Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
/*
 * Copyright (c) 2021 Microchip Technology Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT microchip_xec_qmspi_ldma

#include <errno.h>
#include <soc.h>

#include <zephyr/device.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/mchp_xec_clock_control.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/dt-bindings/clock/mchp_xec_pcr.h>
#include <zephyr/dt-bindings/interrupt-controller/mchp-xec-ecia.h>
#include <zephyr/irq.h>
#include <zephyr/pm/device.h>
#include <zephyr/sys/sys_io.h>
#include <zephyr/sys/util.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_xec, CONFIG_SPI_LOG_LEVEL);

#include "spi_context.h"

/* #define MCHP_XEC_QMSPI_DEBUG 1 */

/* MEC172x QMSPI controller SPI Mode 3 signalling has an anomaly where
 * received data is shifted off the input line(s) improperly. Received
 * data bytes will be left shifted by 1. Work-around for SPI Mode 3 is
 * to sample input line(s) on same edge as output data is ready.
 */
#define XEC_QMSPI_SPI_MODE_3_ANOMALY 1

/* common clock control device node for all Microchip XEC chips */
#define MCHP_XEC_CLOCK_CONTROL_NODE	DT_NODELABEL(pcr)

/* spin loops waiting for HW to clear soft reset bit */
#define XEC_QMSPI_SRST_LOOPS		16

/* microseconds for busy wait and total wait interval */
#define XEC_QMSPI_WAIT_INTERVAL		8
#define XEC_QMSPI_WAIT_COUNT		64

/* QSPI transfer and DMA done */
#define XEC_QSPI_HW_XFR_DMA_DONE	(MCHP_QMSPI_STS_DONE | MCHP_QMSPI_STS_DMA_DONE)

/* QSPI hardware error status
 * Misprogrammed control or descriptors (software error)
 * Overflow TX FIFO
 * Underflow RX FIFO
 */
#define XEC_QSPI_HW_ERRORS		(MCHP_QMSPI_STS_PROG_ERR |	\
					 MCHP_QMSPI_STS_TXB_ERR |	\
					 MCHP_QMSPI_STS_RXB_ERR)

#define XEC_QSPI_HW_ERRORS_LDMA		(MCHP_QMSPI_STS_LDMA_RX_ERR |	\
					 MCHP_QMSPI_STS_LDMA_TX_ERR)

#define XEC_QSPI_HW_ERRORS_ALL		(XEC_QSPI_HW_ERRORS |		\
					 XEC_QSPI_HW_ERRORS_LDMA)

#define XEC_QSPI_TIMEOUT_US		(100 * 1000) /* 100 ms */

/* Device constant configuration parameters */
struct spi_qmspi_config {
	struct qmspi_regs *regs;
	const struct device *clk_dev;
	struct mchp_xec_pcr_clk_ctrl clksrc;
	uint32_t clock_freq;
	uint32_t cs1_freq;
	uint32_t cs_timing;
	uint16_t taps_adj;
	uint8_t girq;
	uint8_t girq_pos;
	uint8_t girq_nvic_aggr;
	uint8_t girq_nvic_direct;
	uint8_t irq_pri;
	uint8_t chip_sel;
	uint8_t width;	/* 0(half) 1(single), 2(dual), 4(quad) */
	uint8_t unused[1];
	const struct pinctrl_dev_config *pcfg;
	void (*irq_config_func)(void);
};

#define XEC_QMSPI_XFR_FLAG_TX		BIT(0)
#define XEC_QMSPI_XFR_FLAG_RX		BIT(1)

/* Device run time data */
struct spi_qmspi_data {
	struct spi_context ctx;
	uint32_t base_freq_hz;
	uint32_t spi_freq_hz;
	uint32_t qstatus;
	uint8_t np; /* number of data pins: 1, 2, or 4 */
#ifdef CONFIG_SPI_ASYNC
	spi_callback_t cb;
	void *userdata;
	size_t xfr_len;
#endif
	uint32_t tempbuf[2];
#ifdef MCHP_XEC_QMSPI_DEBUG
	uint32_t bufcnt_status;
	uint32_t rx_ldma_ctrl0;
	uint32_t tx_ldma_ctrl0;
	uint32_t qunits;
	uint32_t qxfru;
	uint32_t xfrlen;

#endif
};

static int xec_qmspi_spin_yield(int *counter, int max_count)
{
	*counter = *counter + 1;

	if (*counter > max_count) {
		return -ETIMEDOUT;
	}

	k_busy_wait(XEC_QMSPI_WAIT_INTERVAL);

	return 0;
}

/*
 * reset QMSPI controller with save/restore of timing registers.
 * Some QMSPI timing register may be modified by the Boot-ROM OTP
 * values.
 */
static void qmspi_reset(struct qmspi_regs *regs)
{
	uint32_t taps[3];
	uint32_t malt1;
	uint32_t cstm;
	uint32_t mode;
	uint32_t cnt = XEC_QMSPI_SRST_LOOPS;

	taps[0] = regs->TM_TAPS;
	taps[1] = regs->TM_TAPS_ADJ;
	taps[2] = regs->TM_TAPS_CTRL;
	malt1 = regs->MODE_ALT1;
	cstm = regs->CSTM;
	mode = regs->MODE;
	regs->MODE = MCHP_QMSPI_M_SRST;
	while (regs->MODE & MCHP_QMSPI_M_SRST) {
		if (cnt == 0) {
			break;
		}
		cnt--;
	}
	regs->MODE = 0;
	regs->MODE = mode & ~MCHP_QMSPI_M_ACTIVATE;
	regs->CSTM = cstm;
	regs->MODE_ALT1 = malt1;
	regs->TM_TAPS = taps[0];
	regs->TM_TAPS_ADJ = taps[1];
	regs->TM_TAPS_CTRL = taps[2];
}

static uint32_t qmspi_encoded_fdiv(const struct device *dev, uint32_t freq_hz)
{
	struct spi_qmspi_data *qdata = dev->data;

	if (freq_hz == 0u) {
		return 0u; /* maximum frequency divider */
	}

	return (qdata->base_freq_hz / freq_hz);
}

/* Program QMSPI frequency divider field in the mode register.
 * MEC172x QMSPI input clock source is the Fast Peripheral domain whose
 * clock is controlled by the PCR turbo clock. 96 MHz if turbo mode
 * enabled else 48 MHz. Query the clock control driver to get clock
 * rate of fast peripheral domain. MEC172x QMSPI clock divider has
 * been expanded to a 16-bit field encoded as:
 * 0 = divide by 0x10000
 * 1 to 0xffff = divide by this value.
 */
static int qmspi_set_frequency(struct spi_qmspi_data *qdata, struct qmspi_regs *regs,
			       uint32_t freq_hz)
{
	uint32_t clk = MCHP_QMSPI_INPUT_CLOCK_FREQ_HZ;
	uint32_t fdiv = 0u; /* maximum divider */

	if (qdata->base_freq_hz) {
		clk = qdata->base_freq_hz;
	}

	if (freq_hz) {
		fdiv = 1u;
		if (freq_hz < clk) {
			fdiv = clk / freq_hz;
		}
	}

	regs->MODE = ((regs->MODE & ~(MCHP_QMSPI_M_FDIV_MASK)) |
		((fdiv << MCHP_QMSPI_M_FDIV_POS) & MCHP_QMSPI_M_FDIV_MASK));

	if (!fdiv) {
		fdiv = 0x10000u;
	}

	qdata->spi_freq_hz = clk / fdiv;

	return 0;
}

/*
 * SPI signalling mode: CPOL and CPHA
 * CPOL = 0 is clock idles low, 1 is clock idle high
 * CPHA = 0 Transmitter changes data on trailing of preceding clock cycle.
 *          Receiver samples data on leading edge of clock cycle.
 *        1 Transmitter changes data on leading edge of current clock cycle.
 *          Receiver samples data on the trailing edge of clock cycle.
 * SPI Mode nomenclature:
 * Mode CPOL CPHA
 *  0     0    0
 *  1     0    1
 *  2     1    0
 *  3     1    1
 * QMSPI has three controls, CPOL, CPHA for output and CPHA for input.
 * SPI frequency < 48MHz
 *	Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=0 and CHPA_MOSI=0)
 *	Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=1 and CHPA_MOSI=1)
 * Data sheet recommends when QMSPI set at max. SPI frequency (48MHz).
 * SPI frequency == 48MHz sample and change data on same edge.
 *  Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=1 and CHPA_MOSI=0)
 *  Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=0 and CHPA_MOSI=1)
 *
 * There is an anomaly in MEC172x for SPI signalling mode 3. We must
 * set CHPA_MISO=0 for SPI Mode 3 at all frequencies.
 */

const uint8_t smode_tbl[4] = {
	0x00u, 0x06u, 0x01u,
#ifdef XEC_QMSPI_SPI_MODE_3_ANOMALY
	0x03u, /* CPOL=1, CPHA_MOSI=1, CPHA_MISO=0 */
#else
	0x07u, /* CPOL=1, CPHA_MOSI=1, CPHA_MISO=1 */
#endif
};

const uint8_t smode48_tbl[4] = {
	0x04u, 0x02u, 0x05u, 0x03u
};

static void qmspi_set_signalling_mode(struct spi_qmspi_data *qdata,
				      struct qmspi_regs *regs, uint32_t smode)
{
	const uint8_t *ptbl;
	uint32_t m;

	ptbl = smode_tbl;
	if (qdata->spi_freq_hz >= MHZ(48)) {
		ptbl = smode48_tbl;
	}

	m = (uint32_t)ptbl[smode & 0x03];
	regs->MODE = (regs->MODE & ~(MCHP_QMSPI_M_SIG_MASK))
		     | (m << MCHP_QMSPI_M_SIG_POS);
}

#ifdef CONFIG_SPI_EXTENDED_MODES
/*
 * QMSPI HW support single, dual, and quad.
 * Return QMSPI Control/Descriptor register encoded value.
 */
static uint32_t encode_lines(const struct spi_config *config)
{
	uint32_t qlines;

	switch (config->operation & SPI_LINES_MASK) {
	case SPI_LINES_SINGLE:
		qlines = MCHP_QMSPI_C_IFM_1X;
		break;
#if DT_INST_PROP(0, lines) > 1
	case SPI_LINES_DUAL:
		qlines = MCHP_QMSPI_C_IFM_2X;
		break;
#endif
#if DT_INST_PROP(0, lines) > 2
	case SPI_LINES_QUAD:
		qlines = MCHP_QMSPI_C_IFM_4X;
		break;
#endif
	default:
		qlines = 0xffu;
	}

	return qlines;
}

static uint8_t npins_from_spi_config(const struct spi_config *config)
{
	switch (config->operation & SPI_LINES_MASK) {
	case SPI_LINES_DUAL:
		return 2u;
	case SPI_LINES_QUAD:
		return 4u;
	default:
		return 1u;
	}
}
#endif /* CONFIG_SPI_EXTENDED_MODES */

static int spi_feature_support(const struct spi_config *config)
{
	if (config->operation & (SPI_TRANSFER_LSB | SPI_OP_MODE_SLAVE | SPI_MODE_LOOP)) {
		LOG_ERR("Driver does not support LSB first, slave, or loop back");
		return -ENOTSUP;
	}

	if (config->operation & SPI_CS_ACTIVE_HIGH) {
		LOG_ERR("CS active high not supported");
		return -ENOTSUP;
	}

	if (config->operation & SPI_LOCK_ON) {
		LOG_ERR("Lock On not supported");
		return -ENOTSUP;
	}

	if (SPI_WORD_SIZE_GET(config->operation) != 8) {
		LOG_ERR("Word size != 8 not supported");
		return -ENOTSUP;
	}

	return 0;
}

/* Configure QMSPI.
 * NOTE: QMSPI Shared SPI port has two chip selects.
 * Private SPI and internal SPI ports support one chip select.
 * Hardware supports dual and quad I/O. Dual and quad are allowed
 * if SPI extended mode is enabled at build time. User must
 * provide pin configuration via DTS.
 */
static int qmspi_configure(const struct device *dev,
			   const struct spi_config *config)
{
	const struct spi_qmspi_config *cfg = dev->config;
	struct spi_qmspi_data *qdata = dev->data;
	struct qmspi_regs *regs = cfg->regs;
	uint32_t smode;
	int ret;

	if (!config) {
		return -EINVAL;
	}

	if (spi_context_configured(&qdata->ctx, config)) {
		return 0;
	}

	qmspi_set_frequency(qdata, regs, config->frequency);

	/* check new configuration */
	ret = spi_feature_support(config);
	if (ret) {
		return ret;
	}

#ifdef CONFIG_SPI_EXTENDED_MODES
	smode = encode_lines(config);
	if (smode == 0xff) {
		LOG_ERR("Requested lines mode not supported");
		return -ENOTSUP;
	}
	qdata->np = npins_from_spi_config(config);
#else
	smode = MCHP_QMSPI_C_IFM_1X;
	qdata->np = 1u;
#endif
	regs->CTRL = smode;

	smode = 0;
	if ((config->operation & SPI_MODE_CPHA) != 0U) {
		smode |= BIT(0);
	}

	if ((config->operation & SPI_MODE_CPOL) != 0U) {
		smode |= BIT(1);
	}

	qmspi_set_signalling_mode(qdata, regs, smode);

	/* chip select */
	smode = regs->MODE & ~(MCHP_QMSPI_M_CS_MASK);
	if (cfg->chip_sel == 0) {
		smode |= MCHP_QMSPI_M_CS0;
	} else {
		smode |= MCHP_QMSPI_M_CS1;
	}
	regs->MODE = smode;

	/* chip select timing and TAPS adjust */
	regs->CSTM = cfg->cs_timing;
	regs->TM_TAPS_ADJ = cfg->taps_adj;

	/* CS1 alternate mode (frequency) */
	regs->MODE_ALT1 = 0;
	if (cfg->cs1_freq) {
		uint32_t fdiv = qmspi_encoded_fdiv(dev, cfg->cs1_freq);

		regs->MODE_ALT1 = (fdiv << MCHP_QMSPI_MA1_CS1_CDIV_POS) &
				  MCHP_QMSPI_MA1_CS1_CDIV_MSK;
		regs->MODE_ALT1 |= MCHP_QMSPI_MA1_CS1_CDIV_EN;
	}

	qdata->ctx.config = config;

	regs->MODE |= MCHP_QMSPI_M_ACTIVATE;

	return 0;
}

static uint32_t encode_npins(uint8_t npins)
{
	if (npins == 4) {
		return MCHP_QMSPI_C_IFM_4X;
	} else if (npins == 2) {
		return MCHP_QMSPI_C_IFM_2X;
	} else {
		return MCHP_QMSPI_C_IFM_1X;
	}
}

/* Common controller transfer initialziation using Local-DMA.
 * Full-duplex: controller configured to transmit and receive simultaneouly.
 * Half-duplex(dual/quad): User may only specify TX or RX buffer sets.
 * Passing both buffers sets is reported as an error.
 */
static inline int qmspi_xfr_cm_init(const struct device *dev,
				    const struct spi_buf_set *tx_bufs,
				    const struct spi_buf_set *rx_bufs)
{
	const struct spi_qmspi_config *devcfg = dev->config;
	struct spi_qmspi_data *qdata = dev->data;
	struct qmspi_regs *regs = devcfg->regs;

	regs->IEN = 0;
	regs->EXE = MCHP_QMSPI_EXE_CLR_FIFOS;
	regs->LDMA_RX_DESCR_BM = 0;
	regs->LDMA_TX_DESCR_BM = 0;
	regs->MODE &= ~(MCHP_QMSPI_M_LDMA_TX_EN | MCHP_QMSPI_M_LDMA_RX_EN);
	regs->STS = 0xffffffffu;
	regs->CTRL = encode_npins(qdata->np);

	qdata->qstatus = 0;

#ifdef CONFIG_SPI_EXTENDED_MODES
	if (qdata->np != 1) {
		if (tx_bufs && rx_bufs) {
			LOG_ERR("Cannot specify both TX and RX buffers in half-duplex(dual/quad)");
			return -EPROTONOSUPPORT;
		}
	}
#endif

	return 0;
}

/* QMSPI Local-DMA transfer configuration:
 * Support full and half(dual/quad) duplex transfers.
 * Requires caller to have checked that only one direction was setup
 * in the SPI context: TX or RX not both. (refer to qmspi_xfr_cm_init)
 * Supports spi_buf's where data pointer is NULL and length non-zero.
 * These buffers are used as TX tri-state I/O clock only generation or
 * RX data discard for certain SPI command protocols using dual/quad I/O.
 * 1. Get largest contiguous data size from SPI context.
 * 2. If the SPI TX context has a non-zero length configure Local-DMA TX
 *    channel 1 for contiguous data size. If TX context has valid buffer
 *    configure channel to use context buffer with address increment.
 *    If the TX buffer pointer is NULL interpret byte length as the number
 *    of clocks to generate with output line(s) tri-stated. NOTE: The controller
 *    must be configured with TX disabled to not drive output line(s) during
 *    clock generation. Also, no data should be written to TX FIFO. The unit
 *    size can be set to bits. The number of units to transfer must be computed
 *    based upon the number of output pins in the IOM field: full-duplex is one
 *    bit per clock, dual is 2 bits per clock, and quad is 4 bits per clock.
 *    For example, if I/O lines is 4 (quad) meaning 4 bits per clock and the
 *    user wants 7 clocks then the number of bit units is 4 * 7 = 28.
 * 3. If instead, the SPI RX context has a non-zero length configure Local-DMA
 *    RX channel 1 for the contiguous data size. If RX context has a valid
 *    buffer configure channel to use buffer with address increment else
 *    configure channel for driver data temporary buffer without address
 *    increment.
 * 4. Update QMSPI Control register.
 */
static uint32_t qmspi_ldma_encode_unit_size(uint32_t maddr, size_t len)
{
	uint8_t temp = (maddr | (uint32_t)len) & 0x3u;

	if (temp == 0) {
		return MCHP_QMSPI_LDC_ASZ_4;
	} else if (temp == 2) {
		return MCHP_QMSPI_LDC_ASZ_2;
	} else {
		return MCHP_QMSPI_LDC_ASZ_1;
	}
}

static uint32_t qmspi_unit_size(size_t xfrlen)
{
	if ((xfrlen & 0xfu) == 0u) {
		return 16u;
	} else if ((xfrlen & 0x3u) == 0u) {
		return 4u;
	} else {
		return 1u;
	}
}

static uint32_t qmspi_encode_unit_size(uint32_t units_in_bytes)
{
	if (units_in_bytes == 16u) {
		return MCHP_QMSPI_C_XFR_UNITS_16;
	} else if (units_in_bytes == 4u) {
		return MCHP_QMSPI_C_XFR_UNITS_4;
	} else {
		return MCHP_QMSPI_C_XFR_UNITS_1;
	}
}

static size_t q_ldma_cfg(const struct device *dev)
{
	const struct spi_qmspi_config *devcfg = dev->config;
	struct spi_qmspi_data *qdata = dev->data;
	struct spi_context *ctx = &qdata->ctx;
	struct qmspi_regs *regs = devcfg->regs;

	size_t ctx_xfr_len = spi_context_max_continuous_chunk(ctx);
	uint32_t ctrl, ldctrl, mstart, qunits, qxfru, xfrlen;

	regs->EXE = MCHP_QMSPI_EXE_CLR_FIFOS;
	regs->MODE &= ~(MCHP_QMSPI_M_LDMA_RX_EN | MCHP_QMSPI_M_LDMA_TX_EN);
	regs->LDRX[0].CTRL = 0;
	regs->LDRX[0].MSTART = 0;
	regs->LDRX[0].LEN = 0;
	regs->LDTX[0].CTRL = 0;
	regs->LDTX[0].MSTART = 0;
	regs->LDTX[0].LEN = 0;

	if (ctx_xfr_len == 0) {
		return 0;
	}

	qunits = qmspi_unit_size(ctx_xfr_len);
	ctrl = qmspi_encode_unit_size(qunits);
	qxfru = ctx_xfr_len / qunits;
	if (qxfru > 0x7fffu) {
		qxfru = 0x7fffu;
	}
	ctrl |= (qxfru << MCHP_QMSPI_C_XFR_NUNITS_POS);
	xfrlen = qxfru * qunits;

#ifdef MCHP_XEC_QMSPI_DEBUG
	qdata->qunits = qunits;
	qdata->qxfru = qxfru;
	qdata->xfrlen = xfrlen;
#endif
	if (spi_context_tx_buf_on(ctx)) {
		mstart = (uint32_t)ctx->tx_buf;
		ctrl |= MCHP_QMSPI_C_TX_DATA | MCHP_QMSPI_C_TX_LDMA_CH0;
		ldctrl = qmspi_ldma_encode_unit_size(mstart, xfrlen);
		ldctrl |= MCHP_QMSPI_LDC_INCR_EN | MCHP_QMSPI_LDC_EN;
		regs->MODE |= MCHP_QMSPI_M_LDMA_TX_EN;
		regs->LDTX[0].LEN = xfrlen;
		regs->LDTX[0].MSTART = mstart;
		regs->LDTX[0].CTRL = ldctrl;
	}

	if (spi_context_rx_buf_on(ctx)) {
		mstart = (uint32_t)ctx->rx_buf;
		ctrl |= MCHP_QMSPI_C_RX_LDMA_CH0 | MCHP_QMSPI_C_RX_EN;
		ldctrl = MCHP_QMSPI_LDC_EN | MCHP_QMSPI_LDC_INCR_EN;
		ldctrl |= qmspi_ldma_encode_unit_size(mstart, xfrlen);
		regs->MODE |= MCHP_QMSPI_M_LDMA_RX_EN;
		regs->LDRX[0].LEN = xfrlen;
		regs->LDRX[0].MSTART = mstart;
		regs->LDRX[0].CTRL = ldctrl;
	}

	regs->CTRL = (regs->CTRL & 0x3u) | ctrl;

	return xfrlen;
}

/* Start and wait for QMSPI synchronous transfer(s) to complete.
 * Initialize QMSPI controller for Local-DMA operation.
 * Iterate over SPI context with non-zero TX or RX data lengths.
 *   1. Configure QMSPI Control register and Local-DMA channel(s)
 *   2. Clear QMSPI status
 *   3. Start QMSPI transfer
 *   4. Poll QMSPI status for transfer done and DMA done with timeout.
 *   5. Hardware anomaly work-around: Poll with timeout QMSPI Local-DMA
 *      TX and RX channels until hardware clears both channel enables.
 *      This indicates hardware is really done with transfer to/from memory.
 *   6. Update SPI context with amount of data transmitted and received.
 * If SPI configuration hold chip select on flag is not set then instruct
 * QMSPI to de-assert chip select.
 * Set SPI context as complete
 */
static int qmspi_xfr_sync(const struct device *dev,
			  const struct spi_config *spi_cfg,
			  const struct spi_buf_set *tx_bufs,
			  const struct spi_buf_set *rx_bufs)
{
	const struct spi_qmspi_config *devcfg = dev->config;
	struct spi_qmspi_data *qdata = dev->data;
	struct spi_context *ctx = &qdata->ctx;
	struct qmspi_regs *regs = devcfg->regs;
	size_t xfr_len;

	int ret = qmspi_xfr_cm_init(dev, tx_bufs, rx_bufs);

	if (ret) {
		return ret;
	}

	while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)) {
		xfr_len = q_ldma_cfg(dev);
		regs->STS = 0xffffffffu;
		regs->EXE = MCHP_QMSPI_EXE_START;

#ifdef MCHP_XEC_QMSPI_DEBUG
		uint32_t temp = regs->STS;

		while (!(temp & MCHP_QMSPI_STS_DONE)) {
			temp = regs->STS;
		}
		qdata->qstatus = temp;
		qdata->bufcnt_status = regs->BCNT_STS;
		qdata->rx_ldma_ctrl0 = regs->LDRX[0].CTRL;
		qdata->tx_ldma_ctrl0 = regs->LDTX[0].CTRL;
#else
		uint32_t wcnt = 0;

		qdata->qstatus = regs->STS;
		while (!(qdata->qstatus & MCHP_QMSPI_STS_DONE)) {
			k_busy_wait(1u);
			if (++wcnt > XEC_QSPI_TIMEOUT_US) {
				regs->EXE = MCHP_QMSPI_EXE_STOP;
				return -ETIMEDOUT;
			}
			qdata->qstatus = regs->STS;
		}
#endif
		spi_context_update_tx(ctx, 1, xfr_len);
		spi_context_update_rx(ctx, 1, xfr_len);
	}

	if (!(spi_cfg->operation & SPI_HOLD_ON_CS)) {
		regs->EXE = MCHP_QMSPI_EXE_STOP;
	}

	spi_context_complete(ctx, dev, 0);

	return 0;
}

#ifdef CONFIG_SPI_ASYNC
/* Configure QMSPI such that QMSPI transfer FSM and LDMA FSM are synchronized.
 * Transfer length must be programmed into control/descriptor register(s) and
 * LDMA register(s). LDMA override length bit must NOT be set.
 */
static int qmspi_xfr_start_async(const struct device *dev, const struct spi_buf_set *tx_bufs,
				 const struct spi_buf_set *rx_bufs)
{
	const struct spi_qmspi_config *devcfg = dev->config;
	struct spi_qmspi_data *qdata = dev->data;
	struct qmspi_regs *regs = devcfg->regs;
	int ret;

	ret = qmspi_xfr_cm_init(dev, tx_bufs, rx_bufs);
	if (ret) {
		return ret;
	}

	qdata->xfr_len = q_ldma_cfg(dev);
	if (!qdata->xfr_len) {
		return 0; /* nothing to do */
	}

	regs->STS = 0xffffffffu;
	regs->EXE = MCHP_QMSPI_EXE_START;
	regs->IEN = MCHP_QMSPI_IEN_XFR_DONE | MCHP_QMSPI_IEN_PROG_ERR
		    | MCHP_QMSPI_IEN_LDMA_RX_ERR | MCHP_QMSPI_IEN_LDMA_TX_ERR;

	return 0;
}

/* Wrapper to start asynchronous (interrupts enabled) SPI transaction */
static int qmspi_xfr_async(const struct device *dev,
			   const struct spi_config *config,
			   const struct spi_buf_set *tx_bufs,
			   const struct spi_buf_set *rx_bufs)
{
	struct spi_qmspi_data *qdata = dev->data;
	int err = 0;

	qdata->qstatus = 0;
	qdata->xfr_len = 0;

	err = qmspi_xfr_start_async(dev, tx_bufs, rx_bufs);

	return err;
}
#endif /* CONFIG_SPI_ASYNC */

/* Start (a)synchronous transaction using QMSPI Local-DMA */
static int qmspi_transceive(const struct device *dev,
			    const struct spi_config *config,
			    const struct spi_buf_set *tx_bufs,
			    const struct spi_buf_set *rx_bufs,
			    bool asynchronous,
			    spi_callback_t cb,
			    void *user_data)
{
	struct spi_qmspi_data *qdata = dev->data;
	struct spi_context *ctx = &qdata->ctx;
	int err = 0;

	if (!config) {
		return -EINVAL;
	}

	if (!tx_bufs && !rx_bufs) {
		return 0;
	}

	spi_context_lock(&qdata->ctx, asynchronous, cb, user_data, config);

	err = qmspi_configure(dev, config);
	if (err != 0) {
		spi_context_release(ctx, err);
		return err;
	}

	spi_context_cs_control(ctx, true);
	spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);

#ifdef CONFIG_SPI_ASYNC
	if (asynchronous) {
		qdata->cb = cb;
		qdata->userdata = user_data;
		err = qmspi_xfr_async(dev, config, tx_bufs, rx_bufs);
	} else {
		err = qmspi_xfr_sync(dev, config, tx_bufs, rx_bufs);
	}
#else
	err = qmspi_xfr_sync(dev, config, tx_bufs, rx_bufs);
#endif
	if (err) { /* de-assert CS# and give semaphore */
		spi_context_unlock_unconditionally(ctx);
		return err;
	}

	if (asynchronous) {
		return err;
	}

	err = spi_context_wait_for_completion(ctx);
	if (!(config->operation & SPI_HOLD_ON_CS)) {
		spi_context_cs_control(ctx, false);
	}
	spi_context_release(ctx, err);

	return err;
}

static int qmspi_transceive_sync(const struct device *dev,
				 const struct spi_config *config,
				 const struct spi_buf_set *tx_bufs,
				 const struct spi_buf_set *rx_bufs)
{
	return qmspi_transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL);
}

#ifdef CONFIG_SPI_ASYNC

static int qmspi_transceive_async(const struct device *dev,
				  const struct spi_config *config,
				  const struct spi_buf_set *tx_bufs,
				  const struct spi_buf_set *rx_bufs,
				  spi_callback_t cb,
				  void *userdata)
{
	return qmspi_transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */

static int qmspi_release(const struct device *dev,
			 const struct spi_config *config)
{
	struct spi_qmspi_data *data = dev->data;
	const struct spi_qmspi_config *cfg = dev->config;
	struct qmspi_regs *regs = cfg->regs;
	int ret = 0;
	int counter = 0;

	if (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) {
		/* Force CS# to de-assert on next unit boundary */
		regs->EXE = MCHP_QMSPI_EXE_STOP;
		while (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) {
			ret = xec_qmspi_spin_yield(&counter, XEC_QMSPI_WAIT_COUNT);
			if (ret != 0) {
				break;
			}
		}
	}

	spi_context_unlock_unconditionally(&data->ctx);

	return ret;
}

/* QMSPI interrupt handler called by Zephyr ISR
 * All transfers use QMSPI Local-DMA specified by the Control register.
 * QMSPI descriptor mode not used.
 * Full-duplex always uses LDMA TX channel 0 and RX channel 0
 * Half-duplex(dual/quad) use one of TX channel 0 or RX channel 0
 */
void qmspi_xec_isr(const struct device *dev)
{
	const struct spi_qmspi_config *cfg = dev->config;
	struct spi_qmspi_data *data = dev->data;
	struct qmspi_regs *regs = cfg->regs;
	uint32_t qstatus = regs->STS;
#ifdef CONFIG_SPI_ASYNC
	struct spi_context *ctx = &data->ctx;
	int xstatus = 0;
#endif

	regs->IEN = 0;
	data->qstatus = qstatus;
	regs->STS = MCHP_QMSPI_STS_RW1C_MASK;
	mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos);

#ifdef CONFIG_SPI_ASYNC
	if (qstatus & XEC_QSPI_HW_ERRORS_ALL) {
		xstatus = -EIO;
		data->qstatus |= BIT(7);
		regs->EXE = MCHP_QMSPI_EXE_STOP;
		spi_context_cs_control(ctx, false);
		spi_context_complete(ctx, dev, xstatus);
		if (data->cb) {
			data->cb(dev, xstatus, data->userdata);
		}
		return;
	}

	/* Clear Local-DMA enables in Mode and Control registers */
	regs->MODE &= ~(MCHP_QMSPI_M_LDMA_RX_EN | MCHP_QMSPI_M_LDMA_TX_EN);
	regs->CTRL &= MCHP_QMSPI_C_IFM_MASK;

	spi_context_update_tx(ctx, 1, data->xfr_len);
	spi_context_update_rx(ctx, 1, data->xfr_len);

	data->xfr_len = q_ldma_cfg(dev);
	if (data->xfr_len) {
		regs->STS = 0xffffffffu;
		regs->EXE = MCHP_QMSPI_EXE_START;
		regs->IEN = MCHP_QMSPI_IEN_XFR_DONE | MCHP_QMSPI_IEN_PROG_ERR
			    | MCHP_QMSPI_IEN_LDMA_RX_ERR | MCHP_QMSPI_IEN_LDMA_TX_ERR;
		return;
	}

	if (!(ctx->owner->operation & SPI_HOLD_ON_CS)) {
		regs->EXE = MCHP_QMSPI_EXE_STOP;
		spi_context_cs_control(&data->ctx, false);
	}

	spi_context_complete(&data->ctx, dev, xstatus);

	if (data->cb) {
		data->cb(dev, xstatus, data->userdata);
	}
#endif /* CONFIG_SPI_ASYNC */
}

#ifdef CONFIG_PM_DEVICE
/* If the application wants the QMSPI pins to be disabled in suspend it must
 * define pinctr-1 values for each pin in the app/project DT overlay.
 */
static int qmspi_xec_pm_action(const struct device *dev, enum pm_device_action action)
{
	const struct spi_qmspi_config *devcfg = dev->config;
	int ret;

	switch (action) {
	case PM_DEVICE_ACTION_RESUME:
		ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT);
		break;
	case PM_DEVICE_ACTION_SUSPEND:
		ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP);
		if (ret == -ENOENT) { /* pinctrl-1 does not exist */
			ret = 0;
		}
		break;
	default:
		ret = -ENOTSUP;
	}

	return ret;
}
#endif /* CONFIG_PM_DEVICE */

/*
 * Called for each QMSPI controller instance
 * Initialize QMSPI controller.
 * Disable sleep control.
 * Disable and clear interrupt status.
 * Initialize SPI context.
 * QMSPI will be fully configured and enabled when the transceive API
 * is called.
 */
static int qmspi_xec_init(const struct device *dev)
{
	const struct spi_qmspi_config *cfg = dev->config;
	struct spi_qmspi_data *qdata = dev->data;
	struct qmspi_regs *regs = cfg->regs;
	clock_control_subsys_t clkss = (clock_control_subsys_t)MCHP_XEC_PCR_CLK_PERIPH_FAST;
	int ret = 0;

	qdata->base_freq_hz = 0u;
	qdata->qstatus = 0;
	qdata->np = cfg->width;
#ifdef CONFIG_SPI_ASYNC
	qdata->xfr_len = 0;
#endif

	if (!cfg->clk_dev) {
		LOG_ERR("XEC QMSPI-LDMA clock device not configured");
		return -EINVAL;
	}

	ret = clock_control_on(cfg->clk_dev, (clock_control_subsys_t)&cfg->clksrc);
	if (ret < 0) {
		LOG_ERR("XEC QMSPI-LDMA enable clock source error %d", ret);
		return ret;
	}

	ret = clock_control_get_rate(cfg->clk_dev, clkss, &qdata->base_freq_hz);
	if (ret) {
		LOG_ERR("XEC QMSPI-LDMA clock get rate error %d", ret);
		return ret;
	}

	/* controller in known state before enabling pins */
	qmspi_reset(regs);
	mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos);

	ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
	if (ret != 0) {
		LOG_ERR("XEC QMSPI-LDMA pinctrl setup failed (%d)", ret);
		return ret;
	}

	/* default SPI Mode 0 signalling */
	const struct spi_config spi_cfg = {
		.frequency = cfg->clock_freq,
		.operation = SPI_LINES_SINGLE | SPI_WORD_SET(8),
	};

	ret = qmspi_configure(dev, &spi_cfg);
	if (ret) {
		LOG_ERR("XEC QMSPI-LDMA init configure failed (%d)", ret);
		return ret;
	}

#ifdef CONFIG_SPI_ASYNC
	cfg->irq_config_func();
	mchp_xec_ecia_enable(cfg->girq, cfg->girq_pos);
#endif

	spi_context_unlock_unconditionally(&qdata->ctx);

	return 0;
}

static const struct spi_driver_api spi_qmspi_xec_driver_api = {
	.transceive = qmspi_transceive_sync,
#ifdef CONFIG_SPI_ASYNC
	.transceive_async = qmspi_transceive_async,
#endif
	.release = qmspi_release,
};

#define XEC_QMSPI_CS_TIMING_VAL(a, b, c, d) (((a) & 0xFu) \
					     | (((b) & 0xFu) << 8) \
					     | (((c) & 0xFu) << 16) \
					     | (((d) & 0xFu) << 24))

#define XEC_QMSPI_TAPS_ADJ_VAL(a, b) (((a) & 0xffu) | (((b) & 0xffu) << 8))

#define XEC_QMSPI_CS_TIMING(i) XEC_QMSPI_CS_TIMING_VAL(			\
				DT_INST_PROP_OR(i, dcsckon, 6),		\
				DT_INST_PROP_OR(i, dckcsoff, 4),	\
				DT_INST_PROP_OR(i, dldh, 6),		\
				DT_INST_PROP_OR(i, dcsda, 6))

#define XEC_QMSPI_TAPS_ADJ(i) XEC_QMSPI_TAPS_ADJ_VAL(			\
				DT_INST_PROP_OR(i, tctradj, 0),		\
				DT_INST_PROP_OR(i, tsckadj, 0))

#define XEC_QMSPI_GIRQ(i)						\
	MCHP_XEC_ECIA_GIRQ(DT_INST_PROP_BY_IDX(i, girqs, 0))

#define XEC_QMSPI_GIRQ_POS(i)						\
	MCHP_XEC_ECIA_GIRQ_POS(DT_INST_PROP_BY_IDX(i, girqs, 0))

#define XEC_QMSPI_NVIC_AGGR(i)						\
	MCHP_XEC_ECIA_NVIC_AGGR(DT_INST_PROP_BY_IDX(i, girqs, 0))

#define XEC_QMSPI_NVIC_DIRECT(i)					\
	MCHP_XEC_ECIA_NVIC_DIRECT(DT_INST_PROP_BY_IDX(i, girqs, 0))

#define XEC_QMSPI_PCR_INFO(i)						\
	MCHP_XEC_PCR_SCR_ENCODE(DT_INST_CLOCKS_CELL(i, regidx),		\
				DT_INST_CLOCKS_CELL(i, bitpos),		\
				DT_INST_CLOCKS_CELL(i, domain))

/*
 * The instance number, i is not related to block ID's rather the
 * order the DT tools process all DT files in a build.
 */
#define QMSPI_XEC_DEVICE(i)						\
									\
	PINCTRL_DT_INST_DEFINE(i);					\
									\
	static void qmspi_xec_irq_config_func_##i(void)			\
	{								\
		IRQ_CONNECT(DT_INST_IRQN(i),				\
			    DT_INST_IRQ(i, priority),			\
			    qmspi_xec_isr,				\
			    DEVICE_DT_INST_GET(i), 0);			\
		irq_enable(DT_INST_IRQN(i));				\
	}								\
									\
	static struct spi_qmspi_data qmspi_xec_data_##i = {		\
		SPI_CONTEXT_INIT_LOCK(qmspi_xec_data_##i, ctx),		\
		SPI_CONTEXT_INIT_SYNC(qmspi_xec_data_##i, ctx),		\
	};								\
	static const struct spi_qmspi_config qmspi_xec_config_##i = {	\
		.regs = (struct qmspi_regs *) DT_INST_REG_ADDR(i),	\
		.clk_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(i)),	\
		.clksrc = { .pcr_info = XEC_QMSPI_PCR_INFO(i), },	\
		.clock_freq = DT_INST_PROP_OR(i, clock_frequency, MHZ(12)), \
		.cs1_freq = DT_INST_PROP_OR(i, cs1_freq, 0),		\
		.cs_timing = XEC_QMSPI_CS_TIMING(i),			\
		.taps_adj = XEC_QMSPI_TAPS_ADJ(i),			\
		.girq = XEC_QMSPI_GIRQ(i),				\
		.girq_pos = XEC_QMSPI_GIRQ_POS(i),			\
		.girq_nvic_aggr = XEC_QMSPI_NVIC_AGGR(i),		\
		.girq_nvic_direct = XEC_QMSPI_NVIC_DIRECT(i),		\
		.irq_pri = DT_INST_IRQ(i, priority),			\
		.chip_sel = DT_INST_PROP_OR(i, chip_select, 0),		\
		.width = DT_INST_PROP_OR(0, lines, 1),			\
		.irq_config_func = qmspi_xec_irq_config_func_##i,	\
		.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(i),		\
	};								\
	PM_DEVICE_DT_INST_DEFINE(i, qmspi_xec_pm_action);		\
	DEVICE_DT_INST_DEFINE(i, &qmspi_xec_init,			\
		PM_DEVICE_DT_INST_GET(i),				\
		&qmspi_xec_data_##i, &qmspi_xec_config_##i,		\
		POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,			\
		&spi_qmspi_xec_driver_api);

DT_INST_FOREACH_STATUS_OKAY(QMSPI_XEC_DEVICE)