Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 | /*
* Copyright (c) 2018-2021 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT intel_hpet
#include <zephyr/init.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <zephyr/irq.h>
#include <zephyr/linker/sections.h>
#include <zephyr/dt-bindings/interrupt-controller/intel-ioapic.h>
#include <soc.h>
/**
* @file
* @brief HPET (High Precision Event Timers) driver
*
* HPET hardware contains a number of timers which can be used by
* the operating system, where the number of timers is implementation
* specific. The timers are implemented as a single up-counter with
* a set of comparators where the counter increases monotonically.
* Each timer has a match register and a comparator, and can generate
* an interrupt when the value in the match register equals the value of
* the free running counter. Some of these timers can be enabled to
* generate periodic interrupt.
*
* The HPET registers are usually mapped to memory space on x86
* hardware. If this is not the case, custom register access functions
* can be used by defining macro HPET_USE_CUSTOM_REG_ACCESS_FUNCS in
* soc.h, and implementing necessary initialization and access
* functions as described below.
*
* HPET_COUNTER_CLK_PERIOD can be overridden in soc.h if
* COUNTER_CLK_PERIOD is not in femtoseconds (1e-15 sec).
*/
/* General Configuration register */
#define GCONF_ENABLE BIT(0)
#define GCONF_LR BIT(1) /* legacy interrupt routing, */
/* disables PIT */
/* General Interrupt Status register */
#define TIMER0_INT_STS BIT(0)
/* Timer Configuration and Capabilities register */
#define TIMER_CONF_INT_LEVEL BIT(1)
#define TIMER_CONF_INT_ENABLE BIT(2)
#define TIMER_CONF_PERIODIC BIT(3)
#define TIMER_CONF_VAL_SET BIT(6)
#define TIMER_CONF_MODE32 BIT(8)
#define TIMER_CONF_FSB_EN BIT(14) /* FSB interrupt delivery */
/* enable */
DEVICE_MMIO_TOPLEVEL_STATIC(hpet_regs, DT_DRV_INST(0));
#define HPET_REG_ADDR(off) \
((mm_reg_t)(DEVICE_MMIO_TOPLEVEL_GET(hpet_regs) + (off)))
/* High dword of General Capabilities and ID register */
#define CLK_PERIOD_REG HPET_REG_ADDR(0x04)
/* General Configuration register */
#define GCONF_REG HPET_REG_ADDR(0x10)
/* General Interrupt Status register */
#define INTR_STATUS_REG HPET_REG_ADDR(0x20)
/* Main Counter Register */
#define MAIN_COUNTER_LOW_REG HPET_REG_ADDR(0xf0)
#define MAIN_COUNTER_HIGH_REG HPET_REG_ADDR(0xf4)
/* Timer 0 Configuration and Capabilities register */
#define TIMER0_CONF_REG HPET_REG_ADDR(0x100)
/* Timer 0 Comparator Register */
#define TIMER0_COMPARATOR_LOW_REG HPET_REG_ADDR(0x108)
#define TIMER0_COMPARATOR_HIGH_REG HPET_REG_ADDR(0x10c)
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = DT_IRQN(DT_INST(0, intel_hpet));
#endif
/**
* @brief Return the value of the main counter.
*
* @return Value of Main Counter
*/
static inline uint64_t hpet_counter_get(void)
{
#ifdef CONFIG_64BIT
uint64_t val = sys_read64(MAIN_COUNTER_LOW_REG);
return val;
#else
uint32_t high;
uint32_t low;
do {
high = sys_read32(MAIN_COUNTER_HIGH_REG);
low = sys_read32(MAIN_COUNTER_LOW_REG);
} while (high != sys_read32(MAIN_COUNTER_HIGH_REG));
return ((uint64_t)high << 32) | low;
#endif
}
/**
* @brief Get COUNTER_CLK_PERIOD
*
* Read and return the COUNTER_CLK_PERIOD, which is the high
* 32-bit of the General Capabilities and ID Register. This can
* be used to calculate the frequency of the main counter.
*
* Usually the period is in femtoseconds. If this is not
* the case, define HPET_COUNTER_CLK_PERIOD in soc.h so
* it can be used to calculate frequency.
*
* @return COUNTER_CLK_PERIOD
*/
static inline uint32_t hpet_counter_clk_period_get(void)
{
return sys_read32(CLK_PERIOD_REG);
}
/**
* @brief Return the value of the General Configuration Register
*
* @return Value of the General Configuration Register
*/
static inline uint32_t hpet_gconf_get(void)
{
return sys_read32(GCONF_REG);
}
/**
* @brief Write to General Configuration Register
*
* @param val Value to be written to the register
*/
static inline void hpet_gconf_set(uint32_t val)
{
sys_write32(val, GCONF_REG);
}
/**
* @brief Return the value of the Timer Configuration Register
*
* This reads and returns the value of the Timer Configuration
* Register of Timer #0.
*
* @return Value of the Timer Configuration Register
*/
static inline uint32_t hpet_timer_conf_get(void)
{
return sys_read32(TIMER0_CONF_REG);
}
/**
* @brief Write to the Timer Configuration Register
*
* This writes the specified value to the Timer Configuration
* Register of Timer #0.
*
* @param val Value to be written to the register
*/
static inline void hpet_timer_conf_set(uint32_t val)
{
sys_write32(val, TIMER0_CONF_REG);
}
/*
* The following register access functions should work on generic x86
* hardware. If the targeted SoC requires special handling of HPET
* registers, these functions will need to be implemented in the SoC
* layer by first defining the macro HPET_USE_CUSTOM_REG_ACCESS_FUNCS
* in soc.h to signal such intent.
*
* This is a list of functions which must be implemented in the SoC
* layer:
* void hpet_timer_comparator_set(uint32_t val)
*/
#ifndef HPET_USE_CUSTOM_REG_ACCESS_FUNCS
/**
* @brief Write to the Timer Comparator Value Register
*
* This writes the specified value to the Timer Comparator
* Value Register of Timer #0.
*
* @param val Value to be written to the register
*/
static inline void hpet_timer_comparator_set(uint64_t val)
{
#if CONFIG_X86_64
sys_write64(val, TIMER0_COMPARATOR_LOW_REG);
#else
sys_write32((uint32_t)val, TIMER0_COMPARATOR_LOW_REG);
sys_write32((uint32_t)(val >> 32), TIMER0_COMPARATOR_HIGH_REG);
#endif
}
#endif /* HPET_USE_CUSTOM_REG_ACCESS_FUNCS */
#ifndef HPET_COUNTER_CLK_PERIOD
/* COUNTER_CLK_PERIOD (CLK_PERIOD_REG) is in femtoseconds (1e-15 sec) */
#define HPET_COUNTER_CLK_PERIOD (1000000000000000ULL)
#endif
/*
* HPET_INT_LEVEL_TRIGGER is used to set HPET interrupt as level trigger
* for ARM CPU with NVIC like EHL PSE, whose DTS interrupt setting
* has no "sense" cell.
*/
#if (DT_INST_IRQ_HAS_CELL(0, sense))
#ifdef HPET_INT_LEVEL_TRIGGER
__WARN("HPET_INT_LEVEL_TRIGGER has no effect, DTS setting is used instead")
#undef HPET_INT_LEVEL_TRIGGER
#endif
#if ((DT_INST_IRQ(0, sense) & IRQ_TYPE_LEVEL) == IRQ_TYPE_LEVEL)
#define HPET_INT_LEVEL_TRIGGER
#endif
#endif /* (DT_INST_IRQ_HAS_CELL(0, sense)) */
static __pinned_bss struct k_spinlock lock;
static __pinned_bss uint64_t last_count;
static __pinned_bss uint64_t last_tick;
static __pinned_bss uint32_t last_elapsed;
#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
static __pinned_bss unsigned int cyc_per_tick;
#else
#define cyc_per_tick \
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#endif /* CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME */
#define HPET_MAX_TICKS ((int32_t)0x7fffffff)
#ifdef HPET_INT_LEVEL_TRIGGER
/**
* @brief Write to General Interrupt Status Register
*
* This is used to acknowledge and clear interrupt bits.
*
* @param val Value to be written to the register
*/
static inline void hpet_int_sts_set(uint32_t val)
{
sys_write32(val, INTR_STATUS_REG);
}
#endif
/* ensure the comparator is always set ahead of the current counter value */
static inline void hpet_timer_comparator_set_safe(uint64_t next)
{
hpet_timer_comparator_set(next);
uint64_t now = hpet_counter_get();
if (unlikely((int64_t)(next - now) <= 0)) {
uint32_t bump = 1;
do {
next = now + bump;
bump *= 2;
hpet_timer_comparator_set(next);
now = hpet_counter_get();
} while ((int64_t)(next - now) <= 0);
}
}
__isr
static void hpet_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = hpet_counter_get();
#ifdef HPET_INT_LEVEL_TRIGGER
/*
* Clear interrupt only if level trigger is selected.
* When edge trigger is selected, spec says only 0 can
* be written.
*/
hpet_int_sts_set(TIMER0_INT_STS);
#endif
if (IS_ENABLED(CONFIG_SMP) &&
IS_ENABLED(CONFIG_QEMU_TARGET)) {
/* Qemu in SMP mode has observed the clock going
* "backwards" relative to interrupts already received
* on the other CPU, despite the HPET being
* theoretically a global device.
*/
int64_t diff = (int64_t)(now - last_count);
if (last_count && diff < 0) {
now = last_count;
}
}
uint32_t dticks = (uint32_t)((now - last_count) / cyc_per_tick);
last_count += (uint64_t)dticks * cyc_per_tick;
last_tick += dticks;
last_elapsed = 0;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
uint64_t next = last_count + cyc_per_tick;
hpet_timer_comparator_set_safe(next);
}
k_spin_unlock(&lock, key);
sys_clock_announce(dticks);
}
__pinned_func
static void config_timer0(unsigned int irq)
{
uint32_t val = hpet_timer_conf_get();
/* 5-bit IRQ field starting at bit 9 */
val = (val & ~(0x1f << 9)) | ((irq & 0x1f) << 9);
#ifdef HPET_INT_LEVEL_TRIGGER
/* Set level trigger if selected */
val |= TIMER_CONF_INT_LEVEL;
#endif
val &= ~((uint32_t)(TIMER_CONF_MODE32 | TIMER_CONF_PERIODIC |
TIMER_CONF_FSB_EN));
val |= TIMER_CONF_INT_ENABLE;
hpet_timer_conf_set(val);
}
__boot_func
void smp_timer_init(void)
{
/* Noop, the HPET is a single system-wide device and it's
* configured to deliver interrupts to every CPU, so there's
* nothing to do at initialization on auxiliary CPUs.
*/
}
__pinned_func
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
#if defined(CONFIG_TICKLESS_KERNEL)
uint32_t reg;
if (ticks == K_TICKS_FOREVER && idle) {
reg = hpet_gconf_get();
reg &= ~GCONF_ENABLE;
hpet_gconf_set(reg);
return;
}
ticks = ticks == K_TICKS_FOREVER ? HPET_MAX_TICKS : ticks;
ticks = CLAMP(ticks, 0, HPET_MAX_TICKS/2);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t cyc = (last_tick + last_elapsed + ticks) * cyc_per_tick;
hpet_timer_comparator_set_safe(cyc);
k_spin_unlock(&lock, key);
#endif
}
__pinned_func
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = hpet_counter_get();
uint32_t ret = (uint32_t)((now - last_count) / cyc_per_tick);
last_elapsed = ret;
k_spin_unlock(&lock, key);
return ret;
}
__pinned_func
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)hpet_counter_get();
}
__pinned_func
uint64_t sys_clock_cycle_get_64(void)
{
return hpet_counter_get();
}
__pinned_func
void sys_clock_idle_exit(void)
{
uint32_t reg;
reg = hpet_gconf_get();
reg |= GCONF_ENABLE;
hpet_gconf_set(reg);
}
__boot_func
static int sys_clock_driver_init(void)
{
extern int z_clock_hw_cycles_per_sec;
uint32_t hz, reg;
ARG_UNUSED(hz);
ARG_UNUSED(z_clock_hw_cycles_per_sec);
DEVICE_MMIO_TOPLEVEL_MAP(hpet_regs, K_MEM_CACHE_NONE);
#if DT_INST_IRQ_HAS_CELL(0, sense)
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
hpet_isr, 0, DT_INST_IRQ(0, sense));
#else
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
hpet_isr, 0, 0);
#endif
config_timer0(DT_INST_IRQN(0));
irq_enable(DT_INST_IRQN(0));
#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
hz = (uint32_t)(HPET_COUNTER_CLK_PERIOD / hpet_counter_clk_period_get());
z_clock_hw_cycles_per_sec = hz;
cyc_per_tick = hz / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
#endif
reg = hpet_gconf_get();
reg |= GCONF_ENABLE;
#if (DT_INST_PROP(0, no_legacy_irq) == 0)
/* Note: we set the legacy routing bit, because otherwise
* nothing in Zephyr disables the PIT which then fires
* interrupts into the same IRQ. But that means we're then
* forced to use IRQ2 contra the way the kconfig IRQ selection
* is supposed to work. Should fix this.
*/
reg |= GCONF_LR;
#endif
hpet_gconf_set(reg);
last_tick = hpet_counter_get() / cyc_per_tick;
last_count = last_tick * cyc_per_tick;
hpet_timer_comparator_set_safe(last_count + cyc_per_tick);
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
|