Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
/*
 * Copyright (c) 2016, Freescale Semiconductor, Inc.
 * Copyright (c) 2017,2019, NXP
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT nxp_lpc_spi

#include <errno.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/clock_control.h>
#include <fsl_spi.h>
#include <zephyr/logging/log.h>
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
#include <zephyr/drivers/dma.h>
#endif
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/sys_clock.h>
#include <zephyr/irq.h>

LOG_MODULE_REGISTER(spi_mcux_flexcomm, CONFIG_SPI_LOG_LEVEL);

#include "spi_context.h"

#define SPI_CHIP_SELECT_COUNT	4
#define SPI_MAX_DATA_WIDTH	16

struct spi_mcux_config {
	SPI_Type *base;
	const struct device *clock_dev;
	clock_control_subsys_t clock_subsys;
	void (*irq_config_func)(const struct device *dev);
	uint32_t pre_delay;
	uint32_t post_delay;
	uint32_t frame_delay;
	uint32_t transfer_delay;
	uint32_t def_char;
	const struct pinctrl_dev_config *pincfg;
};

#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
#define SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG	0x01
#define SPI_MCUX_FLEXCOMM_DMA_RX_DONE_FLAG	0x02
#define SPI_MCUX_FLEXCOMM_DMA_TX_DONE_FLAG	0x04
#define SPI_MCUX_FLEXCOMM_DMA_DONE_FLAG		\
	(SPI_MCUX_FLEXCOMM_DMA_RX_DONE_FLAG | SPI_MCUX_FLEXCOMM_DMA_TX_DONE_FLAG)

struct stream {
	const struct device *dma_dev;
	uint32_t channel; /* stores the channel for dma */
	struct dma_config dma_cfg;
	struct dma_block_config dma_blk_cfg[2];
};
#endif

struct spi_mcux_data {
	const struct device *dev;
	spi_master_handle_t handle;
	struct spi_context ctx;
	size_t transfer_len;
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
	volatile uint32_t status_flags;
	struct stream dma_rx;
	struct stream dma_tx;
	/* dummy value used for transferring NOP when tx buf is null */
	uint32_t dummy_tx_buffer;
	/* Used to send the last word */
	uint32_t last_word;
#endif
};

static void spi_mcux_transfer_next_packet(const struct device *dev)
{
	const struct spi_mcux_config *config = dev->config;
	struct spi_mcux_data *data = dev->data;
	SPI_Type *base = config->base;
	struct spi_context *ctx = &data->ctx;
	spi_transfer_t transfer;
	status_t status;

	if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
		/* nothing left to rx or tx, we're done! */
		spi_context_cs_control(&data->ctx, false);
		spi_context_complete(&data->ctx, dev, 0);
		return;
	}

	transfer.configFlags = 0;
	if (ctx->tx_len == 0) {
		/* rx only, nothing to tx */
		transfer.txData = NULL;
		transfer.rxData = ctx->rx_buf;
		transfer.dataSize = ctx->rx_len;
	} else if (ctx->rx_len == 0) {
		/* tx only, nothing to rx */
		transfer.txData = (uint8_t *) ctx->tx_buf;
		transfer.rxData = NULL;
		transfer.dataSize = ctx->tx_len;
	} else if (ctx->tx_len == ctx->rx_len) {
		/* rx and tx are the same length */
		transfer.txData = (uint8_t *) ctx->tx_buf;
		transfer.rxData = ctx->rx_buf;
		transfer.dataSize = ctx->tx_len;
	} else if (ctx->tx_len > ctx->rx_len) {
		/* Break up the tx into multiple transfers so we don't have to
		 * rx into a longer intermediate buffer. Leave chip select
		 * active between transfers.
		 */
		transfer.txData = (uint8_t *) ctx->tx_buf;
		transfer.rxData = ctx->rx_buf;
		transfer.dataSize = ctx->rx_len;
	} else {
		/* Break up the rx into multiple transfers so we don't have to
		 * tx from a longer intermediate buffer. Leave chip select
		 * active between transfers.
		 */
		transfer.txData = (uint8_t *) ctx->tx_buf;
		transfer.rxData = ctx->rx_buf;
		transfer.dataSize = ctx->tx_len;
	}

	if (ctx->tx_count <= 1 && ctx->rx_count <= 1) {
		transfer.configFlags = kSPI_FrameAssert;
	}

	data->transfer_len = transfer.dataSize;

	status = SPI_MasterTransferNonBlocking(base, &data->handle, &transfer);
	if (status != kStatus_Success) {
		LOG_ERR("Transfer could not start");
	}
}

static void spi_mcux_isr(const struct device *dev)
{
	const struct spi_mcux_config *config = dev->config;
	struct spi_mcux_data *data = dev->data;
	SPI_Type *base = config->base;

	SPI_MasterTransferHandleIRQ(base, &data->handle);
}

static void spi_mcux_transfer_callback(SPI_Type *base,
		spi_master_handle_t *handle, status_t status, void *userData)
{
	struct spi_mcux_data *data = userData;

	spi_context_update_tx(&data->ctx, 1, data->transfer_len);
	spi_context_update_rx(&data->ctx, 1, data->transfer_len);

	spi_mcux_transfer_next_packet(data->dev);
}

static uint8_t spi_clock_cycles(uint32_t delay_ns, uint32_t sck_frequency_hz)
{
	/* Convert delay_ns to an integer number of clock cycles of frequency
	 * sck_frequency_hz. The maximum delay is 15 clock cycles.
	 */
	uint8_t delay_cycles = (uint64_t)delay_ns * sck_frequency_hz / NSEC_PER_SEC;

	delay_cycles = MIN(delay_cycles, 15);

	return delay_cycles;
}

static int spi_mcux_configure(const struct device *dev,
			      const struct spi_config *spi_cfg)
{
	const struct spi_mcux_config *config = dev->config;
	struct spi_mcux_data *data = dev->data;
	SPI_Type *base = config->base;
	uint32_t clock_freq;
	uint32_t word_size;

	if (spi_context_configured(&data->ctx, spi_cfg)) {
		/* This configuration is already in use */
		return 0;
	}

	if (spi_cfg->operation & SPI_HALF_DUPLEX) {
		LOG_ERR("Half-duplex not supported");
		return -ENOTSUP;
	}

	word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
	if (word_size > SPI_MAX_DATA_WIDTH) {
		LOG_ERR("Word size %d is greater than %d",
			    word_size, SPI_MAX_DATA_WIDTH);
		return -EINVAL;
	}

	/*
	 * Do master or slave initialisation, depending on the
	 * mode requested.
	 */
	if (SPI_OP_MODE_GET(spi_cfg->operation) == SPI_OP_MODE_MASTER) {
		spi_master_config_t master_config;

		SPI_MasterGetDefaultConfig(&master_config);

		if (!device_is_ready(config->clock_dev)) {
			LOG_ERR("clock control device not ready");
			return -ENODEV;
		}

		/* Get the clock frequency */
		if (clock_control_get_rate(config->clock_dev,
					   config->clock_subsys, &clock_freq)) {
			return -EINVAL;
		}

		if (spi_cfg->slave > SPI_CHIP_SELECT_COUNT) {
			LOG_ERR("Slave %d is greater than %d",
				    spi_cfg->slave, SPI_CHIP_SELECT_COUNT);
			return -EINVAL;
		}

		master_config.sselNum = spi_cfg->slave;
		master_config.sselPol = kSPI_SpolActiveAllLow;
		master_config.dataWidth = word_size - 1;

		master_config.polarity =
			(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
			? kSPI_ClockPolarityActiveLow
			: kSPI_ClockPolarityActiveHigh;

		master_config.phase =
			(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
			? kSPI_ClockPhaseSecondEdge
			: kSPI_ClockPhaseFirstEdge;

		master_config.direction =
			(spi_cfg->operation & SPI_TRANSFER_LSB)
			? kSPI_LsbFirst
			: kSPI_MsbFirst;

		master_config.baudRate_Bps = spi_cfg->frequency;

		spi_delay_config_t *delayConfig = &master_config.delayConfig;

		delayConfig->preDelay = spi_clock_cycles(config->pre_delay,
							spi_cfg->frequency);
		delayConfig->postDelay = spi_clock_cycles(config->post_delay,
							spi_cfg->frequency);
		delayConfig->frameDelay = spi_clock_cycles(config->frame_delay,
							spi_cfg->frequency);
		delayConfig->transferDelay = spi_clock_cycles(config->transfer_delay,
							spi_cfg->frequency);

		SPI_MasterInit(base, &master_config, clock_freq);

		SPI_SetDummyData(base, (uint8_t)config->def_char);

		SPI_MasterTransferCreateHandle(base, &data->handle,
					     spi_mcux_transfer_callback, data);

		data->ctx.config = spi_cfg;
	} else {
		spi_slave_config_t slave_config;

		SPI_SlaveGetDefaultConfig(&slave_config);

		slave_config.polarity =
			(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
			? kSPI_ClockPolarityActiveLow
			: kSPI_ClockPolarityActiveHigh;

		slave_config.phase =
			(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
			? kSPI_ClockPhaseSecondEdge
			: kSPI_ClockPhaseFirstEdge;

		slave_config.direction =
			(spi_cfg->operation & SPI_TRANSFER_LSB)
			? kSPI_LsbFirst
			: kSPI_MsbFirst;

		/* SS pin active low */
		slave_config.sselPol = kSPI_SpolActiveAllLow;
		slave_config.dataWidth = word_size - 1;

		SPI_SlaveInit(base, &slave_config);

		SPI_SetDummyData(base, (uint8_t)config->def_char);

		SPI_SlaveTransferCreateHandle(base, &data->handle,
					      spi_mcux_transfer_callback, data);

		data->ctx.config = spi_cfg;
	}

	return 0;
}

#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
/* Dummy buffer used as a sink when rc buf is null */
uint32_t dummy_rx_buffer;

/* This function is executed in the interrupt context */
static void spi_mcux_dma_callback(const struct device *dev, void *arg,
			 uint32_t channel, int status)
{
	/* arg directly holds the spi device */
	const struct device *spi_dev = arg;
	struct spi_mcux_data *data = spi_dev->data;

	if (status < 0) {
		LOG_ERR("DMA callback error with channel %d.", channel);
		data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG;
	} else {
		/* identify the origin of this callback */
		if (channel == data->dma_tx.channel) {
			/* this part of the transfer ends */
			data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_TX_DONE_FLAG;
		} else if (channel == data->dma_rx.channel) {
			/* this part of the transfer ends */
			data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_RX_DONE_FLAG;
		} else {
			LOG_ERR("DMA callback channel %d is not valid.",
								channel);
			data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG;
		}
	}

	spi_context_complete(&data->ctx, spi_dev, 0);
}


static void spi_mcux_prepare_txlastword(uint32_t *txLastWord,
				const uint8_t *buf, const struct spi_config *spi_cfg,
				size_t len)
{
	uint32_t word_size;

	word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);

	if (word_size > 8) {
		*txLastWord = (((uint32_t)buf[len - 1U] << 8U) |
							(buf[len - 2U]));
	} else {
		*txLastWord = buf[len - 1U];
	}

	*txLastWord |= (uint32_t)SPI_FIFOWR_EOT_MASK;

	*txLastWord |= ((uint32_t)SPI_DEASSERT_ALL &
				(~(uint32_t)SPI_DEASSERTNUM_SSEL((uint32_t)spi_cfg->slave)));

	/* set width of data - range asserted at entry */
	*txLastWord |= SPI_FIFOWR_LEN(word_size - 1);
}

static void spi_mcux_prepare_txdummy(uint32_t *dummy, bool last_packet,
				const struct spi_config *spi_cfg)
{
	uint32_t word_size;

	word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);

	if (last_packet) {
		*dummy |= (uint32_t)SPI_FIFOWR_EOT_MASK;
	}

	*dummy |= ((uint32_t)SPI_DEASSERT_ALL &
				(~(uint32_t)SPI_DEASSERTNUM_SSEL((uint32_t)spi_cfg->slave)));

	/* set width of data - range asserted at entry */
	*dummy |= SPI_FIFOWR_LEN(word_size - 1);
}

static int spi_mcux_dma_tx_load(const struct device *dev, const uint8_t *buf,
				 const struct spi_config *spi_cfg, size_t len, bool last_packet)
{
	const struct spi_mcux_config *cfg = dev->config;
	struct spi_mcux_data *data = dev->data;
	struct dma_block_config *blk_cfg;
	int ret;
	SPI_Type *base = cfg->base;
	uint32_t word_size;

	word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);

	/* remember active TX DMA channel (used in callback) */
	struct stream *stream = &data->dma_tx;

	blk_cfg = &stream->dma_blk_cfg[0];

	/* prepare the block for this TX DMA channel */
	memset(blk_cfg, 0, sizeof(struct dma_block_config));

	/* tx direction has memory as source and periph as dest. */
	if (buf == NULL) {
		data->dummy_tx_buffer = 0;
		data->last_word = 0;
		spi_mcux_prepare_txdummy(&data->dummy_tx_buffer, last_packet, spi_cfg);

		if (last_packet  &&
		    ((word_size > 8) ? (len > 2U) : (len > 1U))) {
			spi_mcux_prepare_txdummy(&data->last_word, last_packet, spi_cfg);
			blk_cfg->source_gather_en = 1;
			blk_cfg->source_address = (uint32_t)&data->dummy_tx_buffer;
			blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
			blk_cfg->block_size = (word_size > 8) ?
						(len - 2U) : (len - 1U);
			blk_cfg->next_block = &stream->dma_blk_cfg[1];
			blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
			blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;

			blk_cfg = &stream->dma_blk_cfg[1];

			/* prepare the block for this TX DMA channel */
			memset(blk_cfg, 0, sizeof(struct dma_block_config));
			blk_cfg->source_address = (uint32_t)&data->last_word;
			blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
			blk_cfg->block_size = sizeof(uint32_t);
			blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
			blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
		} else {
			blk_cfg->source_address = (uint32_t)&data->dummy_tx_buffer;
			blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
			blk_cfg->block_size = len;
			blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
			blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
		}
	} else {
		if (last_packet) {
			spi_mcux_prepare_txlastword(&data->last_word, buf, spi_cfg, len);
		}
		/* If last packet and data transfer frame is bigger then 1,
		 * use dma descriptor to send the last data.
		 */
		if (last_packet  &&
		    ((word_size > 8) ? (len > 2U) : (len > 1U))) {
			blk_cfg->source_gather_en = 1;
			blk_cfg->source_address = (uint32_t)buf;
			blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
			blk_cfg->block_size = (word_size > 8) ?
						(len - 2U) : (len - 1U);
			blk_cfg->next_block = &stream->dma_blk_cfg[1];

			blk_cfg = &stream->dma_blk_cfg[1];

			/* prepare the block for this TX DMA channel */
			memset(blk_cfg, 0, sizeof(struct dma_block_config));
			blk_cfg->source_address = (uint32_t)&data->last_word;
			blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
			blk_cfg->block_size = sizeof(uint32_t);
			blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
			blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
		} else {
			blk_cfg->source_address = (uint32_t)buf;
			blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
			blk_cfg->block_size = len;
		}
	}

	/* Enables the DMA request from SPI txFIFO */
	base->FIFOCFG |= SPI_FIFOCFG_DMATX_MASK;

	/* direction is given by the DT */
	stream->dma_cfg.head_block = &stream->dma_blk_cfg[0];
	/* give the client dev as arg, as the callback comes from the dma */
	stream->dma_cfg.user_data = (struct device *)dev;
	/* pass our client origin to the dma: data->dma_tx.dma_channel */
	ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.channel,
			&stream->dma_cfg);
	/* the channel is the actual stream from 0 */
	if (ret != 0) {
		return ret;
	}

	uint32_t tmpData = 0U;

	spi_mcux_prepare_txdummy(&tmpData, last_packet, spi_cfg);

	/* Setup the control info.
	 * Halfword writes to just the control bits (offset 0xE22) doesn't push
	 * anything into the FIFO. And the data access type of control bits must
	 * be uint16_t, byte writes or halfword writes to FIFOWR will push the
	 * data and the current control bits into the FIFO.
	 */
	if ((last_packet) &&
		((word_size > 8) ? (len == 2U) : (len == 1U))) {
		*((uint16_t *)((uint32_t)&base->FIFOWR) + 1) = (uint16_t)(tmpData >> 16U);
	} else {
		/* Clear the SPI_FIFOWR_EOT_MASK bit when data is not the last */
		tmpData &= (~(uint32_t)SPI_FIFOWR_EOT_MASK);
		*((uint16_t *)((uint32_t)&base->FIFOWR) + 1) = (uint16_t)(tmpData >> 16U);
	}

	/* gives the request ID */
	return dma_start(data->dma_tx.dma_dev, data->dma_tx.channel);
}

static int spi_mcux_dma_rx_load(const struct device *dev, uint8_t *buf,
				 size_t len)
{
	const struct spi_mcux_config *cfg = dev->config;
	struct spi_mcux_data *data = dev->data;
	struct dma_block_config *blk_cfg;
	int ret;
	SPI_Type *base = cfg->base;

	/* retrieve active RX DMA channel (used in callback) */
	struct stream *stream = &data->dma_rx;

	blk_cfg = &stream->dma_blk_cfg[0];

	/* prepare the block for this RX DMA channel */
	memset(blk_cfg, 0, sizeof(struct dma_block_config));
	blk_cfg->block_size = len;

	/* rx direction has periph as source and mem as dest. */
	if (buf == NULL) {
		/* if rx buff is null, then write data to dummy address. */
		blk_cfg->dest_address = (uint32_t)&dummy_rx_buffer;
		blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
	} else {
		blk_cfg->dest_address = (uint32_t)buf;
	}

	blk_cfg->source_address = (uint32_t)&base->FIFORD;

	/* direction is given by the DT */
	stream->dma_cfg.head_block = blk_cfg;
	stream->dma_cfg.user_data = (struct device *)dev;

	/* Enables the DMA request from SPI rxFIFO */
	base->FIFOCFG |= SPI_FIFOCFG_DMARX_MASK;

	/* pass our client origin to the dma: data->dma_rx.channel */
	ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.channel,
			&stream->dma_cfg);
	/* the channel is the actual stream from 0 */
	if (ret != 0) {
		return ret;
	}

	/* gives the request ID */
	return dma_start(data->dma_rx.dma_dev, data->dma_rx.channel);
}

static int spi_mcux_dma_move_buffers(const struct device *dev, size_t len,
			const struct spi_config *spi_cfg, bool last_packet)
{
	struct spi_mcux_data *data = dev->data;
	int ret;

	ret = spi_mcux_dma_rx_load(dev, data->ctx.rx_buf, len);

	if (ret != 0) {
		return ret;
	}

	ret = spi_mcux_dma_tx_load(dev, data->ctx.tx_buf, spi_cfg,
							len, last_packet);

	return ret;
}

static int wait_dma_rx_tx_done(const struct device *dev)
{
	struct spi_mcux_data *data = dev->data;
	int ret = -1;

	while (1) {
		ret = spi_context_wait_for_completion(&data->ctx);
		if (data->status_flags & SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG) {
			return -EIO;
		}

		if ((data->status_flags & SPI_MCUX_FLEXCOMM_DMA_DONE_FLAG) ==
			SPI_MCUX_FLEXCOMM_DMA_DONE_FLAG) {
			return 0;
		}
	}
}

static int transceive_dma(const struct device *dev,
		      const struct spi_config *spi_cfg,
		      const struct spi_buf_set *tx_bufs,
		      const struct spi_buf_set *rx_bufs,
		      bool asynchronous,
		      spi_callback_t cb,
		      void *userdata)
{
	const struct spi_mcux_config *config = dev->config;
	struct spi_mcux_data *data = dev->data;
	SPI_Type *base = config->base;
	int ret;
	uint32_t word_size;
	uint16_t data_size;

	spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);

	ret = spi_mcux_configure(dev, spi_cfg);
	if (ret) {
		goto out;
	}

	spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);

	spi_context_cs_control(&data->ctx, true);

	word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);

	data_size = (word_size > 8) ? (sizeof(uint16_t)) : (sizeof(uint8_t));
	data->dma_rx.dma_cfg.source_data_size = data_size;
	data->dma_rx.dma_cfg.dest_data_size = data_size;
	data->dma_tx.dma_cfg.source_data_size = data_size;
	data->dma_tx.dma_cfg.dest_data_size = data_size;

	while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) {
		size_t dma_len;

		/* last is used to deassert chip select if this
		 * is the last transfer in the set.
		 */
		bool last = false;

		if (data->ctx.rx_len == 0) {
			dma_len = data->ctx.tx_len;
			last = true;
		} else if (data->ctx.tx_len == 0) {
			dma_len = data->ctx.rx_len;
			last = true;
		} else if (data->ctx.tx_len == data->ctx.rx_len) {
			dma_len = data->ctx.rx_len;
			last = true;
		} else {
			dma_len = MIN(data->ctx.tx_len, data->ctx.rx_len);
			last = false;
		}

		/* at this point, last just means whether or not
		 * this transfer will completely cover
		 * the current tx/rx buffer in data->ctx
		 * or require additional transfers because the
		 * the two buffers are not the same size.
		 *
		 * if it covers the current ctx tx/rx buffers, then
		 * we'll move to the next pair of buffers (if any)
		 * after the transfer, but if there are
		 * no more buffer pairs, then this is the last
		 * transfer in the set and we need to deassert CS.
		 */
		if (last) {
			/* this dma transfer should cover
			 * the entire current data->ctx set
			 * of buffers. if there are more
			 * buffers in the set, then we don't
			 * want to deassert CS.
			 */
			if ((data->ctx.tx_count > 1) ||
			    (data->ctx.rx_count > 1)) {
				/* more buffers to transfer so
				 * this isn't last
				 */
				last = false;
			}
		}

		data->status_flags = 0;

		ret = spi_mcux_dma_move_buffers(dev, dma_len, spi_cfg, last);
		if (ret != 0) {
			break;
		}

		ret = wait_dma_rx_tx_done(dev);
		if (ret != 0) {
			break;
		}

		/* wait until TX FIFO is really empty */
		while (0U == (base->FIFOSTAT & SPI_FIFOSTAT_TXEMPTY_MASK)) {
		}

		spi_context_update_tx(&data->ctx, 1, dma_len);
		spi_context_update_rx(&data->ctx, 1, dma_len);
	}

	base->FIFOCFG &= ~SPI_FIFOCFG_DMATX_MASK;
	base->FIFOCFG &= ~SPI_FIFOCFG_DMARX_MASK;

	spi_context_cs_control(&data->ctx, false);

out:
	spi_context_release(&data->ctx, ret);

	return ret;
}

#endif

static int transceive(const struct device *dev,
		      const struct spi_config *spi_cfg,
		      const struct spi_buf_set *tx_bufs,
		      const struct spi_buf_set *rx_bufs,
		      bool asynchronous,
		      spi_callback_t cb,
		      void *userdata)
{
	struct spi_mcux_data *data = dev->data;
	int ret;

	spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);

	ret = spi_mcux_configure(dev, spi_cfg);
	if (ret) {
		goto out;
	}

	spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);

	spi_context_cs_control(&data->ctx, true);

	spi_mcux_transfer_next_packet(dev);

	ret = spi_context_wait_for_completion(&data->ctx);
out:
	spi_context_release(&data->ctx, ret);

	return ret;
}

static int spi_mcux_transceive(const struct device *dev,
			       const struct spi_config *spi_cfg,
			       const struct spi_buf_set *tx_bufs,
			       const struct spi_buf_set *rx_bufs)
{
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
	return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
#endif
	return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}

#ifdef CONFIG_SPI_ASYNC
static int spi_mcux_transceive_async(const struct device *dev,
				     const struct spi_config *spi_cfg,
				     const struct spi_buf_set *tx_bufs,
				     const struct spi_buf_set *rx_bufs,
				     spi_callback_t cb,
				     void *userdata)
{
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
	return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
#endif

	return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */

static int spi_mcux_release(const struct device *dev,
			    const struct spi_config *spi_cfg)
{
	struct spi_mcux_data *data = dev->data;

	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

static int spi_mcux_init(const struct device *dev)
{
	int err;
	const struct spi_mcux_config *config = dev->config;
	struct spi_mcux_data *data = dev->data;

	config->irq_config_func(dev);

	data->dev = dev;

	err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
	if (err) {
		return err;
	}

#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
	if (!device_is_ready(data->dma_tx.dma_dev)) {
		LOG_ERR("%s device is not ready", data->dma_tx.dma_dev->name);
		return -ENODEV;
	}

	if (!device_is_ready(data->dma_rx.dma_dev)) {
		LOG_ERR("%s device is not ready", data->dma_rx.dma_dev->name);
		return -ENODEV;
	}
#endif /* CONFIG_SPI_MCUX_FLEXCOMM_DMA */


	err = spi_context_cs_configure_all(&data->ctx);
	if (err < 0) {
		return err;
	}

	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

static const struct spi_driver_api spi_mcux_driver_api = {
	.transceive = spi_mcux_transceive,
#ifdef CONFIG_SPI_ASYNC
	.transceive_async = spi_mcux_transceive_async,
#endif
	.release = spi_mcux_release,
};

#define SPI_MCUX_FLEXCOMM_IRQ_HANDLER_DECL(id)				\
	static void spi_mcux_config_func_##id(const struct device *dev)
#define SPI_MCUX_FLEXCOMM_IRQ_HANDLER_FUNC(id)				\
	.irq_config_func = spi_mcux_config_func_##id,
#define SPI_MCUX_FLEXCOMM_IRQ_HANDLER(id)				\
static void spi_mcux_config_func_##id(const struct device *dev) \
{								\
	IRQ_CONNECT(DT_INST_IRQN(id),				\
			DT_INST_IRQ(id, priority),			\
			spi_mcux_isr, DEVICE_DT_INST_GET(id),	\
			0);					\
	irq_enable(DT_INST_IRQN(id));				\
}

#ifndef CONFIG_SPI_MCUX_FLEXCOMM_DMA
#define SPI_DMA_CHANNELS(id)
#else
#define SPI_DMA_CHANNELS(id)				\
	.dma_tx = {						\
		.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, tx)), \
		.channel =					\
			DT_INST_DMAS_CELL_BY_NAME(id, tx, channel),	\
		.dma_cfg = {						\
			.channel_direction = MEMORY_TO_PERIPHERAL,	\
			.dma_callback = spi_mcux_dma_callback,		\
			.complete_callback_en = true,			\
			.block_count = 2,				\
		}							\
	},								\
	.dma_rx = {						\
		.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, rx)), \
		.channel =					\
			DT_INST_DMAS_CELL_BY_NAME(id, rx, channel),	\
		.dma_cfg = {				\
			.channel_direction = PERIPHERAL_TO_MEMORY,	\
			.dma_callback = spi_mcux_dma_callback,		\
			.block_count = 1,		\
		}							\
	}

#endif

#define SPI_MCUX_FLEXCOMM_DEVICE(id)					\
	SPI_MCUX_FLEXCOMM_IRQ_HANDLER_DECL(id);			\
	PINCTRL_DT_INST_DEFINE(id);					\
	static const struct spi_mcux_config spi_mcux_config_##id = {	\
		.base =							\
		(SPI_Type *)DT_INST_REG_ADDR(id),			\
		.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)),	\
		.clock_subsys =					\
		(clock_control_subsys_t)DT_INST_CLOCKS_CELL(id, name),\
		SPI_MCUX_FLEXCOMM_IRQ_HANDLER_FUNC(id)			\
		.pre_delay = DT_INST_PROP_OR(id, pre_delay, 0),		\
		.post_delay = DT_INST_PROP_OR(id, post_delay, 0),		\
		.frame_delay = DT_INST_PROP_OR(id, frame_delay, 0),		\
		.transfer_delay = DT_INST_PROP_OR(id, transfer_delay, 0),		\
		.def_char = DT_INST_PROP_OR(id, def_char, 0),		\
		.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(id),		\
	};								\
	static struct spi_mcux_data spi_mcux_data_##id = {		\
		SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##id, ctx),		\
		SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##id, ctx),		\
		SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(id), ctx)	\
		SPI_DMA_CHANNELS(id)		\
	};								\
	DEVICE_DT_INST_DEFINE(id,					\
			    &spi_mcux_init,				\
			    NULL,					\
			    &spi_mcux_data_##id,			\
			    &spi_mcux_config_##id,			\
			    POST_KERNEL,				\
			    CONFIG_SPI_INIT_PRIORITY,			\
			    &spi_mcux_driver_api);			\
	\
	SPI_MCUX_FLEXCOMM_IRQ_HANDLER(id)

DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_FLEXCOMM_DEVICE)