Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 | /*
* Copyright 2022-2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_s32_spi
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#include "spi_nxp_s32.h"
extern Spi_Ip_StateStructureType * Spi_Ip_apxStateStructureArray[SPI_INSTANCE_COUNT];
static bool spi_nxp_s32_last_packet(struct spi_nxp_s32_data *data)
{
struct spi_context *ctx = &data->ctx;
if (ctx->tx_count <= 1U && ctx->rx_count <= 1U) {
if (!spi_context_tx_on(ctx) && (data->transfer_len == ctx->rx_len)) {
return true;
}
if (!spi_context_rx_on(ctx) && (data->transfer_len == ctx->tx_len)) {
return true;
}
if ((ctx->rx_len == ctx->tx_len) && (data->transfer_len == ctx->tx_len)) {
return true;
}
}
return false;
}
static inline bool spi_nxp_s32_transfer_done(struct spi_context *ctx)
{
return !spi_context_tx_on(ctx) && !spi_context_rx_on(ctx);
}
static int spi_nxp_s32_transfer_next_packet(const struct device *dev)
{
const struct spi_nxp_s32_config *config = dev->config;
struct spi_nxp_s32_data *data = dev->data;
Spi_Ip_StatusType status;
Spi_Ip_CallbackType data_cb;
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
data_cb = config->cb;
#else
data_cb = NULL;
#endif /* CONFIG_NXP_S32_SPI_INTERRUPT */
data->transfer_len = spi_context_max_continuous_chunk(&data->ctx);
data->transfer_len = MIN(data->transfer_len,
SPI_NXP_S32_MAX_BYTES_PER_PACKAGE(data->bytes_per_frame));
/*
* Keep CS signal asserted until the last package, there is no other way
* than directly intervening to internal state of low level driver
*/
Spi_Ip_apxStateStructureArray[config->spi_hw_cfg->Instance]->KeepCs =
!spi_nxp_s32_last_packet(data);
status = Spi_Ip_AsyncTransmit(&data->transfer_cfg, (uint8_t *)data->ctx.tx_buf,
data->ctx.rx_buf, data->transfer_len, data_cb);
if (status) {
LOG_ERR("Transfer could not start");
return -EIO;
}
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
return 0;
#else
while (Spi_Ip_GetStatus(config->spi_hw_cfg->Instance) == SPI_IP_BUSY) {
Spi_Ip_ManageBuffers(config->spi_hw_cfg->Instance);
}
if (Spi_Ip_GetStatus(config->spi_hw_cfg->Instance) == SPI_IP_FAULT) {
return -EIO;
}
return 0;
#endif /* CONFIG_NXP_S32_SPI_INTERRUPT */
}
/*
* The function to get Scaler and Prescaler for corresponding registers
* to configure the baudrate for the transmission. The real frequency is
* computated to ensure it will always equal or the nearest approximation
* lower to the expected one.
*/
static void spi_nxp_s32_getbestfreq(uint32_t clock_frequency,
uint32_t requested_baud,
struct spi_nxp_s32_baudrate_param *best_baud)
{
uint8_t scaler;
uint8_t prescaler;
uint32_t low, high;
uint32_t curr_freq;
uint32_t best_freq = 0U;
static const uint8_t prescaler_arr[SPI_NXP_S32_NUM_PRESCALER] = {2U, 3U, 5U, 7U};
static const uint16_t scaller_arr[SPI_NXP_S32_NUM_SCALER] = {
2U, 4U, 6U, 8U, 16U, 32U, 64U, 128U, 256U, 512U, 1024U, 2048U,
4096U, 8192U, 16384U, 32768U
};
for (prescaler = 0U; prescaler < SPI_NXP_S32_NUM_PRESCALER; prescaler++) {
low = 0U;
high = SPI_NXP_S32_NUM_SCALER - 1U;
/* Implement golden section search algorithm */
do {
scaler = (low + high) / 2U;
curr_freq = clock_frequency * 1U /
(prescaler_arr[prescaler] * scaller_arr[scaler]);
/*
* If the scaler make current frequency higher than the
* expected one, skip the next step
*/
if (curr_freq > requested_baud) {
low = scaler;
continue;
} else {
high = scaler;
}
if ((requested_baud - best_freq) > (requested_baud - curr_freq)) {
best_freq = curr_freq;
best_baud->prescaler = prescaler;
best_baud->scaler = scaler;
}
if (best_freq == requested_baud) {
break;
}
} while ((high - low) > 1U);
if ((high - low) <= 1U) {
if (high == scaler) {
/* use low value */
scaler = low;
} else {
scaler = high;
}
curr_freq = clock_frequency * 1U /
(prescaler_arr[prescaler] * scaller_arr[scaler]);
if (curr_freq <= requested_baud) {
if ((requested_baud - best_freq) > (requested_baud - curr_freq)) {
best_freq = curr_freq;
best_baud->prescaler = prescaler;
best_baud->scaler = scaler;
}
}
}
if (best_freq == requested_baud) {
break;
}
}
best_baud->frequency = best_freq;
}
/*
* The function to get Scaler and Prescaler for corresponding registers
* to configure the delay for the transmission. The real delay is computated
* to ensure it will always equal or the nearest approximation higher to
* the expected one. In the worst case, use the delay as much as possible.
*/
static void spi_nxp_s32_getbestdelay(uint32_t clock_frequency, uint32_t requested_delay,
uint8_t *best_scaler, uint8_t *best_prescaler)
{
uint32_t current_delay;
uint8_t scaler, prescaler;
uint32_t low, high;
uint32_t best_delay = 0xFFFFFFFFU;
/* The scaler array is a power of two, so do not need to be defined */
static const uint8_t prescaler_arr[SPI_NXP_S32_NUM_PRESCALER] = {1U, 3U, 5U, 7U};
clock_frequency = clock_frequency / MHZ(1);
for (prescaler = 0; prescaler < SPI_NXP_S32_NUM_PRESCALER; prescaler++) {
low = 0U;
high = SPI_NXP_S32_NUM_SCALER - 1U;
do {
scaler = (low + high) / 2U;
current_delay = NSEC_PER_USEC * prescaler_arr[prescaler]
* (1U << (scaler + 1)) / clock_frequency;
/*
* If the scaler make current delay smaller than
* the expected one, skip the next step
*/
if (current_delay < requested_delay) {
low = scaler;
continue;
} else {
high = scaler;
}
if ((best_delay - requested_delay) > (current_delay - requested_delay)) {
best_delay = current_delay;
*best_prescaler = prescaler;
*best_scaler = scaler;
}
if (best_delay == requested_delay) {
break;
}
} while ((high - low) > 1U);
if ((high - low) <= 1U) {
if (high == scaler) {
/* use low value */
scaler = low;
} else {
scaler = high;
}
current_delay = NSEC_PER_USEC * prescaler_arr[prescaler]
* (1U << (scaler + 1)) / clock_frequency;
if (current_delay >= requested_delay) {
if ((best_delay - requested_delay) >
(current_delay - requested_delay)) {
best_delay = current_delay;
*best_prescaler = prescaler;
*best_scaler = scaler;
}
}
}
if (best_delay == requested_delay) {
break;
}
}
if (best_delay == 0xFFFFFFFFU) {
/* Use the delay as much as possible */
*best_prescaler = SPI_NXP_S32_NUM_PRESCALER - 1U;
*best_scaler = SPI_NXP_S32_NUM_SCALER - 1U;
}
}
static int spi_nxp_s32_configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
const struct spi_nxp_s32_config *config = dev->config;
struct spi_nxp_s32_data *data = dev->data;
bool clk_phase, clk_polarity;
bool lsb, hold_cs;
bool slave_mode, cs_active_high;
uint8_t frame_size;
struct spi_nxp_s32_baudrate_param best_baud = {0};
uint32_t clock_rate;
int err;
if (spi_context_configured(&data->ctx, spi_cfg)) {
/* This configuration is already in use */
return 0;
}
err = clock_control_get_rate(config->clock_dev, config->clock_subsys, &clock_rate);
if (err) {
LOG_ERR("Failed to get clock frequency");
return err;
}
clk_phase = !!(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA);
clk_polarity = !!(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL);
hold_cs = !!(spi_cfg->operation & SPI_HOLD_ON_CS);
lsb = !!(spi_cfg->operation & SPI_TRANSFER_LSB);
slave_mode = !!(SPI_OP_MODE_GET(spi_cfg->operation));
frame_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
cs_active_high = !!(spi_cfg->operation & SPI_CS_ACTIVE_HIGH);
if (slave_mode == (!!(config->spi_hw_cfg->Mcr & SPI_MCR_MSTR_MASK))) {
LOG_ERR("SPI mode (master/slave) must be same as configured in DT");
return -ENOTSUP;
}
if (slave_mode && !IS_ENABLED(CONFIG_SPI_SLAVE)) {
LOG_ERR("Kconfig for enable SPI in slave mode is not enabled");
return -ENOTSUP;
}
if (slave_mode && lsb) {
LOG_ERR("SPI does not support to shifting out with LSB in slave mode");
return -ENOTSUP;
}
if (spi_cfg->slave >= config->num_cs) {
LOG_ERR("Slave %d excess the allowed maximum value (%d)",
spi_cfg->slave, config->num_cs - 1);
return -ENOTSUP;
}
if (frame_size > 32U) {
LOG_ERR("Unsupported frame size %d bits", frame_size);
return -ENOTSUP;
}
if ((spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only single line mode is supported");
return -ENOTSUP;
}
if (spi_cfg->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode is not supported");
return -ENOTSUP;
}
if (cs_active_high && !spi_cs_is_gpio(spi_cfg)) {
LOG_ERR("For CS has active state is high, a GPIO pin must be used to"
" control CS line instead");
return -ENOTSUP;
}
if (!slave_mode) {
if ((spi_cfg->frequency < SPI_NXP_S32_MIN_FREQ) ||
(spi_cfg->frequency > SPI_NXP_S32_MAX_FREQ)) {
LOG_ERR("The frequency is out of range");
return -ENOTSUP;
}
spi_nxp_s32_getbestfreq(clock_rate, spi_cfg->frequency, &best_baud);
data->transfer_cfg.Ctar &= ~(SPI_CTAR_BR_MASK | SPI_CTAR_PBR_MASK);
data->transfer_cfg.Ctar |= SPI_CTAR_BR(best_baud.scaler) |
SPI_CTAR_PBR(best_baud.prescaler);
data->transfer_cfg.PushrCmd &= ~((SPI_PUSHR_CONT_MASK | SPI_PUSHR_PCS_MASK) >> 16U);
if (!spi_cs_is_gpio(spi_cfg)) {
/* Use inner CS signal from SPI module */
data->transfer_cfg.PushrCmd |= hold_cs << 15U;
data->transfer_cfg.PushrCmd |= (1U << spi_cfg->slave);
}
}
data->transfer_cfg.Ctar &= ~(SPI_CTAR_CPHA_MASK | SPI_CTAR_CPOL_MASK);
data->transfer_cfg.Ctar |= SPI_CTAR_CPHA(clk_phase) | SPI_CTAR_CPOL(clk_polarity);
Spi_Ip_UpdateFrameSize(&data->transfer_cfg, frame_size);
Spi_Ip_UpdateLsb(&data->transfer_cfg, lsb);
data->ctx.config = spi_cfg;
data->bytes_per_frame = SPI_NXP_S32_BYTE_PER_FRAME(frame_size);
if (slave_mode) {
LOG_DBG("SPI configuration: cpol = %u, cpha = %u,"
" lsb = %u, frame_size = %u, mode: slave",
clk_polarity, clk_phase, lsb, frame_size);
} else {
LOG_DBG("SPI configuration: frequency = %uHz, cpol = %u,"
" cpha = %u, lsb = %u, hold_cs = %u, frame_size = %u,"
" mode: master, CS = %u\n",
best_baud.frequency, clk_polarity, clk_phase,
lsb, hold_cs, frame_size, spi_cfg->slave);
}
return 0;
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
struct spi_nxp_s32_data *data = dev->data;
struct spi_context *context = &data->ctx;
int ret;
if (!tx_bufs && !rx_bufs) {
return 0;
}
#ifndef CONFIG_NXP_S32_SPI_INTERRUPT
if (asynchronous) {
return -ENOTSUP;
}
#endif /* CONFIG_NXP_S32_SPI_INTERRUPT */
spi_context_lock(context, asynchronous, cb, userdata, spi_cfg);
ret = spi_nxp_s32_configure(dev, spi_cfg);
if (ret) {
LOG_ERR("An error occurred in the SPI configuration");
spi_context_release(context, ret);
return ret;
}
spi_context_buffers_setup(context, tx_bufs, rx_bufs, 1U);
if (spi_nxp_s32_transfer_done(context)) {
spi_context_release(context, 0);
return 0;
}
spi_context_cs_control(context, true);
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
ret = spi_nxp_s32_transfer_next_packet(dev);
if (!ret) {
ret = spi_context_wait_for_completion(context);
} else {
spi_context_cs_control(context, false);
}
#else
do {
ret = spi_nxp_s32_transfer_next_packet(dev);
if (!ret) {
spi_context_update_tx(context, 1U, data->transfer_len);
spi_context_update_rx(context, 1U, data->transfer_len);
}
} while (!ret && !spi_nxp_s32_transfer_done(context));
spi_context_cs_control(context, false);
#ifdef CONFIG_SPI_SLAVE
if (spi_context_is_slave(context) && !ret) {
ret = data->ctx.recv_frames;
}
#endif /* CONFIG_SPI_SLAVE */
#endif /* CONFIG_NXP_S32_SPI_INTERRUPT */
spi_context_release(context, ret);
return ret;
}
static int spi_nxp_s32_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_nxp_s32_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t callback,
void *userdata)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, callback, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_nxp_s32_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_nxp_s32_data *data = dev->data;
(void)spi_cfg;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_nxp_s32_init(const struct device *dev)
{
const struct spi_nxp_s32_config *config = dev->config;
struct spi_nxp_s32_data *data = dev->data;
uint32_t clock_rate;
uint8_t scaler, prescaler;
uint32_t ctar = 0;
int ret = 0;
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("Clock control device not ready");
return -ENODEV;
}
ret = clock_control_on(config->clock_dev, config->clock_subsys);
if (ret) {
LOG_ERR("Failed to enable clock");
return ret;
}
ret = clock_control_get_rate(config->clock_dev, config->clock_subsys, &clock_rate);
if (ret) {
LOG_ERR("Failed to get clock frequency");
return ret;
}
ret = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
if (Spi_Ip_Init(config->spi_hw_cfg)) {
return -EBUSY;
}
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
if (Spi_Ip_UpdateTransferMode(config->spi_hw_cfg->Instance, SPI_IP_INTERRUPT)) {
return -EBUSY;
}
config->irq_config_func(dev);
#endif /* CONFIG_NXP_S32_SPI_INTERRUPT */
/*
* Update the delay timings configuration that are
* applied for all inner CS signals of SPI module.
*/
spi_nxp_s32_getbestdelay(clock_rate, config->sck_cs_delay, &scaler, &prescaler);
ctar |= SPI_CTAR_ASC(scaler) | SPI_CTAR_PASC(prescaler);
spi_nxp_s32_getbestdelay(clock_rate, config->cs_sck_delay, &scaler, &prescaler);
ctar |= SPI_CTAR_CSSCK(scaler) | SPI_CTAR_PCSSCK(prescaler);
spi_nxp_s32_getbestdelay(clock_rate, config->cs_cs_delay, &scaler, &prescaler);
ctar |= SPI_CTAR_DT(scaler) | SPI_CTAR_PDT(prescaler);
data->transfer_cfg.Ctar |= ctar;
data->transfer_cfg.DeviceParams = &data->transfer_params;
ret = spi_context_cs_configure_all(&data->ctx);
if (ret < 0) {
return ret;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
void spi_nxp_s32_isr(const struct device *dev)
{
const struct spi_nxp_s32_config *config = dev->config;
Spi_Ip_IrqHandler(config->spi_hw_cfg->Instance);
}
static void spi_nxp_s32_transfer_callback(const struct device *dev, Spi_Ip_EventType event)
{
struct spi_nxp_s32_data *data = dev->data;
int ret = 0;
if (event == SPI_IP_EVENT_END_TRANSFER) {
spi_context_update_tx(&data->ctx, 1U, data->transfer_len);
spi_context_update_rx(&data->ctx, 1U, data->transfer_len);
if (spi_nxp_s32_transfer_done(&data->ctx)) {
spi_context_complete(&data->ctx, dev, 0);
spi_context_cs_control(&data->ctx, false);
} else {
ret = spi_nxp_s32_transfer_next_packet(dev);
}
} else {
LOG_ERR("Failing in transfer_callback");
ret = -EIO;
}
if (ret) {
spi_context_complete(&data->ctx, dev, ret);
spi_context_cs_control(&data->ctx, false);
}
}
#endif /*CONFIG_NXP_S32_SPI_INTERRUPT*/
static const struct spi_driver_api spi_nxp_s32_driver_api = {
.transceive = spi_nxp_s32_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_nxp_s32_transceive_async,
#endif
.release = spi_nxp_s32_release,
};
#define SPI_NXP_S32_HW_INSTANCE_CHECK(i, n) \
((DT_INST_REG_ADDR(n) == IP_SPI_##i##_BASE) ? i : 0)
#define SPI_NXP_S32_HW_INSTANCE(n) \
LISTIFY(__DEBRACKET SPI_INSTANCE_COUNT, SPI_NXP_S32_HW_INSTANCE_CHECK, (|), n)
#define SPI_NXP_S32_NUM_CS(n) DT_INST_PROP(n, num_cs)
#define SPI_NXP_S32_IS_MASTER(n) !DT_INST_PROP(n, slave)
#ifdef CONFIG_SPI_SLAVE
#define SPI_NXP_S32_SET_SLAVE(n) .SlaveMode = DT_INST_PROP(n, slave),
#else
#define SPI_NXP_S32_SET_SLAVE(n)
#endif
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
#define SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n) \
.irq_config_func = spi_nxp_s32_config_func_##n,
#define SPI_NXP_S32_INTERRUPT_DEFINE(n) \
static void spi_nxp_s32_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
spi_nxp_s32_isr, DEVICE_DT_INST_GET(n), \
DT_INST_IRQ(n, flags)); \
irq_enable(DT_INST_IRQN(n)); \
}
#define SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n) \
.cb = spi_nxp_s32_##n##_callback,
#define SPI_NXP_S32_CALLBACK_DEFINE(n) \
static void spi_nxp_s32_##n##_callback(uint8 instance, Spi_Ip_EventType event) \
{ \
ARG_UNUSED(instance); \
const struct device *dev = DEVICE_DT_INST_GET(n); \
\
spi_nxp_s32_transfer_callback(dev, event); \
}
#else
#define SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n)
#define SPI_NXP_S32_INTERRUPT_DEFINE(n)
#define SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n)
#define SPI_NXP_S32_CALLBACK_DEFINE(n)
#endif /*CONFIG_NXP_S32_SPI_INTERRUPT*/
/*
* Declare the default configuration for SPI driver, no DMA
* support, all inner module Chip Selects are active low.
*/
#define SPI_NXP_S32_INSTANCE_CONFIG(n) \
static const Spi_Ip_ConfigType spi_nxp_s32_default_config_##n = { \
.Instance = SPI_NXP_S32_HW_INSTANCE(n), \
.Mcr = (SPI_MCR_MSTR(SPI_NXP_S32_IS_MASTER(n)) | \
SPI_MCR_CONT_SCKE(0U) | SPI_MCR_FRZ(0U) | \
SPI_MCR_MTFE(0U) | SPI_MCR_SMPL_PT(0U) | \
SPI_MCR_PCSIS(BIT_MASK(SPI_NXP_S32_NUM_CS(n))) | \
SPI_MCR_MDIS(0U) | SPI_MCR_XSPI(1U) | SPI_MCR_HALT(1U)), \
.TransferMode = SPI_IP_POLLING, \
.StateIndex = n, \
SPI_NXP_S32_SET_SLAVE(n) \
}
#define SPI_NXP_S32_TRANSFER_CONFIG(n) \
.transfer_cfg = { \
.Instance = SPI_NXP_S32_HW_INSTANCE(n), \
.Ctare = SPI_CTARE_FMSZE(0U) | SPI_CTARE_DTCP(1U), \
}
#define SPI_NXP_S32_DEVICE(n) \
PINCTRL_DT_INST_DEFINE(n); \
SPI_NXP_S32_CALLBACK_DEFINE(n) \
SPI_NXP_S32_INTERRUPT_DEFINE(n) \
SPI_NXP_S32_INSTANCE_CONFIG(n); \
static const struct spi_nxp_s32_config spi_nxp_s32_config_##n = { \
.num_cs = SPI_NXP_S32_NUM_CS(n), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \
.sck_cs_delay = DT_INST_PROP_OR(n, spi_sck_cs_delay, 0U), \
.cs_sck_delay = DT_INST_PROP_OR(n, spi_cs_sck_delay, 0U), \
.cs_cs_delay = DT_INST_PROP_OR(n, spi_cs_cs_delay, 0U), \
.spi_hw_cfg = (Spi_Ip_ConfigType *)&spi_nxp_s32_default_config_##n, \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n) \
SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n) \
}; \
static struct spi_nxp_s32_data spi_nxp_s32_data_##n = { \
SPI_NXP_S32_TRANSFER_CONFIG(n), \
SPI_CONTEXT_INIT_LOCK(spi_nxp_s32_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_nxp_s32_data_##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \
}; \
DEVICE_DT_INST_DEFINE(n, \
&spi_nxp_s32_init, NULL, \
&spi_nxp_s32_data_##n, &spi_nxp_s32_config_##n, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_nxp_s32_driver_api);
DT_INST_FOREACH_STATUS_OKAY(SPI_NXP_S32_DEVICE)
|