Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*
 * Copyright (c) 2021 BrainCo Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT gd_gd32_spi

#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/gd32.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/drivers/spi.h>
#ifdef CONFIG_SPI_GD32_DMA
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/dma/dma_gd32.h>
#endif

#include <gd32_spi.h>

#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(spi_gd32);

#include "spi_context.h"

/* SPI error status mask. */
#define SPI_GD32_ERR_MASK	(SPI_STAT_RXORERR | SPI_STAT_CONFERR | SPI_STAT_CRCERR)

#define GD32_SPI_PSC_MAX	0x7U

#ifdef CONFIG_SPI_GD32_DMA

enum spi_gd32_dma_direction {
	RX = 0,
	TX,
	NUM_OF_DIRECTION
};

struct spi_gd32_dma_config {
	const struct device *dev;
	uint32_t channel;
	uint32_t config;
	uint32_t slot;
	uint32_t fifo_threshold;
};

struct spi_gd32_dma_data {
	struct dma_config config;
	struct dma_block_config block;
	uint32_t count;
};

#endif

struct spi_gd32_config {
	uint32_t reg;
	uint16_t clkid;
	struct reset_dt_spec reset;
	const struct pinctrl_dev_config *pcfg;
#ifdef CONFIG_SPI_GD32_DMA
	const struct spi_gd32_dma_config dma[NUM_OF_DIRECTION];
#endif
#ifdef CONFIG_SPI_GD32_INTERRUPT
	void (*irq_configure)();
#endif
};

struct spi_gd32_data {
	struct spi_context ctx;
#ifdef CONFIG_SPI_GD32_DMA
	struct spi_gd32_dma_data dma[NUM_OF_DIRECTION];
#endif
};

#ifdef CONFIG_SPI_GD32_DMA

static uint32_t dummy_tx;
static uint32_t dummy_rx;

static bool spi_gd32_dma_enabled(const struct device *dev)
{
	const struct spi_gd32_config *cfg = dev->config;

	if (cfg->dma[TX].dev && cfg->dma[RX].dev) {
		return true;
	}

	return false;
}

static size_t spi_gd32_dma_enabled_num(const struct device *dev)
{
	return spi_gd32_dma_enabled(dev) ? 2 : 0;
}

#endif

static int spi_gd32_get_err(const struct spi_gd32_config *cfg)
{
	uint32_t stat = SPI_STAT(cfg->reg);

	if (stat & SPI_GD32_ERR_MASK) {
		LOG_ERR("spi%u error status detected, err = %u",
			cfg->reg, stat & (uint32_t)SPI_GD32_ERR_MASK);

		return -EIO;
	}

	return 0;
}

static bool spi_gd32_transfer_ongoing(struct spi_gd32_data *data)
{
	return spi_context_tx_on(&data->ctx) ||
	       spi_context_rx_on(&data->ctx);
}

static int spi_gd32_configure(const struct device *dev,
			      const struct spi_config *config)
{
	struct spi_gd32_data *data = dev->data;
	const struct spi_gd32_config *cfg = dev->config;
	uint32_t bus_freq;

	if (spi_context_configured(&data->ctx, config)) {
		return 0;
	}

	if (SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_SLAVE) {
		LOG_ERR("Slave mode not supported");
		return -ENOTSUP;
	}

	SPI_CTL0(cfg->reg) &= ~SPI_CTL0_SPIEN;

	SPI_CTL0(cfg->reg) |= SPI_MASTER;
	SPI_CTL0(cfg->reg) &= ~SPI_TRANSMODE_BDTRANSMIT;

	if (SPI_WORD_SIZE_GET(config->operation) == 8) {
		SPI_CTL0(cfg->reg) |= SPI_FRAMESIZE_8BIT;
	} else {
		SPI_CTL0(cfg->reg) |= SPI_FRAMESIZE_16BIT;
	}

	/* Reset to hardware NSS mode. */
	SPI_CTL0(cfg->reg) &= ~SPI_CTL0_SWNSSEN;
	if (spi_cs_is_gpio(config)) {
		SPI_CTL0(cfg->reg) |= SPI_CTL0_SWNSSEN;
	} else {
		/*
		 * For single master env,
		 * hardware NSS mode also need to set the NSSDRV bit.
		 */
		SPI_CTL1(cfg->reg) |= SPI_CTL1_NSSDRV;
	}

	SPI_CTL0(cfg->reg) &= ~SPI_CTL0_LF;
	if (config->operation & SPI_TRANSFER_LSB) {
		SPI_CTL0(cfg->reg) |= SPI_CTL0_LF;
	}

	SPI_CTL0(cfg->reg) &= ~SPI_CTL0_CKPL;
	if (config->operation & SPI_MODE_CPOL) {
		SPI_CTL0(cfg->reg) |= SPI_CTL0_CKPL;
	}

	SPI_CTL0(cfg->reg) &= ~SPI_CTL0_CKPH;
	if (config->operation & SPI_MODE_CPHA) {
		SPI_CTL0(cfg->reg) |= SPI_CTL0_CKPH;
	}

	(void)clock_control_get_rate(GD32_CLOCK_CONTROLLER,
				     (clock_control_subsys_t)&cfg->clkid,
				     &bus_freq);

	for (uint8_t i = 0U; i <= GD32_SPI_PSC_MAX; i++) {
		bus_freq = bus_freq >> 1U;
		if (bus_freq <= config->frequency) {
			SPI_CTL0(cfg->reg) &= ~SPI_CTL0_PSC;
			SPI_CTL0(cfg->reg) |= CTL0_PSC(i);
			break;
		}
	}

	data->ctx.config = config;

	return 0;
}

static int spi_gd32_frame_exchange(const struct device *dev)
{
	struct spi_gd32_data *data = dev->data;
	const struct spi_gd32_config *cfg = dev->config;
	struct spi_context *ctx = &data->ctx;
	uint16_t tx_frame = 0U, rx_frame = 0U;

	while ((SPI_STAT(cfg->reg) & SPI_STAT_TBE) == 0) {
		/* NOP */
	}

	if (SPI_WORD_SIZE_GET(ctx->config->operation) == 8) {
		if (spi_context_tx_buf_on(ctx)) {
			tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
		}
		/* For 8 bits mode, spi will forced SPI_DATA[15:8] to 0. */
		SPI_DATA(cfg->reg) = tx_frame;

		spi_context_update_tx(ctx, 1, 1);
	} else {
		if (spi_context_tx_buf_on(ctx)) {
			tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
		}
		SPI_DATA(cfg->reg) = tx_frame;

		spi_context_update_tx(ctx, 2, 1);
	}

	while ((SPI_STAT(cfg->reg) & SPI_STAT_RBNE) == 0) {
		/* NOP */
	}

	if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
		/* For 8 bits mode, spi will forced SPI_DATA[15:8] to 0. */
		rx_frame = SPI_DATA(cfg->reg);
		if (spi_context_rx_buf_on(ctx)) {
			UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf);
		}

		spi_context_update_rx(ctx, 1, 1);
	} else {
		rx_frame = SPI_DATA(cfg->reg);
		if (spi_context_rx_buf_on(ctx)) {
			UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf);
		}

		spi_context_update_rx(ctx, 2, 1);
	}

	return spi_gd32_get_err(cfg);
}

#ifdef CONFIG_SPI_GD32_DMA
static void spi_gd32_dma_callback(const struct device *dma_dev, void *arg,
				  uint32_t channel, int status);

static uint32_t spi_gd32_dma_setup(const struct device *dev, const uint32_t dir)
{
	const struct spi_gd32_config *cfg = dev->config;
	struct spi_gd32_data *data = dev->data;
	struct dma_config *dma_cfg = &data->dma[dir].config;
	struct dma_block_config *block_cfg = &data->dma[dir].block;
	const struct spi_gd32_dma_config *dma = &cfg->dma[dir];
	int ret;

	memset(dma_cfg, 0, sizeof(struct dma_config));
	memset(block_cfg, 0, sizeof(struct dma_block_config));

	dma_cfg->source_burst_length = 1;
	dma_cfg->dest_burst_length = 1;
	dma_cfg->user_data = (void *)dev;
	dma_cfg->dma_callback = spi_gd32_dma_callback;
	dma_cfg->block_count = 1U;
	dma_cfg->head_block = block_cfg;
	dma_cfg->dma_slot = cfg->dma[dir].slot;
	dma_cfg->channel_priority =
		GD32_DMA_CONFIG_PRIORITY(cfg->dma[dir].config);
	dma_cfg->channel_direction =
		dir == TX ? MEMORY_TO_PERIPHERAL : PERIPHERAL_TO_MEMORY;

	if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
		dma_cfg->source_data_size = 1;
		dma_cfg->dest_data_size = 1;
	} else {
		dma_cfg->source_data_size = 2;
		dma_cfg->dest_data_size = 2;
	}

	block_cfg->block_size = spi_context_max_continuous_chunk(&data->ctx);

	if (dir == TX) {
		block_cfg->dest_address = (uint32_t)&SPI_DATA(cfg->reg);
		block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
		if (spi_context_tx_buf_on(&data->ctx)) {
			block_cfg->source_address = (uint32_t)data->ctx.tx_buf;
			block_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
		} else {
			block_cfg->source_address = (uint32_t)&dummy_tx;
			block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
		}
	}

	if (dir == RX) {
		block_cfg->source_address = (uint32_t)&SPI_DATA(cfg->reg);
		block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;

		if (spi_context_rx_buf_on(&data->ctx)) {
			block_cfg->dest_address = (uint32_t)data->ctx.rx_buf;
			block_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
		} else {
			block_cfg->dest_address = (uint32_t)&dummy_rx;
			block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
		}
	}

	ret = dma_config(dma->dev, dma->channel, dma_cfg);
	if (ret < 0) {
		LOG_ERR("dma_config %p failed %d\n", dma->dev, ret);
		return ret;
	}

	ret = dma_start(dma->dev, dma->channel);
	if (ret < 0) {
		LOG_ERR("dma_start %p failed %d\n", dma->dev, ret);
		return ret;
	}

	return 0;
}

static int spi_gd32_start_dma_transceive(const struct device *dev)
{
	const struct spi_gd32_config *cfg = dev->config;
	struct spi_gd32_data *data = dev->data;
	const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
	struct dma_status stat;
	int ret = 0;

	for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
		dma_get_status(cfg->dma[i].dev, cfg->dma[i].channel, &stat);
		if ((chunk_len != data->dma[i].count) && !stat.busy) {
			ret = spi_gd32_dma_setup(dev, i);
			if (ret < 0) {
				goto on_error;
			}
		}
	}

	SPI_CTL1(cfg->reg) |= (SPI_CTL1_DMATEN | SPI_CTL1_DMAREN);

on_error:
	if (ret < 0) {
		for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
			dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
		}
	}
	return ret;
}
#endif

static int spi_gd32_transceive_impl(const struct device *dev,
				    const struct spi_config *config,
				    const struct spi_buf_set *tx_bufs,
				    const struct spi_buf_set *rx_bufs,
				    spi_callback_t cb,
				    void *userdata)
{
	struct spi_gd32_data *data = dev->data;
	const struct spi_gd32_config *cfg = dev->config;
	int ret;

	spi_context_lock(&data->ctx, (cb != NULL), cb, userdata, config);

	ret = spi_gd32_configure(dev, config);
	if (ret < 0) {
		goto error;
	}

	SPI_CTL0(cfg->reg) |= SPI_CTL0_SPIEN;

	spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);

	spi_context_cs_control(&data->ctx, true);

#ifdef CONFIG_SPI_GD32_INTERRUPT
#ifdef CONFIG_SPI_GD32_DMA
	if (spi_gd32_dma_enabled(dev)) {
		for (size_t i = 0; i < ARRAY_SIZE(data->dma); i++) {
			data->dma[i].count = 0;
		}

		ret = spi_gd32_start_dma_transceive(dev);
		if (ret < 0) {
			goto dma_error;
		}
	} else
#endif
	{
		SPI_STAT(cfg->reg) &=
			~(SPI_STAT_RBNE | SPI_STAT_TBE | SPI_GD32_ERR_MASK);
		SPI_CTL1(cfg->reg) |=
			(SPI_CTL1_RBNEIE | SPI_CTL1_TBEIE | SPI_CTL1_ERRIE);
	}
	ret = spi_context_wait_for_completion(&data->ctx);
#else
	do {
		ret = spi_gd32_frame_exchange(dev);
		if (ret < 0) {
			break;
		}
	} while (spi_gd32_transfer_ongoing(data));

#ifdef CONFIG_SPI_ASYNC
	spi_context_complete(&data->ctx, dev, ret);
#endif
#endif

	while (!(SPI_STAT(cfg->reg) & SPI_STAT_TBE) ||
		(SPI_STAT(cfg->reg) & SPI_STAT_TRANS)) {
		/* Wait until last frame transfer complete. */
	}

#ifdef CONFIG_SPI_GD32_DMA
dma_error:
#endif
	spi_context_cs_control(&data->ctx, false);

	SPI_CTL0(cfg->reg) &=
		~(SPI_CTL0_SPIEN | SPI_CTL1_DMATEN | SPI_CTL1_DMAREN);

error:
	spi_context_release(&data->ctx, ret);

	return ret;
}

static int spi_gd32_transceive(const struct device *dev,
			       const struct spi_config *config,
			       const struct spi_buf_set *tx_bufs,
			       const struct spi_buf_set *rx_bufs)
{
	return spi_gd32_transceive_impl(dev, config, tx_bufs, rx_bufs, NULL, NULL);
}

#ifdef CONFIG_SPI_ASYNC
static int spi_gd32_transceive_async(const struct device *dev,
				     const struct spi_config *config,
				     const struct spi_buf_set *tx_bufs,
				     const struct spi_buf_set *rx_bufs,
				     spi_callback_t cb,
				     void *userdata)
{
	return spi_gd32_transceive_impl(dev, config, tx_bufs, rx_bufs, cb, userdata);
}
#endif

#ifdef CONFIG_SPI_GD32_INTERRUPT

static void spi_gd32_complete(const struct device *dev, int status)
{
	struct spi_gd32_data *data = dev->data;
	const struct spi_gd32_config *cfg = dev->config;

	SPI_CTL1(cfg->reg) &=
		~(SPI_CTL1_RBNEIE | SPI_CTL1_TBEIE | SPI_CTL1_ERRIE);

#ifdef CONFIG_SPI_GD32_DMA
	for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
		dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
	}
#endif

	spi_context_complete(&data->ctx, dev, status);
}

static void spi_gd32_isr(struct device *dev)
{
	const struct spi_gd32_config *cfg = dev->config;
	struct spi_gd32_data *data = dev->data;
	int err = 0;

	err = spi_gd32_get_err(cfg);
	if (err) {
		spi_gd32_complete(dev, err);
		return;
	}

	if (spi_gd32_transfer_ongoing(data)) {
		err = spi_gd32_frame_exchange(dev);
	}

	if (err || !spi_gd32_transfer_ongoing(data)) {
		spi_gd32_complete(dev, err);
	}
}

#endif /* SPI_GD32_INTERRUPT */

#ifdef CONFIG_SPI_GD32_DMA

static bool spi_gd32_chunk_transfer_finished(const struct device *dev)
{
	struct spi_gd32_data *data = dev->data;
	struct spi_gd32_dma_data *dma = data->dma;
	const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);

	return (MIN(dma[TX].count, dma[RX].count) >= chunk_len);
}

static void spi_gd32_dma_callback(const struct device *dma_dev, void *arg,
				  uint32_t channel, int status)
{
	const struct device *dev = (const struct device *)arg;
	const struct spi_gd32_config *cfg = dev->config;
	struct spi_gd32_data *data = dev->data;
	const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
	int err = 0;

	if (status < 0) {
		LOG_ERR("dma:%p ch:%d callback gets error: %d", dma_dev, channel,
			status);
		spi_gd32_complete(dev, status);
		return;
	}

	for (size_t i = 0; i < ARRAY_SIZE(cfg->dma); i++) {
		if (dma_dev == cfg->dma[i].dev &&
		    channel == cfg->dma[i].channel) {
			data->dma[i].count += chunk_len;
		}
	}

	/* Check transfer finished.
	 * The transmission of this chunk is complete if both the dma[TX].count
	 * and the dma[RX].count reach greater than or equal to the chunk_len.
	 * chunk_len is zero here means the transfer is already complete.
	 */
	if (spi_gd32_chunk_transfer_finished(dev)) {
		if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
			spi_context_update_tx(&data->ctx, 1, chunk_len);
			spi_context_update_rx(&data->ctx, 1, chunk_len);
		} else {
			spi_context_update_tx(&data->ctx, 2, chunk_len);
			spi_context_update_rx(&data->ctx, 2, chunk_len);
		}

		if (spi_gd32_transfer_ongoing(data)) {
			/* Next chunk is available, reset the count and
			 * continue processing
			 */
			data->dma[TX].count = 0;
			data->dma[RX].count = 0;
		} else {
			/* All data is processed, complete the process */
			spi_context_complete(&data->ctx, dev, 0);
			return;
		}
	}

	err = spi_gd32_start_dma_transceive(dev);
	if (err) {
		spi_gd32_complete(dev, err);
	}
}

#endif /* DMA */

static int spi_gd32_release(const struct device *dev,
			    const struct spi_config *config)
{
	struct spi_gd32_data *data = dev->data;

	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

static const struct spi_driver_api spi_gd32_driver_api = {
	.transceive = spi_gd32_transceive,
#ifdef CONFIG_SPI_ASYNC
	.transceive_async = spi_gd32_transceive_async,
#endif
	.release = spi_gd32_release
};

int spi_gd32_init(const struct device *dev)
{
	struct spi_gd32_data *data = dev->data;
	const struct spi_gd32_config *cfg = dev->config;
	int ret;
#ifdef CONFIG_SPI_GD32_DMA
	uint32_t ch_filter;
#endif

	(void)clock_control_on(GD32_CLOCK_CONTROLLER,
			       (clock_control_subsys_t)&cfg->clkid);

	(void)reset_line_toggle_dt(&cfg->reset);

	ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
	if (ret) {
		LOG_ERR("Failed to apply pinctrl state");
		return ret;
	}

#ifdef CONFIG_SPI_GD32_DMA
	if ((cfg->dma[RX].dev && !cfg->dma[TX].dev) ||
	    (cfg->dma[TX].dev && !cfg->dma[RX].dev)) {
		LOG_ERR("DMA must be enabled for both TX and RX channels");
		return -ENODEV;
	}

	for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
		if (!device_is_ready(cfg->dma[i].dev)) {
			LOG_ERR("DMA %s not ready", cfg->dma[i].dev->name);
			return -ENODEV;
		}

		ch_filter = BIT(cfg->dma[i].channel);
		ret = dma_request_channel(cfg->dma[i].dev, &ch_filter);
		if (ret < 0) {
			LOG_ERR("dma_request_channel failed %d", ret);
			return ret;
		}
	}
#endif

	ret = spi_context_cs_configure_all(&data->ctx);
	if (ret < 0) {
		return ret;
	}

#ifdef CONFIG_SPI_GD32_INTERRUPT
	cfg->irq_configure(dev);
#endif

	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

#define DMA_INITIALIZER(idx, dir)                                              \
	{                                                                      \
		.dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(idx, dir)),     \
		.channel = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel),       \
		.slot = COND_CODE_1(                                           \
			DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1),             \
			(DT_INST_DMAS_CELL_BY_NAME(idx, dir, slot)), (0)),     \
		.config = DT_INST_DMAS_CELL_BY_NAME(idx, dir, config),         \
		.fifo_threshold = COND_CODE_1(                                 \
			DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1),             \
			(DT_INST_DMAS_CELL_BY_NAME(idx, dir, fifo_threshold)), \
			(0)),						  \
	}

#define DMAS_DECL(idx)                                                         \
	{                                                                      \
		COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, rx),                    \
			    (DMA_INITIALIZER(idx, rx)), ({0})),                \
		COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, tx),                    \
			    (DMA_INITIALIZER(idx, tx)), ({0})),                \
	}

#define GD32_IRQ_CONFIGURE(idx)						   \
	static void spi_gd32_irq_configure_##idx(void)			   \
	{								   \
		IRQ_CONNECT(DT_INST_IRQN(idx), DT_INST_IRQ(idx, priority), \
			    spi_gd32_isr,				   \
			    DEVICE_DT_INST_GET(idx), 0);		   \
		irq_enable(DT_INST_IRQN(idx));				   \
	}

#define GD32_SPI_INIT(idx)						       \
	PINCTRL_DT_INST_DEFINE(idx);					       \
	IF_ENABLED(CONFIG_SPI_GD32_INTERRUPT, (GD32_IRQ_CONFIGURE(idx)));      \
	static struct spi_gd32_data spi_gd32_data_##idx = {		       \
		SPI_CONTEXT_INIT_LOCK(spi_gd32_data_##idx, ctx),	       \
		SPI_CONTEXT_INIT_SYNC(spi_gd32_data_##idx, ctx),	       \
		SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(idx), ctx) };      \
	static struct spi_gd32_config spi_gd32_config_##idx = {		       \
		.reg = DT_INST_REG_ADDR(idx),				       \
		.clkid = DT_INST_CLOCKS_CELL(idx, id),			       \
		.reset = RESET_DT_SPEC_INST_GET(idx),			       \
		.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx),		       \
		IF_ENABLED(CONFIG_SPI_GD32_DMA, (.dma = DMAS_DECL(idx),))      \
		IF_ENABLED(CONFIG_SPI_GD32_INTERRUPT,			       \
			   (.irq_configure = spi_gd32_irq_configure_##idx)) }; \
	DEVICE_DT_INST_DEFINE(idx, &spi_gd32_init, NULL,		       \
			      &spi_gd32_data_##idx, &spi_gd32_config_##idx,    \
			      POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,	       \
			      &spi_gd32_driver_api);

DT_INST_FOREACH_STATUS_OKAY(GD32_SPI_INIT)