/*
* Copyright (c) 2018 Foundries.io
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT openisa_rv32m1_intmux
/**
* @file
* @brief RV32M1 INTMUX (interrupt multiplexer) driver
*
* This driver provides support for level 2 interrupts on the RV32M1
* SoC using the INTMUX peripheral.
*
* Each of the RI5CY and ZERO-RISCY cores has an INTMUX peripheral;
* INTMUX0 is wired to the RI5CY event unit interrupt table, while
* INTMUX1 is used with ZERO-RISCY.
*
* For this reason, only a single intmux device is declared here. The
* dtsi for each core needs to set up the intmux device and any
* associated IRQ numbers to work with this driver.
*/
#include <zephyr/kernel.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/init.h>
#include <zephyr/irq.h>
#include <zephyr/irq_nextlevel.h>
#include <zephyr/sw_isr_table.h>
#include <soc.h>
#include <zephyr/dt-bindings/interrupt-controller/openisa-intmux.h>
/*
* CHn_VEC registers are offset by a value that is convenient if
* you're dealing with a Cortex-M NVIC vector table; we're not, so it
* needs to be subtracted out to get a useful value.
*/
#define VECN_OFFSET 48U
struct rv32m1_intmux_config {
INTMUX_Type *regs;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
struct _isr_table_entry *isr_base;
};
#define DEV_REGS(dev) (((const struct rv32m1_intmux_config *)(dev->config))->regs)
/*
* <irq_nextlevel.h> API
*/
static void rv32m1_intmux_irq_enable(const struct device *dev, uint32_t irq)
{
INTMUX_Type *regs = DEV_REGS(dev);
uint32_t channel = rv32m1_intmux_channel(irq);
uint32_t line = rv32m1_intmux_line(irq);
regs->CHANNEL[channel].CHn_IER_31_0 |= BIT(line);
}
static void rv32m1_intmux_irq_disable(const struct device *dev, uint32_t irq)
{
INTMUX_Type *regs = DEV_REGS(dev);
uint32_t channel = rv32m1_intmux_channel(irq);
uint32_t line = rv32m1_intmux_line(irq);
regs->CHANNEL[channel].CHn_IER_31_0 &= ~BIT(line);
}
static uint32_t rv32m1_intmux_get_state(const struct device *dev)
{
INTMUX_Type *regs = DEV_REGS(dev);
size_t i;
for (i = 0; i < INTMUX_CHn_IER_31_0_COUNT; i++) {
if (regs->CHANNEL[i].CHn_IER_31_0) {
return 1;
}
}
return 0;
}
static int rv32m1_intmux_get_line_state(const struct device *dev,
unsigned int irq)
{
INTMUX_Type *regs = DEV_REGS(dev);
uint32_t channel = rv32m1_intmux_channel(irq);
uint32_t line = rv32m1_intmux_line(irq);
if ((regs->CHANNEL[channel].CHn_IER_31_0 & BIT(line)) != 0) {
return 1;
}
return 0;
}
/*
* IRQ handling.
*/
#define ISR_ENTRY(channel, line) \
((channel) * CONFIG_MAX_IRQ_PER_AGGREGATOR + line)
static void rv32m1_intmux_isr(const void *arg)
{
const struct device *const dev = DEVICE_DT_INST_GET(0);
const struct rv32m1_intmux_config *config = dev->config;
INTMUX_Type *regs = DEV_REGS(dev);
uint32_t channel = POINTER_TO_UINT(arg);
uint32_t line = (regs->CHANNEL[channel].CHn_VEC >> 2);
struct _isr_table_entry *isr_base = config->isr_base;
struct _isr_table_entry *entry;
/*
* Make sure the vector is valid, there is a note of page 1243~1244
* of chapter 36 INTMUX of RV32M1 RM,
* Note: Unlike the NVIC, the INTMUX does not latch pending source
* interrupts. This means that the INTMUX output channel ISRs must
* check for and handle a 0 value of the CHn_VEC register to
* account for spurious interrupts.
*/
if (line < VECN_OFFSET) {
return;
}
entry = &isr_base[ISR_ENTRY(channel, (line - VECN_OFFSET))];
entry->isr(entry->arg);
}
/*
* Instance and initialization
*/
static const struct irq_next_level_api rv32m1_intmux_apis = {
.intr_enable = rv32m1_intmux_irq_enable,
.intr_disable = rv32m1_intmux_irq_disable,
.intr_get_state = rv32m1_intmux_get_state,
.intr_get_line_state = rv32m1_intmux_get_line_state,
};
static const struct rv32m1_intmux_config rv32m1_intmux_cfg = {
.regs = (INTMUX_Type *)DT_INST_REG_ADDR(0),
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(0)),
.clock_subsys = UINT_TO_POINTER(DT_INST_CLOCKS_CELL(0, name)),
.isr_base = &_sw_isr_table[CONFIG_2ND_LVL_ISR_TBL_OFFSET],
};
static int rv32m1_intmux_init(const struct device *dev)
{
const struct rv32m1_intmux_config *config = dev->config;
INTMUX_Type *regs = DEV_REGS(dev);
size_t i;
if (!device_is_ready(config->clock_dev)) {
return -ENODEV;
}
/* Enable INTMUX clock. */
clock_control_on(config->clock_dev, config->clock_subsys);
/*
* Reset all channels, not just the ones we're configured to
* support. We don't want to continue to take level 2 IRQs
* enabled by bootloaders, for example.
*/
for (i = 0; i < INTMUX_CHn_CSR_COUNT; i++) {
regs->CHANNEL[i].CHn_CSR |= INTMUX_CHn_CSR_RST_MASK;
}
/* Connect and enable level 1 (channel) interrupts. */
#ifdef CONFIG_RV32M1_INTMUX_CHANNEL_0
IRQ_CONNECT(INTMUX_CH0_IRQ, 0, rv32m1_intmux_isr,
UINT_TO_POINTER(0), 0);
irq_enable(INTMUX_CH0_IRQ);
#endif
#ifdef CONFIG_RV32M1_INTMUX_CHANNEL_1
IRQ_CONNECT(INTMUX_CH1_IRQ, 0, rv32m1_intmux_isr,
UINT_TO_POINTER(1), 0);
irq_enable(INTMUX_CH1_IRQ);
#endif
#ifdef CONFIG_RV32M1_INTMUX_CHANNEL_2
IRQ_CONNECT(INTMUX_CH2_IRQ, 0, rv32m1_intmux_isr,
UINT_TO_POINTER(2), 0);
irq_enable(INTMUX_CH2_IRQ);
#endif
#ifdef CONFIG_RV32M1_INTMUX_CHANNEL_3
IRQ_CONNECT(INTMUX_CH3_IRQ, 0, rv32m1_intmux_isr,
UINT_TO_POINTER(3), 0);
irq_enable(INTMUX_CH3_IRQ);
#endif
#ifdef CONFIG_RV32M1_INTMUX_CHANNEL_4
IRQ_CONNECT(INTMUX_CH4_IRQ, 0, rv32m1_intmux_isr,
UINT_TO_POINTER(4), 0);
irq_enable(INTMUX_CH4_IRQ);
#endif
#ifdef CONFIG_RV32M1_INTMUX_CHANNEL_5
IRQ_CONNECT(INTMUX_CH5_IRQ, 0, rv32m1_intmux_isr,
UINT_TO_POINTER(5), 0);
irq_enable(INTMUX_CH5_IRQ);
#endif
#ifdef CONFIG_RV32M1_INTMUX_CHANNEL_6
IRQ_CONNECT(INTMUX_CH6_IRQ, 0, rv32m1_intmux_isr,
UINT_TO_POINTER(6), 0);
irq_enable(INTMUX_CH6_IRQ);
#endif
#ifdef CONFIG_RV32M1_INTMUX_CHANNEL_7
IRQ_CONNECT(INTMUX_CH7_IRQ, 0, rv32m1_intmux_isr,
UINT_TO_POINTER(7), 0);
irq_enable(INTMUX_CH7_IRQ);
#endif
return 0;
}
DEVICE_DT_INST_DEFINE(0, &rv32m1_intmux_init, NULL, NULL,
&rv32m1_intmux_cfg, PRE_KERNEL_1,
CONFIG_RV32M1_INTMUX_INIT_PRIORITY, &rv32m1_intmux_apis);