Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
/*
 * Copyright (c) 2019 Microchip Technology Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT microchip_xec_qmspi

#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_xec, CONFIG_SPI_LOG_LEVEL);

#include "spi_context.h"
#include <errno.h>
#include <zephyr/device.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/pinctrl.h>
#include <soc.h>

/* Device constant configuration parameters */
struct spi_qmspi_config {
	QMSPI_Type *regs;
	uint32_t cs_timing;
	uint8_t girq;
	uint8_t girq_pos;
	uint8_t girq_nvic_aggr;
	uint8_t girq_nvic_direct;
	uint8_t irq_pri;
	uint8_t chip_sel;
	uint8_t width;	/* 1(single), 2(dual), 4(quad) */
	uint8_t unused;
	const struct pinctrl_dev_config *pcfg;
};

/* Device run time data */
struct spi_qmspi_data {
	struct spi_context ctx;
};

static inline uint32_t descr_rd(QMSPI_Type *regs, uint32_t did)
{
	uintptr_t raddr = (uintptr_t)regs + MCHP_QMSPI_DESC0_OFS +
			  ((did & MCHP_QMSPI_C_NEXT_DESCR_MASK0) << 2);

	return REG32(raddr);
}

static inline void descr_wr(QMSPI_Type *regs, uint32_t did, uint32_t val)
{
	uintptr_t raddr = (uintptr_t)regs + MCHP_QMSPI_DESC0_OFS +
			  ((did & MCHP_QMSPI_C_NEXT_DESCR_MASK0) << 2);

	REG32(raddr) = val;
}

static inline void txb_wr8(QMSPI_Type *regs, uint8_t data8)
{
	REG8(&regs->TX_FIFO) = data8;
}

static inline uint8_t rxb_rd8(QMSPI_Type *regs)
{
	return REG8(&regs->RX_FIFO);
}

/*
 * Program QMSPI frequency.
 * MEC1501 base frequency is 48MHz. QMSPI frequency divider field in the
 * mode register is defined as: 0=maximum divider of 256. Values 1 through
 * 255 divide 48MHz by that value.
 */
static void qmspi_set_frequency(QMSPI_Type *regs, uint32_t freq_hz)
{
	uint32_t div, qmode;

	if (freq_hz == 0) {
		div = 0; /* max divider = 256 */
	} else {
		div = MCHP_QMSPI_INPUT_CLOCK_FREQ_HZ / freq_hz;
		if (div == 0) {
			div = 1; /* max freq. divider = 1 */
		} else if (div > 0xffu) {
			div = 0u; /* max divider = 256 */
		}
	}

	qmode = regs->MODE & ~(MCHP_QMSPI_M_FDIV_MASK);
	qmode |= (div << MCHP_QMSPI_M_FDIV_POS) & MCHP_QMSPI_M_FDIV_MASK;
	regs->MODE = qmode;
}

/*
 * SPI signalling mode: CPOL and CPHA
 * CPOL = 0 is clock idles low, 1 is clock idle high
 * CPHA = 0 Transmitter changes data on trailing of preceding clock cycle.
 *          Receiver samples data on leading edge of clock cycle.
 *        1 Transmitter changes data on leading edge of current clock cycle.
 *          Receiver samples data on the trailing edge of clock cycle.
 * SPI Mode nomenclature:
 * Mode CPOL CPHA
 *  0     0    0
 *  1     0    1
 *  2     1    0
 *  3     1    1
 * MEC1501 has three controls, CPOL, CPHA for output and CPHA for input.
 * SPI frequency < 48MHz
 *	Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=0 and CHPA_MOSI=0)
 *	Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=1 and CHPA_MOSI=1)
 * Data sheet recommends when QMSPI set at max. SPI frequency (48MHz).
 * SPI frequency == 48MHz sample and change data on same edge.
 *  Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=1 and CHPA_MOSI=0)
 *  Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=0 and CHPA_MOSI=1)
 */

const uint8_t smode_tbl[4] = {
	0x00u, 0x06u, 0x01u, 0x07u
};

const uint8_t smode48_tbl[4] = {
	0x04u, 0x02u, 0x05u, 0x03u
};

static void qmspi_set_signalling_mode(QMSPI_Type *regs, uint32_t smode)
{
	const uint8_t *ptbl;
	uint32_t m;

	ptbl = smode_tbl;
	if (((regs->MODE >> MCHP_QMSPI_M_FDIV_POS) &
	    MCHP_QMSPI_M_FDIV_MASK0) == 1) {
		ptbl = smode48_tbl;
	}

	m = (uint32_t)ptbl[smode & 0x03];
	regs->MODE = (regs->MODE & ~(MCHP_QMSPI_M_SIG_MASK))
		     | (m << MCHP_QMSPI_M_SIG_POS);
}

/*
 * QMSPI HW support single, dual, and quad.
 * Return QMSPI Control/Descriptor register encoded value.
 */
static uint32_t qmspi_config_get_lines(const struct spi_config *config)
{
#ifdef CONFIG_SPI_EXTENDED_MODES
	uint32_t qlines;

	switch (config->operation & SPI_LINES_MASK) {
	case SPI_LINES_SINGLE:
		qlines = MCHP_QMSPI_C_IFM_1X;
		break;
#if DT_INST_PROP(0, lines) > 1
	case SPI_LINES_DUAL:
		qlines = MCHP_QMSPI_C_IFM_2X;
		break;
#endif
#if DT_INST_PROP(0, lines) > 2
	case SPI_LINES_QUAD:
		qlines = MCHP_QMSPI_C_IFM_4X;
		break;
#endif
	default:
		qlines = 0xffu;
	}

	return qlines;
#else
	return MCHP_QMSPI_C_IFM_1X;
#endif
}

/*
 * Configure QMSPI.
 * NOTE: QMSPI can control two chip selects. At this time we use CS0# only.
 */
static int qmspi_configure(const struct device *dev,
			   const struct spi_config *config)
{
	const struct spi_qmspi_config *cfg = dev->config;
	struct spi_qmspi_data *data = dev->data;
	QMSPI_Type *regs = cfg->regs;
	uint32_t smode;

	if (spi_context_configured(&data->ctx, config)) {
		return 0;
	}

	if (config->operation & SPI_HALF_DUPLEX) {
		return -ENOTSUP;
	}

	if (config->operation & (SPI_TRANSFER_LSB | SPI_OP_MODE_SLAVE
				 | SPI_MODE_LOOP)) {
		return -ENOTSUP;
	}

	smode = qmspi_config_get_lines(config);
	if (smode == 0xff) {
		return -ENOTSUP;
	}

	regs->CTRL = smode;

	/* Use the requested or next highest possible frequency */
	qmspi_set_frequency(regs, config->frequency);

	smode = 0;
	if ((config->operation & SPI_MODE_CPHA) != 0U) {
		smode |= (1ul << 0);
	}

	if ((config->operation & SPI_MODE_CPOL) != 0U) {
		smode |= (1ul << 1);
	}

	qmspi_set_signalling_mode(regs, smode);

	if (SPI_WORD_SIZE_GET(config->operation) != 8) {
		return -ENOTSUP;
	}

	/* chip select */
	smode = regs->MODE & ~(MCHP_QMSPI_M_CS_MASK);
#if DT_INST_PROP(0, chip_select) == 0
	smode |= MCHP_QMSPI_M_CS0;
#else
	smode |= MCHP_QMSPI_M_CS1;
#endif
	regs->MODE = smode;

	/* chip select timing */
	regs->CSTM = cfg->cs_timing;

	data->ctx.config = config;

	regs->MODE |= MCHP_QMSPI_M_ACTIVATE;

	return 0;
}

/*
 * Transmit dummy clocks - QMSPI will generate requested number of
 * SPI clocks with I/O pins tri-stated.
 * Single mode: 1 bit per clock -> IFM field = 00b. Max 0x7fff clocks
 * Dual mode: 2 bits per clock  -> IFM field = 01b. Max 0x3fff clocks
 * Quad mode: 4 bits per clock  -> IFM field = 1xb. Max 0x1fff clocks
 * QMSPI unit size set to bits.
 */
static int qmspi_tx_dummy_clocks(QMSPI_Type *regs, uint32_t nclocks)
{
	uint32_t descr, ifm, qstatus;

	ifm = regs->CTRL & MCHP_QMSPI_C_IFM_MASK;
	descr = ifm | MCHP_QMSPI_C_TX_DIS | MCHP_QMSPI_C_XFR_UNITS_BITS
		| MCHP_QMSPI_C_DESCR_LAST | MCHP_QMSPI_C_DESCR0;

	if (ifm & 0x01) {
		nclocks <<= 1;
	} else if (ifm & 0x02) {
		nclocks <<= 2;
	}
	descr |= (nclocks << MCHP_QMSPI_C_XFR_NUNITS_POS);

	descr_wr(regs, 0, descr);

	regs->CTRL |= MCHP_QMSPI_C_DESCR_EN;
	regs->IEN = 0;
	regs->STS = 0xfffffffful;

	regs->EXE = MCHP_QMSPI_EXE_START;
	do {
		qstatus = regs->STS;
		if (qstatus & MCHP_QMSPI_STS_PROG_ERR) {
			return -EIO;
		}
	} while ((qstatus & MCHP_QMSPI_STS_DONE) == 0);

	return 0;
}

/*
 * Return unit size power of 2 given number of bytes to transfer.
 */
static uint32_t qlen_shift(uint32_t len)
{
	uint32_t ushift;

	/* is len a multiple of 4 or 16? */
	if ((len & 0x0F) == 0) {
		ushift = 4;
	} else if ((len & 0x03) == 0) {
		ushift = 2;
	} else {
		ushift = 0;
	}

	return ushift;
}

/*
 * Return QMSPI unit size of the number of units field in QMSPI
 * control/descriptor register.
 * Input: power of 2 unit size 4, 2, or 0(default) corresponding
 * to 16, 4, or 1 byte units.
 */
static uint32_t get_qunits(uint32_t qshift)
{
	if (qshift == 4) {
		return MCHP_QMSPI_C_XFR_UNITS_16;
	} else if (qshift == 2) {
		return MCHP_QMSPI_C_XFR_UNITS_4;
	} else {
		return MCHP_QMSPI_C_XFR_UNITS_1;
	}
}

/*
 * Allocate(build) one or more descriptors.
 * QMSPI contains 16 32-bit descriptor registers used as a linked
 * list of operations. Using only 32-bits there are limitations.
 * Each descriptor is limited to 0x7FFF units where unit size can
 * be 1, 4, or 16 bytes. A descriptor can perform transmit or receive
 * but not both simultaneously. Order of descriptor processing is specified
 * by the first descriptor field of the control register, the next descriptor
 * fields in each descriptor, and the descriptors last flag.
 */
static int qmspi_descr_alloc(QMSPI_Type *regs, const struct spi_buf *txb,
			     int didx, bool is_tx)
{
	uint32_t descr, qshift, n, nu;
	int dn;

	if (didx >= MCHP_QMSPI_MAX_DESCR) {
		return -EAGAIN;
	}

	if (txb->len == 0) {
		return didx; /* nothing to do */
	}

	/* b[1:0] IFM and b[3:2] transmit mode */
	descr = (regs->CTRL & MCHP_QMSPI_C_IFM_MASK);
	if (is_tx) {
		descr |= MCHP_QMSPI_C_TX_DATA;
	} else {
		descr |= MCHP_QMSPI_C_RX_EN;
	}

	/* b[11:10] unit size 1, 4, or 16 bytes */
	qshift = qlen_shift(txb->len);
	nu = txb->len >> qshift;
	descr |= get_qunits(qshift);

	do {
		descr &= 0x0FFFul;

		dn = didx + 1;
		/* b[15:12] next descriptor pointer */
		descr |= ((dn & MCHP_QMSPI_C_NEXT_DESCR_MASK0) <<
			  MCHP_QMSPI_C_NEXT_DESCR_POS);

		n = nu;
		if (n > MCHP_QMSPI_C_MAX_UNITS) {
			n = MCHP_QMSPI_C_MAX_UNITS;
		}

		descr |= (n << MCHP_QMSPI_C_XFR_NUNITS_POS);
		descr_wr(regs, didx, descr);

		if (dn < MCHP_QMSPI_MAX_DESCR) {
			didx++;
		} else {
			return -EAGAIN;
		}

		nu -= n;
	} while (nu);

	return dn;
}

static int qmspi_tx(QMSPI_Type *regs, const struct spi_buf *tx_buf,
		    bool close)
{
	const uint8_t *p = tx_buf->buf;
	size_t tlen = tx_buf->len;
	uint32_t descr;
	int didx;

	if (tlen == 0) {
		return 0;
	}

	/* Buffer pointer is NULL and number of bytes != 0 ? */
	if (p == NULL) {
		return qmspi_tx_dummy_clocks(regs, tlen);
	}

	didx = qmspi_descr_alloc(regs, tx_buf, 0, true);
	if (didx < 0) {
		return didx;
	}

	/* didx points to last allocated descriptor + 1 */
	__ASSERT(didx > 0, "QMSPI descriptor index=%d expected > 0\n", didx);
	didx--;

	descr = descr_rd(regs, didx) | MCHP_QMSPI_C_DESCR_LAST;
	if (close) {
		descr |= MCHP_QMSPI_C_CLOSE;
	}
	descr_wr(regs, didx, descr);

	regs->CTRL = (regs->CTRL & MCHP_QMSPI_C_IFM_MASK) |
		     MCHP_QMSPI_C_DESCR_EN | MCHP_QMSPI_C_DESCR0;
	regs->IEN = 0;
	regs->STS = 0xfffffffful;

	/* preload TX_FIFO */
	while (tlen) {
		tlen--;
		txb_wr8(regs, *p);
		p++;

		if (regs->STS & MCHP_QMSPI_STS_TXBF_RO) {
			break;
		}
	}

	regs->EXE = MCHP_QMSPI_EXE_START;

	if (regs->STS & MCHP_QMSPI_STS_PROG_ERR) {
		return -EIO;
	}

	while (tlen) {

		while (regs->STS & MCHP_QMSPI_STS_TXBF_RO) {
		}

		txb_wr8(regs, *p);
		p++;
		tlen--;
	}

	/* Wait for TX FIFO to drain and last byte to be clocked out */
	for (;;) {
		if (regs->STS & MCHP_QMSPI_STS_DONE) {
			break;
		}
	}

	return 0;
}

static int qmspi_rx(QMSPI_Type *regs, const struct spi_buf *rx_buf,
		    bool close)
{
	uint8_t *p = rx_buf->buf;
	size_t rlen = rx_buf->len;
	uint32_t descr;
	int didx;
	uint8_t data_byte;

	if (rlen == 0) {
		return 0;
	}

	didx = qmspi_descr_alloc(regs, rx_buf, 0, false);
	if (didx < 0) {
		return didx;
	}

	/* didx points to last allocated descriptor + 1 */
	__ASSERT_NO_MSG(didx > 0);
	didx--;

	descr = descr_rd(regs, didx) | MCHP_QMSPI_C_DESCR_LAST;
	if (close) {
		descr |= MCHP_QMSPI_C_CLOSE;
	}
	descr_wr(regs, didx, descr);

	regs->CTRL = (regs->CTRL & MCHP_QMSPI_C_IFM_MASK)
		     | MCHP_QMSPI_C_DESCR_EN | MCHP_QMSPI_C_DESCR0;
	regs->IEN = 0;
	regs->STS = 0xfffffffful;

	/*
	 * Trigger read based on the descriptor(s) programmed above.
	 * QMSPI will generate clocks until the RX FIFO is filled.
	 * More clocks will be generated as we pull bytes from the RX FIFO.
	 * QMSPI Programming error will be triggered after start if
	 * descriptors were programmed options that cannot be enabled
	 * simultaneously.
	 */
	regs->EXE = MCHP_QMSPI_EXE_START;
	if (regs->STS & MCHP_QMSPI_STS_PROG_ERR) {
		return -EIO;
	}

	while (rlen) {
		if (!(regs->STS & MCHP_QMSPI_STS_RXBE_RO)) {
			data_byte = rxb_rd8(regs);
			if (p != NULL) {
				*p++ = data_byte;
			}
			rlen--;
		}
	}

	return 0;
}

static int qmspi_transceive(const struct device *dev,
			    const struct spi_config *config,
			    const struct spi_buf_set *tx_bufs,
			    const struct spi_buf_set *rx_bufs)
{
	const struct spi_qmspi_config *cfg = dev->config;
	struct spi_qmspi_data *data = dev->data;
	QMSPI_Type *regs = cfg->regs;
	const struct spi_buf *ptx;
	const struct spi_buf *prx;
	size_t nb;
	uint32_t descr, last_didx;
	int err;

	spi_context_lock(&data->ctx, false, NULL, NULL, config);

	err = qmspi_configure(dev, config);
	if (err != 0) {
		goto done;
	}

	spi_context_cs_control(&data->ctx, true);

	if (tx_bufs != NULL) {
		ptx = tx_bufs->buffers;
		nb = tx_bufs->count;
		while (nb--) {
			err = qmspi_tx(regs, ptx, false);
			if (err != 0) {
				goto done;
			}
			ptx++;
		}
	}

	if (rx_bufs != NULL) {
		prx = rx_bufs->buffers;
		nb = rx_bufs->count;
		while (nb--) {
			err = qmspi_rx(regs, prx, false);
			if (err != 0) {
				goto done;
			}
			prx++;
		}
	}

	/*
	 * If caller doesn't need CS# held asserted then find the last
	 * descriptor, set its close flag, and set stop.
	 */
	if (!(config->operation & SPI_HOLD_ON_CS)) {
		/* Get last descriptor from status register */
		last_didx = (regs->STS >> MCHP_QMSPI_C_NEXT_DESCR_POS)
			    & MCHP_QMSPI_C_NEXT_DESCR_MASK0;
		descr = descr_rd(regs, last_didx) | MCHP_QMSPI_C_CLOSE;
		descr_wr(regs, last_didx, descr);
		regs->EXE = MCHP_QMSPI_EXE_STOP;
	}

	spi_context_cs_control(&data->ctx, false);

done:
	spi_context_release(&data->ctx, err);
	return err;
}

static int qmspi_transceive_sync(const struct device *dev,
				 const struct spi_config *config,
				 const struct spi_buf_set *tx_bufs,
				 const struct spi_buf_set *rx_bufs)
{
	return qmspi_transceive(dev, config, tx_bufs, rx_bufs);
}

#ifdef CONFIG_SPI_ASYNC
static int qmspi_transceive_async(const struct device *dev,
				  const struct spi_config *config,
				  const struct spi_buf_set *tx_bufs,
				  const struct spi_buf_set *rx_bufs,
				  struct k_poll_signal *async)
{
	return -ENOTSUP;
}
#endif

static int qmspi_release(const struct device *dev,
			 const struct spi_config *config)
{
	struct spi_qmspi_data *data = dev->data;
	const struct spi_qmspi_config *cfg = dev->config;
	QMSPI_Type *regs = cfg->regs;

	/* Force CS# to de-assert on next unit boundary */
	regs->EXE = MCHP_QMSPI_EXE_STOP;

	while (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) {
	}

	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

/*
 * Initialize QMSPI controller.
 * Disable sleep control.
 * Disable and clear interrupt status.
 * Initialize SPI context.
 * QMSPI will be configured and enabled when the transceive API is called.
 */
static int qmspi_init(const struct device *dev)
{
	int err;
	const struct spi_qmspi_config *cfg = dev->config;
	struct spi_qmspi_data *data = dev->data;
	QMSPI_Type *regs = cfg->regs;
	int ret;

	ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
	if (ret != 0) {
		LOG_ERR("QSPI pinctrl setup failed (%d)", ret);
		return ret;
	}

	mchp_pcr_periph_slp_ctrl(PCR_QMSPI, MCHP_PCR_SLEEP_DIS);

	regs->MODE = MCHP_QMSPI_M_SRST;

	MCHP_GIRQ_CLR_EN(cfg->girq, cfg->girq_pos);
	MCHP_GIRQ_SRC_CLR(cfg->girq, cfg->girq_pos);

	MCHP_GIRQ_BLK_CLREN(cfg->girq);
	NVIC_ClearPendingIRQ(cfg->girq_nvic_direct);

	err = spi_context_cs_configure_all(&data->ctx);
	if (err < 0) {
		return err;
	}

	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

static const struct spi_driver_api spi_qmspi_driver_api = {
	.transceive = qmspi_transceive_sync,
#ifdef CONFIG_SPI_ASYNC
	.transceive_async = qmspi_transceive_async,
#endif
	.release = qmspi_release,
};


#define XEC_QMSPI_CS_TIMING_VAL(a, b, c, d) (((a) & 0xFu) \
					     | (((b) & 0xFu) << 8) \
					     | (((c) & 0xFu) << 16) \
					     | (((d) & 0xFu) << 24))


#define XEC_QMSPI_0_CS_TIMING XEC_QMSPI_CS_TIMING_VAL(			\
				DT_INST_PROP(0, dcsckon),		\
				DT_INST_PROP(0, dckcsoff),		\
				DT_INST_PROP(0, dldh),			\
				DT_INST_PROP(0, dcsda))

#if DT_NODE_HAS_STATUS(DT_INST(0, microchip_xec_qmspi), okay)

PINCTRL_DT_INST_DEFINE(0);

static const struct spi_qmspi_config spi_qmspi_0_config = {
	.regs = (QMSPI_Type *)DT_INST_REG_ADDR(0),
	.cs_timing = XEC_QMSPI_0_CS_TIMING,
	.girq = MCHP_QMSPI_GIRQ_NUM,
	.girq_pos = MCHP_QMSPI_GIRQ_POS,
	.girq_nvic_direct = MCHP_QMSPI_GIRQ_NVIC_DIRECT,
	.irq_pri = DT_INST_IRQ(0, priority),
	.chip_sel = DT_INST_PROP(0, chip_select),
	.width = DT_INST_PROP(0, lines),
	.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
};

static struct spi_qmspi_data spi_qmspi_0_dev_data = {
	SPI_CONTEXT_INIT_LOCK(spi_qmspi_0_dev_data, ctx),
	SPI_CONTEXT_INIT_SYNC(spi_qmspi_0_dev_data, ctx),
	SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(0), ctx)
};

DEVICE_DT_INST_DEFINE(0,
		    &qmspi_init, NULL, &spi_qmspi_0_dev_data,
		    &spi_qmspi_0_config, POST_KERNEL,
		    CONFIG_SPI_INIT_PRIORITY, &spi_qmspi_driver_api);

#endif /* DT_NODE_HAS_STATUS(DT_INST(0, microchip_xec_qmspi), okay) */