data->line_state_dtr;
return 0;
}
return -ENOTSUP;
}
#endif
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int cdc_acm_configure(const struct device *dev,
const struct uart_config *const cfg)
{
ARG_UNUSED(dev);
ARG_UNUSED(cfg);
/*
* We cannot implement configure API because there is
* no notification of configuration changes provided
* for the Abstract Control Model and the UART controller
* is only emulated.
* However, it allows us to use CDC ACM UART together with
* subsystems like Modbus which require configure API for
* real controllers.
*/
return 0;
}
static int cdc_acm_config_get(const struct device *dev,
struct uart_config *const cfg)
{
struct cdc_acm_uart_data *const data = dev->data;
memcpy(cfg, &data->uart_cfg, sizeof(struct uart_config));
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
static int usbd_cdc_acm_init_wq(void)
{
k_work_queue_init(&cdc_acm_work_q);
k_work_queue_start(&cdc_acm_work_q, cdc_acm_stack,
K_KERNEL_STACK_SIZEOF(cdc_acm_stack),
CONFIG_SYSTEM_WORKQUEUE_PRIORITY, NULL);
return 0;
}
static int usbd_cdc_acm_preinit(const struct device *dev)
{
struct cdc_acm_uart_data *const data = dev->data;
ring_buf_reset(data->tx_fifo.rb);
ring_buf_reset(data->rx_fifo.rb);
k_thread_name_set(&cdc_acm_work_q.thread, "cdc_acm_work_q");
k_work_init(&data->tx_fifo_work, cdc_acm_tx_fifo_handler);
k_work_init(&data->rx_fifo_work, cdc_acm_rx_fifo_handler);
k_work_init(&data->irq_cb_work, cdc_acm_irq_cb_handler);
return 0;
}
static const struct uart_driver_api cdc_acm_uart_api = {
.irq_tx_enable = cdc_acm_irq_tx_enable,
.irq_tx_disable = cdc_acm_irq_tx_disable,
.irq_tx_ready = cdc_acm_irq_tx_ready,
.irq_rx_enable = cdc_acm_irq_rx_enable,
.irq_rx_disable = cdc_acm_irq_rx_disable,
.irq_rx_ready = cdc_acm_irq_rx_ready,
.irq_is_pending = cdc_acm_irq_is_pending,
.irq_update = cdc_acm_irq_update,
.irq_callback_set = cdc_acm_irq_callback_set,
.poll_in = cdc_acm_poll_in,
.poll_out = cdc_acm_poll_out,
.fifo_fill = cdc_acm_fifo_fill,
.fifo_read = cdc_acm_fifo_read,
#ifdef CONFIG_UART_LINE_CTRL
.line_ctrl_set = cdc_acm_line_ctrl_set,
.line_ctrl_get = cdc_acm_line_ctrl_get,
#endif
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = cdc_acm_configure,
.config_get = cdc_acm_config_get,
#endif
};
struct usbd_class_api usbd_cdc_acm_api = {
.request = usbd_cdc_acm_request,
.update = usbd_cdc_acm_update,
.enable = usbd_cdc_acm_enable,
.disable = usbd_cdc_acm_disable,
.suspended = usbd_cdc_acm_suspended,
.resumed = usbd_cdc_acm_resumed,
.control_to_host = usbd_cdc_acm_cth,
.control_to_dev = usbd_cdc_acm_ctd,
.init = usbd_cdc_acm_init,
};
#define CDC_ACM_DEFINE_DESCRIPTOR(n) \
static struct usbd_cdc_acm_desc cdc_acm_desc_##n = { \
.iad_cdc = { \
.bLength = sizeof(struct usb_association_descriptor), \
.bDescriptorType = USB_DESC_INTERFACE_ASSOC, \
.bFirstInterface = 0, \
.bInterfaceCount = 0x02, \
.bFunctionClass = USB_BCC_CDC_CONTROL, \
.bFunctionSubClass = ACM_SUBCLASS, \
.bFunctionProtocol = 0, \
.iFunction = 0, \
}, \
\
.if0 = { \
.bLength = sizeof(struct usb_if_descriptor), \
.bDescriptorType = USB_DESC_INTERFACE, \
.bInterfaceNumber = 0, \
.bAlternateSetting = 0, \
.bNumEndpoints = 1, \
.bInterfaceClass = USB_BCC_CDC_CONTROL, \
.bInterfaceSubClass = ACM_SUBCLASS, \
.bInterfaceProtocol = 0, \
.iInterface = 0, \
}, \
\
.if0_header = { \
.bFunctionLength = sizeof(struct cdc_header_descriptor), \
.bDescriptorType = USB_DESC_CS_INTERFACE, \
.bDescriptorSubtype = HEADER_FUNC_DESC, \
.bcdCDC = sys_cpu_to_le16(USB_SRN_1_1), \
}, \
\
.if0_cm = { \
.bFunctionLength = sizeof(struct cdc_cm_descriptor), \
.bDescriptorType = USB_DESC_CS_INTERFACE, \
.bDescriptorSubtype = CALL_MANAGEMENT_FUNC_DESC, \
.bmCapabilities = 0, \
.bDataInterface = 1, \
}, \
\
.if0_acm = { \
.bFunctionLength = sizeof(struct cdc_acm_descriptor), \
.bDescriptorType = USB_DESC_CS_INTERFACE, \
.bDescriptorSubtype = ACM_FUNC_DESC, \
/* See CDC PSTN Subclass Chapter 5.3.2 */ \
.bmCapabilities = BIT(1), \
}, \
\
.if0_union = { \
.bFunctionLength = sizeof(struct cdc_union_descriptor), \
.bDescriptorType = USB_DESC_CS_INTERFACE, \
.bDescriptorSubtype = UNION_FUNC_DESC, \
.bControlInterface = 0, \
.bSubordinateInterface0 = 1, \
}, \
\
.if0_int_ep = { \
.bLength = sizeof(struct usb_ep_descriptor), \
.bDescriptorType = USB_DESC_ENDPOINT, \
.bEndpointAddress = 0x81, \
.bmAttributes = USB_EP_TYPE_INTERRUPT, \
.wMaxPacketSize = sys_cpu_to_le16(CDC_ACM_DEFAULT_INT_EP_MPS), \
.bInterval = CDC_ACM_DEFAULT_INT_INTERVAL, \
}, \
\
.if1 = { \
.bLength = sizeof(struct usb_if_descriptor), \
.bDescriptorType = USB_DESC_INTERFACE, \
.bInterfaceNumber = 1, \
.bAlternateSetting = 0, \
.bNumEndpoints = 2, \
.bInterfaceClass = USB_BCC_CDC_DATA, \
.bInterfaceSubClass = 0, \
.bInterfaceProtocol = 0, \
.iInterface = 0, \
}, \
\
.if1_in_ep = { \
.bLength = sizeof(struct usb_ep_descriptor), \
.bDescriptorType = USB_DESC_ENDPOINT, \
.bEndpointAddress = 0x82, \
.bmAttributes = USB_EP_TYPE_BULK, \
.wMaxPacketSize = sys_cpu_to_le16(CDC_ACM_DEFAULT_BULK_EP_MPS), \
.bInterval = 0, \
}, \
\
.if1_out_ep = { \
.bLength = sizeof(struct usb_ep_descriptor), \
.bDescriptorType = USB_DESC_ENDPOINT, \
.bEndpointAddress = 0x01, \
.bmAttributes = USB_EP_TYPE_BULK, \
.wMaxPacketSize = sys_cpu_to_le16(CDC_ACM_DEFAULT_BULK_EP_MPS), \
.bInterval = 0, \
}, \
\
.nil_desc = { \
.bLength = 0, \
.bDescriptorType = 0, \
}, \
}
#define USBD_CDC_ACM_DT_DEVICE_DEFINE(n) \
BUILD_ASSERT(DT_INST_ON_BUS(n, usb), \
"node " DT_NODE_PATH(DT_DRV_INST(n)) \
" is not assigned to a USB device controller"); \
\
CDC_ACM_DEFINE_DESCRIPTOR(n); \
\
static struct usbd_class_data usbd_cdc_acm_data_##n; \
\
USBD_DEFINE_CLASS(cdc_acm_##n, \
&usbd_cdc_acm_api, \
&usbd_cdc_acm_data_##n); \
\
RING_BUF_DECLARE(cdc_acm_rb_rx_##n, DT_INST_PROP(n, tx_fifo_size)); \
RING_BUF_DECLARE(cdc_acm_rb_tx_##n, DT_INST_PROP(n, tx_fifo_size)); \
\
static struct cdc_acm_uart_data uart_data_##n = { \
.line_coding = CDC_ACM_DEFAULT_LINECODING, \
.c_nd = &cdc_acm_##n, \
.rx_fifo.rb = &cdc_acm_rb_rx_##n, \
.tx_fifo.rb = &cdc_acm_rb_tx_##n, \
.notif_sem = Z_SEM_INITIALIZER(uart_data_##n.notif_sem, 0, 1), \
}; \
\
static struct usbd_class_data usbd_cdc_acm_data_##n = { \
.desc = (struct usb_desc_header *)&cdc_acm_desc_##n, \
.priv = (void *)DEVICE_DT_GET(DT_DRV_INST(n)), \
}; \
\
DEVICE_DT_INST_DEFINE(n, usbd_cdc_acm_preinit, NULL, \
&uart_data_##n, NULL, \
PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
&cdc_acm_uart_api);
DT_INST_FOREACH_STATUS_OKAY(USBD_CDC_ACM_DT_DEVICE_DEFINE);
SYS_INIT(usbd_cdc_acm_init_wq, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);