Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 | /*
* Copyright (c) 2019 Microchip Technology Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_xec_qmspi
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_xec, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
#include <errno.h>
#include <zephyr/device.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/pinctrl.h>
#include <soc.h>
/* Device constant configuration parameters */
struct spi_qmspi_config {
QMSPI_Type *regs;
uint32_t cs_timing;
uint8_t girq;
uint8_t girq_pos;
uint8_t girq_nvic_aggr;
uint8_t girq_nvic_direct;
uint8_t irq_pri;
uint8_t chip_sel;
uint8_t width; /* 1(single), 2(dual), 4(quad) */
uint8_t unused;
const struct pinctrl_dev_config *pcfg;
};
/* Device run time data */
struct spi_qmspi_data {
struct spi_context ctx;
};
static inline uint32_t descr_rd(QMSPI_Type *regs, uint32_t did)
{
uintptr_t raddr = (uintptr_t)regs + MCHP_QMSPI_DESC0_OFS +
((did & MCHP_QMSPI_C_NEXT_DESCR_MASK0) << 2);
return REG32(raddr);
}
static inline void descr_wr(QMSPI_Type *regs, uint32_t did, uint32_t val)
{
uintptr_t raddr = (uintptr_t)regs + MCHP_QMSPI_DESC0_OFS +
((did & MCHP_QMSPI_C_NEXT_DESCR_MASK0) << 2);
REG32(raddr) = val;
}
static inline void txb_wr8(QMSPI_Type *regs, uint8_t data8)
{
REG8(®s->TX_FIFO) = data8;
}
static inline uint8_t rxb_rd8(QMSPI_Type *regs)
{
return REG8(®s->RX_FIFO);
}
/*
* Program QMSPI frequency.
* MEC1501 base frequency is 48MHz. QMSPI frequency divider field in the
* mode register is defined as: 0=maximum divider of 256. Values 1 through
* 255 divide 48MHz by that value.
*/
static void qmspi_set_frequency(QMSPI_Type *regs, uint32_t freq_hz)
{
uint32_t div, qmode;
if (freq_hz == 0) {
div = 0; /* max divider = 256 */
} else {
div = MCHP_QMSPI_INPUT_CLOCK_FREQ_HZ / freq_hz;
if (div == 0) {
div = 1; /* max freq. divider = 1 */
} else if (div > 0xffu) {
div = 0u; /* max divider = 256 */
}
}
qmode = regs->MODE & ~(MCHP_QMSPI_M_FDIV_MASK);
qmode |= (div << MCHP_QMSPI_M_FDIV_POS) & MCHP_QMSPI_M_FDIV_MASK;
regs->MODE = qmode;
}
/*
* SPI signalling mode: CPOL and CPHA
* CPOL = 0 is clock idles low, 1 is clock idle high
* CPHA = 0 Transmitter changes data on trailing of preceding clock cycle.
* Receiver samples data on leading edge of clock cycle.
* 1 Transmitter changes data on leading edge of current clock cycle.
* Receiver samples data on the trailing edge of clock cycle.
* SPI Mode nomenclature:
* Mode CPOL CPHA
* 0 0 0
* 1 0 1
* 2 1 0
* 3 1 1
* MEC1501 has three controls, CPOL, CPHA for output and CPHA for input.
* SPI frequency < 48MHz
* Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=0 and CHPA_MOSI=0)
* Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=1 and CHPA_MOSI=1)
* Data sheet recommends when QMSPI set at max. SPI frequency (48MHz).
* SPI frequency == 48MHz sample and change data on same edge.
* Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=1 and CHPA_MOSI=0)
* Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=0 and CHPA_MOSI=1)
*/
const uint8_t smode_tbl[4] = {
0x00u, 0x06u, 0x01u, 0x07u
};
const uint8_t smode48_tbl[4] = {
0x04u, 0x02u, 0x05u, 0x03u
};
static void qmspi_set_signalling_mode(QMSPI_Type *regs, uint32_t smode)
{
const uint8_t *ptbl;
uint32_t m;
ptbl = smode_tbl;
if (((regs->MODE >> MCHP_QMSPI_M_FDIV_POS) &
MCHP_QMSPI_M_FDIV_MASK0) == 1) {
ptbl = smode48_tbl;
}
m = (uint32_t)ptbl[smode & 0x03];
regs->MODE = (regs->MODE & ~(MCHP_QMSPI_M_SIG_MASK))
| (m << MCHP_QMSPI_M_SIG_POS);
}
/*
* QMSPI HW support single, dual, and quad.
* Return QMSPI Control/Descriptor register encoded value.
*/
static uint32_t qmspi_config_get_lines(const struct spi_config *config)
{
#ifdef CONFIG_SPI_EXTENDED_MODES
uint32_t qlines;
switch (config->operation & SPI_LINES_MASK) {
case SPI_LINES_SINGLE:
qlines = MCHP_QMSPI_C_IFM_1X;
break;
#if DT_INST_PROP(0, lines) > 1
case SPI_LINES_DUAL:
qlines = MCHP_QMSPI_C_IFM_2X;
break;
#endif
#if DT_INST_PROP(0, lines) > 2
case SPI_LINES_QUAD:
qlines = MCHP_QMSPI_C_IFM_4X;
break;
#endif
default:
qlines = 0xffu;
}
return qlines;
#else
return MCHP_QMSPI_C_IFM_1X;
#endif
}
/*
* Configure QMSPI.
* NOTE: QMSPI can control two chip selects. At this time we use CS0# only.
*/
static int qmspi_configure(const struct device *dev,
const struct spi_config *config)
{
const struct spi_qmspi_config *cfg = dev->config;
struct spi_qmspi_data *data = dev->data;
QMSPI_Type *regs = cfg->regs;
uint32_t smode;
if (spi_context_configured(&data->ctx, config)) {
return 0;
}
if (config->operation & SPI_HALF_DUPLEX) {
return -ENOTSUP;
}
if (config->operation & (SPI_TRANSFER_LSB | SPI_OP_MODE_SLAVE
| SPI_MODE_LOOP)) {
return -ENOTSUP;
}
smode = qmspi_config_get_lines(config);
if (smode == 0xff) {
return -ENOTSUP;
}
regs->CTRL = smode;
/* Use the requested or next highest possible frequency */
qmspi_set_frequency(regs, config->frequency);
smode = 0;
if ((config->operation & SPI_MODE_CPHA) != 0U) {
smode |= (1ul << 0);
}
if ((config->operation & SPI_MODE_CPOL) != 0U) {
smode |= (1ul << 1);
}
qmspi_set_signalling_mode(regs, smode);
if (SPI_WORD_SIZE_GET(config->operation) != 8) {
return -ENOTSUP;
}
/* chip select */
smode = regs->MODE & ~(MCHP_QMSPI_M_CS_MASK);
#if DT_INST_PROP(0, chip_select) == 0
smode |= MCHP_QMSPI_M_CS0;
#else
smode |= MCHP_QMSPI_M_CS1;
#endif
regs->MODE = smode;
/* chip select timing */
regs->CSTM = cfg->cs_timing;
data->ctx.config = config;
regs->MODE |= MCHP_QMSPI_M_ACTIVATE;
return 0;
}
/*
* Transmit dummy clocks - QMSPI will generate requested number of
* SPI clocks with I/O pins tri-stated.
* Single mode: 1 bit per clock -> IFM field = 00b. Max 0x7fff clocks
* Dual mode: 2 bits per clock -> IFM field = 01b. Max 0x3fff clocks
* Quad mode: 4 bits per clock -> IFM field = 1xb. Max 0x1fff clocks
* QMSPI unit size set to bits.
*/
static int qmspi_tx_dummy_clocks(QMSPI_Type *regs, uint32_t nclocks)
{
uint32_t descr, ifm, qstatus;
ifm = regs->CTRL & MCHP_QMSPI_C_IFM_MASK;
descr = ifm | MCHP_QMSPI_C_TX_DIS | MCHP_QMSPI_C_XFR_UNITS_BITS
| MCHP_QMSPI_C_DESCR_LAST | MCHP_QMSPI_C_DESCR0;
if (ifm & 0x01) {
nclocks <<= 1;
} else if (ifm & 0x02) {
nclocks <<= 2;
}
descr |= (nclocks << MCHP_QMSPI_C_XFR_NUNITS_POS);
descr_wr(regs, 0, descr);
regs->CTRL |= MCHP_QMSPI_C_DESCR_EN;
regs->IEN = 0;
regs->STS = 0xfffffffful;
regs->EXE = MCHP_QMSPI_EXE_START;
do {
qstatus = regs->STS;
if (qstatus & MCHP_QMSPI_STS_PROG_ERR) {
return -EIO;
}
} while ((qstatus & MCHP_QMSPI_STS_DONE) == 0);
return 0;
}
/*
* Return unit size power of 2 given number of bytes to transfer.
*/
static uint32_t qlen_shift(uint32_t len)
{
uint32_t ushift;
/* is len a multiple of 4 or 16? */
if ((len & 0x0F) == 0) {
ushift = 4;
} else if ((len & 0x03) == 0) {
ushift = 2;
} else {
ushift = 0;
}
return ushift;
}
/*
* Return QMSPI unit size of the number of units field in QMSPI
* control/descriptor register.
* Input: power of 2 unit size 4, 2, or 0(default) corresponding
* to 16, 4, or 1 byte units.
*/
static uint32_t get_qunits(uint32_t qshift)
{
if (qshift == 4) {
return MCHP_QMSPI_C_XFR_UNITS_16;
} else if (qshift == 2) {
return MCHP_QMSPI_C_XFR_UNITS_4;
} else {
return MCHP_QMSPI_C_XFR_UNITS_1;
}
}
/*
* Allocate(build) one or more descriptors.
* QMSPI contains 16 32-bit descriptor registers used as a linked
* list of operations. Using only 32-bits there are limitations.
* Each descriptor is limited to 0x7FFF units where unit size can
* be 1, 4, or 16 bytes. A descriptor can perform transmit or receive
* but not both simultaneously. Order of descriptor processing is specified
* by the first descriptor field of the control register, the next descriptor
* fields in each descriptor, and the descriptors last flag.
*/
static int qmspi_descr_alloc(QMSPI_Type *regs, const struct spi_buf *txb,
int didx, bool is_tx)
{
uint32_t descr, qshift, n, nu;
int dn;
if (didx >= MCHP_QMSPI_MAX_DESCR) {
return -EAGAIN;
}
if (txb->len == 0) {
return didx; /* nothing to do */
}
/* b[1:0] IFM and b[3:2] transmit mode */
descr = (regs->CTRL & MCHP_QMSPI_C_IFM_MASK);
if (is_tx) {
descr |= MCHP_QMSPI_C_TX_DATA;
} else {
descr |= MCHP_QMSPI_C_RX_EN;
}
/* b[11:10] unit size 1, 4, or 16 bytes */
qshift = qlen_shift(txb->len);
nu = txb->len >> qshift;
descr |= get_qunits(qshift);
do {
descr &= 0x0FFFul;
dn = didx + 1;
/* b[15:12] next descriptor pointer */
descr |= ((dn & MCHP_QMSPI_C_NEXT_DESCR_MASK0) <<
MCHP_QMSPI_C_NEXT_DESCR_POS);
n = nu;
if (n > MCHP_QMSPI_C_MAX_UNITS) {
n = MCHP_QMSPI_C_MAX_UNITS;
}
descr |= (n << MCHP_QMSPI_C_XFR_NUNITS_POS);
descr_wr(regs, didx, descr);
if (dn < MCHP_QMSPI_MAX_DESCR) {
didx++;
} else {
return -EAGAIN;
}
nu -= n;
} while (nu);
return dn;
}
static int qmspi_tx(QMSPI_Type *regs, const struct spi_buf *tx_buf,
bool close)
{
const uint8_t *p = tx_buf->buf;
size_t tlen = tx_buf->len;
uint32_t descr;
int didx;
if (tlen == 0) {
return 0;
}
/* Buffer pointer is NULL and number of bytes != 0 ? */
if (p == NULL) {
return qmspi_tx_dummy_clocks(regs, tlen);
}
didx = qmspi_descr_alloc(regs, tx_buf, 0, true);
if (didx < 0) {
return didx;
}
/* didx points to last allocated descriptor + 1 */
__ASSERT(didx > 0, "QMSPI descriptor index=%d expected > 0\n", didx);
didx--;
descr = descr_rd(regs, didx) | MCHP_QMSPI_C_DESCR_LAST;
if (close) {
descr |= MCHP_QMSPI_C_CLOSE;
}
descr_wr(regs, didx, descr);
regs->CTRL = (regs->CTRL & MCHP_QMSPI_C_IFM_MASK) |
MCHP_QMSPI_C_DESCR_EN | MCHP_QMSPI_C_DESCR0;
regs->IEN = 0;
regs->STS = 0xfffffffful;
/* preload TX_FIFO */
while (tlen) {
tlen--;
txb_wr8(regs, *p);
p++;
if (regs->STS & MCHP_QMSPI_STS_TXBF_RO) {
break;
}
}
regs->EXE = MCHP_QMSPI_EXE_START;
if (regs->STS & MCHP_QMSPI_STS_PROG_ERR) {
return -EIO;
}
while (tlen) {
while (regs->STS & MCHP_QMSPI_STS_TXBF_RO) {
}
txb_wr8(regs, *p);
p++;
tlen--;
}
/* Wait for TX FIFO to drain and last byte to be clocked out */
for (;;) {
if (regs->STS & MCHP_QMSPI_STS_DONE) {
break;
}
}
return 0;
}
static int qmspi_rx(QMSPI_Type *regs, const struct spi_buf *rx_buf,
bool close)
{
uint8_t *p = rx_buf->buf;
size_t rlen = rx_buf->len;
uint32_t descr;
int didx;
uint8_t data_byte;
if (rlen == 0) {
return 0;
}
didx = qmspi_descr_alloc(regs, rx_buf, 0, false);
if (didx < 0) {
return didx;
}
/* didx points to last allocated descriptor + 1 */
__ASSERT_NO_MSG(didx > 0);
didx--;
descr = descr_rd(regs, didx) | MCHP_QMSPI_C_DESCR_LAST;
if (close) {
descr |= MCHP_QMSPI_C_CLOSE;
}
descr_wr(regs, didx, descr);
regs->CTRL = (regs->CTRL & MCHP_QMSPI_C_IFM_MASK)
| MCHP_QMSPI_C_DESCR_EN | MCHP_QMSPI_C_DESCR0;
regs->IEN = 0;
regs->STS = 0xfffffffful;
/*
* Trigger read based on the descriptor(s) programmed above.
* QMSPI will generate clocks until the RX FIFO is filled.
* More clocks will be generated as we pull bytes from the RX FIFO.
* QMSPI Programming error will be triggered after start if
* descriptors were programmed options that cannot be enabled
* simultaneously.
*/
regs->EXE = MCHP_QMSPI_EXE_START;
if (regs->STS & MCHP_QMSPI_STS_PROG_ERR) {
return -EIO;
}
while (rlen) {
if (!(regs->STS & MCHP_QMSPI_STS_RXBE_RO)) {
data_byte = rxb_rd8(regs);
if (p != NULL) {
*p++ = data_byte;
}
rlen--;
}
}
return 0;
}
static int qmspi_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
const struct spi_qmspi_config *cfg = dev->config;
struct spi_qmspi_data *data = dev->data;
QMSPI_Type *regs = cfg->regs;
const struct spi_buf *ptx;
const struct spi_buf *prx;
size_t nb;
uint32_t descr, last_didx;
int err;
spi_context_lock(&data->ctx, false, NULL, NULL, config);
err = qmspi_configure(dev, config);
if (err != 0) {
goto done;
}
spi_context_cs_control(&data->ctx, true);
if (tx_bufs != NULL) {
ptx = tx_bufs->buffers;
nb = tx_bufs->count;
while (nb--) {
err = qmspi_tx(regs, ptx, false);
if (err != 0) {
goto done;
}
ptx++;
}
}
if (rx_bufs != NULL) {
prx = rx_bufs->buffers;
nb = rx_bufs->count;
while (nb--) {
err = qmspi_rx(regs, prx, false);
if (err != 0) {
goto done;
}
prx++;
}
}
/*
* If caller doesn't need CS# held asserted then find the last
* descriptor, set its close flag, and set stop.
*/
if (!(config->operation & SPI_HOLD_ON_CS)) {
/* Get last descriptor from status register */
last_didx = (regs->STS >> MCHP_QMSPI_C_NEXT_DESCR_POS)
& MCHP_QMSPI_C_NEXT_DESCR_MASK0;
descr = descr_rd(regs, last_didx) | MCHP_QMSPI_C_CLOSE;
descr_wr(regs, last_didx, descr);
regs->EXE = MCHP_QMSPI_EXE_STOP;
}
spi_context_cs_control(&data->ctx, false);
done:
spi_context_release(&data->ctx, err);
return err;
}
static int qmspi_transceive_sync(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return qmspi_transceive(dev, config, tx_bufs, rx_bufs);
}
#ifdef CONFIG_SPI_ASYNC
static int qmspi_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
struct k_poll_signal *async)
{
return -ENOTSUP;
}
#endif
static int qmspi_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_qmspi_data *data = dev->data;
const struct spi_qmspi_config *cfg = dev->config;
QMSPI_Type *regs = cfg->regs;
/* Force CS# to de-assert on next unit boundary */
regs->EXE = MCHP_QMSPI_EXE_STOP;
while (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) {
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
/*
* Initialize QMSPI controller.
* Disable sleep control.
* Disable and clear interrupt status.
* Initialize SPI context.
* QMSPI will be configured and enabled when the transceive API is called.
*/
static int qmspi_init(const struct device *dev)
{
int err;
const struct spi_qmspi_config *cfg = dev->config;
struct spi_qmspi_data *data = dev->data;
QMSPI_Type *regs = cfg->regs;
int ret;
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret != 0) {
LOG_ERR("QSPI pinctrl setup failed (%d)", ret);
return ret;
}
mchp_pcr_periph_slp_ctrl(PCR_QMSPI, MCHP_PCR_SLEEP_DIS);
regs->MODE = MCHP_QMSPI_M_SRST;
MCHP_GIRQ_CLR_EN(cfg->girq, cfg->girq_pos);
MCHP_GIRQ_SRC_CLR(cfg->girq, cfg->girq_pos);
MCHP_GIRQ_BLK_CLREN(cfg->girq);
NVIC_ClearPendingIRQ(cfg->girq_nvic_direct);
err = spi_context_cs_configure_all(&data->ctx);
if (err < 0) {
return err;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_qmspi_driver_api = {
.transceive = qmspi_transceive_sync,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = qmspi_transceive_async,
#endif
.release = qmspi_release,
};
#define XEC_QMSPI_CS_TIMING_VAL(a, b, c, d) (((a) & 0xFu) \
| (((b) & 0xFu) << 8) \
| (((c) & 0xFu) << 16) \
| (((d) & 0xFu) << 24))
#define XEC_QMSPI_0_CS_TIMING XEC_QMSPI_CS_TIMING_VAL( \
DT_INST_PROP(0, dcsckon), \
DT_INST_PROP(0, dckcsoff), \
DT_INST_PROP(0, dldh), \
DT_INST_PROP(0, dcsda))
#if DT_NODE_HAS_STATUS(DT_INST(0, microchip_xec_qmspi), okay)
PINCTRL_DT_INST_DEFINE(0);
static const struct spi_qmspi_config spi_qmspi_0_config = {
.regs = (QMSPI_Type *)DT_INST_REG_ADDR(0),
.cs_timing = XEC_QMSPI_0_CS_TIMING,
.girq = MCHP_QMSPI_GIRQ_NUM,
.girq_pos = MCHP_QMSPI_GIRQ_POS,
.girq_nvic_direct = MCHP_QMSPI_GIRQ_NVIC_DIRECT,
.irq_pri = DT_INST_IRQ(0, priority),
.chip_sel = DT_INST_PROP(0, chip_select),
.width = DT_INST_PROP(0, lines),
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
};
static struct spi_qmspi_data spi_qmspi_0_dev_data = {
SPI_CONTEXT_INIT_LOCK(spi_qmspi_0_dev_data, ctx),
SPI_CONTEXT_INIT_SYNC(spi_qmspi_0_dev_data, ctx),
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(0), ctx)
};
DEVICE_DT_INST_DEFINE(0,
&qmspi_init, NULL, &spi_qmspi_0_dev_data,
&spi_qmspi_0_config, POST_KERNEL,
CONFIG_SPI_INIT_PRIORITY, &spi_qmspi_driver_api);
#endif /* DT_NODE_HAS_STATUS(DT_INST(0, microchip_xec_qmspi), okay) */
|