Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
/*
 * Copyright (c) 2018 Kokoon Technology Limited
 * Copyright (c) 2019 Song Qiang <songqiang1304521@gmail.com>
 * Copyright (c) 2019 Endre Karlson
 * Copyright (c) 2020 Teslabs Engineering S.L.
 * Copyright (c) 2021 Marius Scholtz, RIC Electronics
 * Copyright (c) 2023 Hein Wessels, Nobleo Technology
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT st_stm32_adc

#include <errno.h>

#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <stm32_ll_adc.h>
#if defined(CONFIG_SOC_SERIES_STM32U5X)
#include <stm32_ll_pwr.h>
#endif /* CONFIG_SOC_SERIES_STM32U5X */

#ifdef CONFIG_ADC_STM32_DMA
#include <zephyr/drivers/dma/dma_stm32.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/toolchain.h>
#include <stm32_ll_dma.h>
#endif

#define ADC_CONTEXT_USES_KERNEL_TIMER
#define ADC_CONTEXT_ENABLE_ON_COMPLETE
#include "adc_context.h"

#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_stm32);

#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/dt-bindings/adc/stm32_adc.h>
#include <zephyr/irq.h>
#include <zephyr/mem_mgmt/mem_attr.h>

#ifdef CONFIG_SOC_SERIES_STM32H7X
#include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h>
#endif

#ifdef CONFIG_NOCACHE_MEMORY
#include <zephyr/linker/linker-defs.h>
#elif defined(CONFIG_CACHE_MANAGEMENT)
#include <zephyr/arch/cache.h>
#endif /* CONFIG_NOCACHE_MEMORY */

#if defined(CONFIG_SOC_SERIES_STM32F3X)
#if defined(ADC1_V2_5)
/* ADC1_V2_5 is the ADC version for STM32F37x */
#define STM32F3X_ADC_V2_5
#elif defined(ADC5_V1_1)
/* ADC5_V1_1 is the ADC version for other STM32F3x */
#define STM32F3X_ADC_V1_1
#endif
#endif
/*
 * Other ADC versions:
 * ADC_VER_V5_V90 -> STM32H72x/H73x
 * ADC_VER_V5_X -> STM32H74x/H75x && U5
 * ADC_VER_V5_3 -> STM32H7Ax/H7Bx
 * compat st_stm32f1_adc -> STM32F1, F37x (ADC1_V2_5)
 * compat st_stm32f4_adc -> STM32F2, F4, F7, L1
 */

#define ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(value) \
	(DT_INST_FOREACH_STATUS_OKAY_VARGS(IS_EQ_PROP_OR, \
					   num_sampling_time_common_channels,\
					   0, value) 0)

#define ANY_ADC_SEQUENCER_TYPE_IS(value) \
	(DT_INST_FOREACH_STATUS_OKAY_VARGS(IS_EQ_PROP_OR, \
					   st_adc_sequencer,\
					   0, value) 0)

#define IS_EQ_PROP_OR(inst, prop, default_value, compare_value) \
	IS_EQ(DT_INST_PROP_OR(inst, prop, default_value), compare_value) ||

/* reference voltage for the ADC */
#define STM32_ADC_VREF_MV DT_INST_PROP(0, vref_mv)

#if ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE)
#define RANK(n)		LL_ADC_REG_RANK_##n
static const uint32_t table_rank[] = {
	RANK(1),
	RANK(2),
	RANK(3),
	RANK(4),
	RANK(5),
	RANK(6),
	RANK(7),
	RANK(8),
	RANK(9),
	RANK(10),
	RANK(11),
	RANK(12),
	RANK(13),
	RANK(14),
	RANK(15),
	RANK(16),
#if defined(LL_ADC_REG_RANK_17)
	RANK(17),
	RANK(18),
	RANK(19),
	RANK(20),
	RANK(21),
	RANK(22),
	RANK(23),
	RANK(24),
	RANK(25),
	RANK(26),
	RANK(27),
#if defined(LL_ADC_REG_RANK_28)
	RANK(28),
#endif /* LL_ADC_REG_RANK_28 */
#endif /* LL_ADC_REG_RANK_17 */
};

#define SEQ_LEN(n)	LL_ADC_REG_SEQ_SCAN_ENABLE_##n##RANKS
/* Length of this array signifies the maximum sequence length */
static const uint32_t table_seq_len[] = {
	LL_ADC_REG_SEQ_SCAN_DISABLE,
	SEQ_LEN(2),
	SEQ_LEN(3),
	SEQ_LEN(4),
	SEQ_LEN(5),
	SEQ_LEN(6),
	SEQ_LEN(7),
	SEQ_LEN(8),
	SEQ_LEN(9),
	SEQ_LEN(10),
	SEQ_LEN(11),
	SEQ_LEN(12),
	SEQ_LEN(13),
	SEQ_LEN(14),
	SEQ_LEN(15),
	SEQ_LEN(16),
#if defined(LL_ADC_REG_SEQ_SCAN_ENABLE_17RANKS)
	SEQ_LEN(17),
	SEQ_LEN(18),
	SEQ_LEN(19),
	SEQ_LEN(20),
	SEQ_LEN(21),
	SEQ_LEN(22),
	SEQ_LEN(23),
	SEQ_LEN(24),
	SEQ_LEN(25),
	SEQ_LEN(26),
	SEQ_LEN(27),
#if defined(LL_ADC_REG_SEQ_SCAN_ENABLE_28RANKS)
	SEQ_LEN(28),
#endif /* LL_ADC_REG_SEQ_SCAN_ENABLE_28RANKS */
#endif /* LL_ADC_REG_SEQ_SCAN_ENABLE_17RANKS */
};
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE) */

/* Number of different sampling time values */
#define STM32_NB_SAMPLING_TIME	8

#ifdef CONFIG_ADC_STM32_DMA
struct stream {
	const struct device *dma_dev;
	uint32_t channel;
	struct dma_config dma_cfg;
	struct dma_block_config dma_blk_cfg;
	uint8_t priority;
	bool src_addr_increment;
	bool dst_addr_increment;
};
#endif /* CONFIG_ADC_STM32_DMA */

struct adc_stm32_data {
	struct adc_context ctx;
	const struct device *dev;
	uint16_t *buffer;
	uint16_t *repeat_buffer;

	uint8_t resolution;
	uint32_t channels;
	uint8_t channel_count;
	uint8_t samples_count;
	int8_t acq_time_index[2];

#ifdef CONFIG_ADC_STM32_DMA
	volatile int dma_error;
	struct stream dma;
#endif
};

struct adc_stm32_cfg {
	ADC_TypeDef *base;
	void (*irq_cfg_func)(void);
	const struct stm32_pclken *pclken;
	size_t pclk_len;
	uint32_t clk_prescaler;
	const struct pinctrl_dev_config *pcfg;
	const uint16_t sampling_time_table[STM32_NB_SAMPLING_TIME];
	int8_t num_sampling_time_common_channels;
	int8_t sequencer_type;
	int8_t res_table_size;
	const uint32_t res_table[];
};

#ifdef CONFIG_ADC_STM32_DMA
static void adc_stm32_enable_dma_support(ADC_TypeDef *adc)
{
	/* Allow ADC to create DMA request and set to one-shot mode as implemented in HAL drivers */

#if defined(CONFIG_SOC_SERIES_STM32H7X)

#if defined(ADC_VER_V5_V90)
	if (adc == ADC3) {
		LL_ADC_REG_SetDMATransferMode(adc,
			ADC3_CFGR_DMACONTREQ(LL_ADC_REG_DMA_TRANSFER_LIMITED));
		LL_ADC_EnableDMAReq(adc);
	} else {
		LL_ADC_REG_SetDataTransferMode(adc,
			ADC_CFGR_DMACONTREQ(LL_ADC_REG_DMA_TRANSFER_LIMITED));
	}
#elif defined(ADC_VER_V5_X)
	LL_ADC_REG_SetDataTransferMode(adc, LL_ADC_REG_DMA_TRANSFER_LIMITED);
#else
#error "Unsupported ADC version"
#endif

#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) /* defined(CONFIG_SOC_SERIES_STM32H7X) */

#error "The STM32F1 ADC + DMA is not yet supported"

#else /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */

	/* Default mechanism for other MCUs */
	LL_ADC_REG_SetDMATransfer(adc, LL_ADC_REG_DMA_TRANSFER_LIMITED);

#endif
}

static int adc_stm32_dma_start(const struct device *dev,
			       void *buffer, size_t channel_count)
{
	const struct adc_stm32_cfg *config = dev->config;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
	struct adc_stm32_data *data = dev->data;
	struct dma_block_config *blk_cfg;
	int ret;

	struct stream *dma = &data->dma;

	blk_cfg = &dma->dma_blk_cfg;

	/* prepare the block */
	blk_cfg->block_size = channel_count * sizeof(int16_t);

	/* Source and destination */
	blk_cfg->source_address = (uint32_t)LL_ADC_DMA_GetRegAddr(adc, LL_ADC_DMA_REG_REGULAR_DATA);
	blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
	blk_cfg->source_reload_en = 0;

	blk_cfg->dest_address = (uint32_t)buffer;
	blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
	blk_cfg->dest_reload_en = 0;

	/* Manually set the FIFO threshold to 1/4 because the
	 * dmamux DTS entry does not contain fifo threshold
	 */
	blk_cfg->fifo_mode_control = 0;

	/* direction is given by the DT */
	dma->dma_cfg.head_block = blk_cfg;
	dma->dma_cfg.user_data = data;

	ret = dma_config(data->dma.dma_dev, data->dma.channel,
			 &dma->dma_cfg);
	if (ret != 0) {
		LOG_ERR("Problem setting up DMA: %d", ret);
		return ret;
	}

	adc_stm32_enable_dma_support(adc);

	data->dma_error = 0;
	ret = dma_start(data->dma.dma_dev, data->dma.channel);
	if (ret != 0) {
		LOG_ERR("Problem starting DMA: %d", ret);
		return ret;
	}

	LOG_DBG("DMA started");

	return ret;
}
#endif /* CONFIG_ADC_STM32_DMA */

#if defined(CONFIG_ADC_STM32_DMA) && defined(CONFIG_SOC_SERIES_STM32H7X)
/* Returns true if given buffer is in a non-cacheable SRAM region.
 * This is determined using the device tree, meaning the .nocache region won't work.
 * The entire buffer must be in a single region.
 * An example of how the SRAM region can be defined in the DTS:
 *	&sram4 {
 *		zephyr,memory-attr = <( DT_MEM_ARM(ATTR_MPU_RAM_NOCACHE) | ... )>;
 *	};
 */
static bool buf_in_nocache(uintptr_t buf, size_t len_bytes)
{
	bool buf_within_nocache = false;

#ifdef CONFIG_NOCACHE_MEMORY
	buf_within_nocache = (buf >= ((uintptr_t)_nocache_ram_start)) &&
		((buf + len_bytes - 1) <= ((uintptr_t)_nocache_ram_end));
	if (buf_within_nocache) {
		return true;
	}
#endif /* CONFIG_NOCACHE_MEMORY */

	buf_within_nocache = mem_attr_check_buf(
		(void *)buf, len_bytes, DT_MEM_ARM(ATTR_MPU_RAM_NOCACHE)) == 0;

	return buf_within_nocache;
}
#endif /* defined(CONFIG_ADC_STM32_DMA) && defined(CONFIG_SOC_SERIES_STM32H7X) */

static int check_buffer(const struct adc_sequence *sequence,
			     uint8_t active_channels)
{
	size_t needed_buffer_size;

	needed_buffer_size = active_channels * sizeof(uint16_t);

	if (sequence->options) {
		needed_buffer_size *= (1 + sequence->options->extra_samplings);
	}

	if (sequence->buffer_size < needed_buffer_size) {
		LOG_ERR("Provided buffer is too small (%u/%u)",
				sequence->buffer_size, needed_buffer_size);
		return -ENOMEM;
	}

#if defined(CONFIG_ADC_STM32_DMA) && defined(CONFIG_SOC_SERIES_STM32H7X)
	/* Buffer is forced to be in non-cacheable SRAM region to avoid cache maintenance */
	if (!buf_in_nocache((uintptr_t)sequence->buffer, needed_buffer_size)) {
		LOG_ERR("Supplied buffer is not in a non-cacheable region according to DTS.");
		return -EINVAL;
	}
#endif

	return 0;
}

/*
 * Enable ADC peripheral, and wait until ready if required by SOC.
 */
static int adc_stm32_enable(ADC_TypeDef *adc)
{
	if (LL_ADC_IsEnabled(adc) == 1UL) {
		return 0;
	}

#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
	!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
	LL_ADC_ClearFlag_ADRDY(adc);
	LL_ADC_Enable(adc);

	/*
	 * Enabling ADC modules in many series may fail if they are
	 * still not stabilized, this will wait for a short time (about 1ms)
	 * to ensure ADC modules are properly enabled.
	 */
	uint32_t count_timeout = 0;

	while (LL_ADC_IsActiveFlag_ADRDY(adc) == 0) {
#ifdef CONFIG_SOC_SERIES_STM32F0X
		/* For F0, continue to write ADEN=1 until ADRDY=1 */
		if (LL_ADC_IsEnabled(adc) == 0UL) {
			LL_ADC_Enable(adc);
		}
#endif /* CONFIG_SOC_SERIES_STM32F0X */
		count_timeout++;
		k_busy_wait(100);
		if (count_timeout >= 10) {
			return -ETIMEDOUT;
		}
	}
#else
	/*
	 * On STM32F1, F2, F37x, F4, F7 and L1, do not re-enable the ADC.
	 * On F1 and F37x if ADON holds 1 (LL_ADC_IsEnabled is true) and 1 is
	 * written, then conversion starts. That's not what is expected.
	 */
	LL_ADC_Enable(adc);
#endif

	return 0;
}

static void adc_stm32_start_conversion(const struct device *dev)
{
	const struct adc_stm32_cfg *config = dev->config;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;

	LOG_DBG("Starting conversion");

#if !defined(CONFIG_SOC_SERIES_STM32F1X) && \
	!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
	LL_ADC_REG_StartConversion(adc);
#else
	LL_ADC_REG_StartConversionSWStart(adc);
#endif
}

/*
 * Disable ADC peripheral, and wait until it is disabled
 */
static void adc_stm32_disable(ADC_TypeDef *adc)
{
	if (LL_ADC_IsEnabled(adc) != 1UL) {
		return;
	}

	/* Stop ongoing conversion if any
	 * Software must poll ADSTART (or JADSTART) until the bit is reset before assuming
	 * the ADC is completely stopped.
	 */

#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
	!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
	if (LL_ADC_REG_IsConversionOngoing(adc)) {
		LL_ADC_REG_StopConversion(adc);
		while (LL_ADC_REG_IsConversionOngoing(adc)) {
		}
	}
#endif

#if !defined(CONFIG_SOC_SERIES_STM32C0X) && \
	!defined(CONFIG_SOC_SERIES_STM32F0X) && \
	!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
	!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc) && \
	!defined(CONFIG_SOC_SERIES_STM32G0X) && \
	!defined(CONFIG_SOC_SERIES_STM32L0X) && \
	!defined(CONFIG_SOC_SERIES_STM32WBAX) && \
	!defined(CONFIG_SOC_SERIES_STM32WLX)
	if (LL_ADC_INJ_IsConversionOngoing(adc)) {
		LL_ADC_INJ_StopConversion(adc);
		while (LL_ADC_INJ_IsConversionOngoing(adc)) {
		}
	}
#endif

	LL_ADC_Disable(adc);

	/* Wait ADC is fully disabled so that we don't leave the driver into intermediate state
	 * which could prevent enabling the peripheral
	 */
	while (LL_ADC_IsEnabled(adc) == 1UL) {
	}
}

#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)

#define HAS_CALIBRATION

/* Number of ADC clock cycles to wait before of after starting calibration */
#if defined(LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES)
#define ADC_DELAY_CALIB_ADC_CYCLES	LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES
#elif defined(LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES)
#define ADC_DELAY_CALIB_ADC_CYCLES	LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES
#elif defined(LL_ADC_DELAY_DISABLE_CALIB_ADC_CYCLES)
#define ADC_DELAY_CALIB_ADC_CYCLES	LL_ADC_DELAY_DISABLE_CALIB_ADC_CYCLES
#endif

static void adc_stm32_calibration_delay(const struct device *dev)
{
	/*
	 * Calibration of F1 and F3 (ADC1_V2_5) must start two cycles after ADON
	 * is set.
	 * Other ADC modules have to wait for some cycles after calibration to
	 * be enabled.
	 */
	const struct adc_stm32_cfg *config = dev->config;
	const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
	uint32_t adc_rate, wait_cycles;

	if (clock_control_get_rate(clk,
		(clock_control_subsys_t) &config->pclken[0], &adc_rate) < 0) {
		LOG_ERR("ADC clock rate get error.");
	}

	if (adc_rate == 0) {
		LOG_ERR("ADC Clock rate null");
		return;
	}
	wait_cycles = SystemCoreClock / adc_rate *
		      ADC_DELAY_CALIB_ADC_CYCLES;

	for (int i = wait_cycles; i >= 0; i--) {
	}
}

static void adc_stm32_calibration_start(const struct device *dev)
{
	const struct adc_stm32_cfg *config =
		(const struct adc_stm32_cfg *)dev->config;
	ADC_TypeDef *adc = config->base;

#if defined(STM32F3X_ADC_V1_1) || \
	defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32L5X) || \
	defined(CONFIG_SOC_SERIES_STM32H5X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X)
	LL_ADC_StartCalibration(adc, LL_ADC_SINGLE_ENDED);
#elif defined(CONFIG_SOC_SERIES_STM32C0X) || \
	defined(CONFIG_SOC_SERIES_STM32F0X) || \
	DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) || \
	defined(CONFIG_SOC_SERIES_STM32G0X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X) || \
	defined(CONFIG_SOC_SERIES_STM32WLX) || \
	defined(CONFIG_SOC_SERIES_STM32WBAX)
	LL_ADC_StartCalibration(adc);
#elif defined(CONFIG_SOC_SERIES_STM32U5X)
	LL_ADC_StartCalibration(adc, LL_ADC_CALIB_OFFSET);
#elif defined(CONFIG_SOC_SERIES_STM32H7X)
	LL_ADC_StartCalibration(adc, LL_ADC_CALIB_OFFSET, LL_ADC_SINGLE_ENDED);
#endif
	/* Make sure ADCAL is cleared before returning for proper operations
	 * on the ADC control register, for enabling the peripheral for example
	 */
	while (LL_ADC_IsCalibrationOnGoing(adc)) {
	}
}

static int adc_stm32_calibrate(const struct device *dev)
{
	const struct adc_stm32_cfg *config =
		(const struct adc_stm32_cfg *)dev->config;
	ADC_TypeDef *adc = config->base;
	int err;

#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
	adc_stm32_disable(adc);
	adc_stm32_calibration_start(dev);
	adc_stm32_calibration_delay(dev);
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */

	err = adc_stm32_enable(adc);
	if (err < 0) {
		return err;
	}

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
	adc_stm32_calibration_delay(dev);
	adc_stm32_calibration_start(dev);
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */

#if defined(CONFIG_SOC_SERIES_STM32H7X) && \
	defined(CONFIG_CPU_CORTEX_M7)
	/*
	 * To ensure linearity the factory calibration values
	 * should be loaded on initialization.
	 */
	uint32_t channel_offset = 0U;
	uint32_t linear_calib_buffer = 0U;

	if (adc == ADC1) {
		channel_offset = 0UL;
	} else if (adc == ADC2) {
		channel_offset = 8UL;
	} else   /*Case ADC3*/ {
		channel_offset = 16UL;
	}
	/* Read factory calibration factors */
	for (uint32_t count = 0UL; count < ADC_LINEAR_CALIB_REG_COUNT; count++) {
		linear_calib_buffer = *(uint32_t *)(
			ADC_LINEAR_CALIB_REG_1_ADDR + channel_offset + count
		);
		LL_ADC_SetCalibrationLinearFactor(
			adc, LL_ADC_CALIB_LINEARITY_WORD1 << count,
			linear_calib_buffer
		);
	}
#endif /* CONFIG_SOC_SERIES_STM32H7X */

	return 0;
}
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc) */

#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
	!defined(CONFIG_SOC_SERIES_STM32F1X) && \
	!defined(CONFIG_SOC_SERIES_STM32F3X) && \
	!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)

#define HAS_OVERSAMPLING

#define OVS_SHIFT(n)		LL_ADC_OVS_SHIFT_RIGHT_##n
static const uint32_t table_oversampling_shift[] = {
	LL_ADC_OVS_SHIFT_NONE,
	OVS_SHIFT(1),
	OVS_SHIFT(2),
	OVS_SHIFT(3),
	OVS_SHIFT(4),
	OVS_SHIFT(5),
	OVS_SHIFT(6),
	OVS_SHIFT(7),
	OVS_SHIFT(8),
#if defined(CONFIG_SOC_SERIES_STM32H7X) || \
	defined(CONFIG_SOC_SERIES_STM32U5X)
	OVS_SHIFT(9),
	OVS_SHIFT(10),
#endif
};

#ifdef LL_ADC_OVS_RATIO_2
#define OVS_RATIO(n)		LL_ADC_OVS_RATIO_##n
static const uint32_t table_oversampling_ratio[] = {
	0,
	OVS_RATIO(2),
	OVS_RATIO(4),
	OVS_RATIO(8),
	OVS_RATIO(16),
	OVS_RATIO(32),
	OVS_RATIO(64),
	OVS_RATIO(128),
	OVS_RATIO(256),
};
#endif

/*
 * Function to configure the oversampling scope. It is basically a wrapper over
 * LL_ADC_SetOverSamplingScope() which in addition stops the ADC if needed.
 */
static void adc_stm32_oversampling_scope(ADC_TypeDef *adc, uint32_t ovs_scope)
{
#if defined(CONFIG_SOC_SERIES_STM32L0X) || \
	defined(CONFIG_SOC_SERIES_STM32WLX)
	/*
	 * setting OVS bits is conditioned to ADC state: ADC must be disabled
	 * or enabled without conversion on going : disable it, it will stop
	 */
	if (LL_ADC_GetOverSamplingScope(adc) == ovs_scope) {
		return;
	}
	adc_stm32_disable(adc);
#endif
	LL_ADC_SetOverSamplingScope(adc, ovs_scope);
}

/*
 * Function to configure the oversampling ratio and shift. It is basically a
 * wrapper over LL_ADC_SetOverSamplingRatioShift() which in addition stops the
 * ADC if needed.
 */
static void adc_stm32_oversampling_ratioshift(ADC_TypeDef *adc, uint32_t ratio, uint32_t shift)
{
	/*
	 * setting OVS bits is conditioned to ADC state: ADC must be disabled
	 * or enabled without conversion on going : disable it, it will stop
	 */
	if ((LL_ADC_GetOverSamplingRatio(adc) == ratio)
	    && (LL_ADC_GetOverSamplingShift(adc) == shift)) {
		return;
	}
	adc_stm32_disable(adc);

	LL_ADC_ConfigOverSamplingRatioShift(adc, ratio, shift);
}

/*
 * Function to configure the oversampling ratio and shift using stm32 LL
 * ratio is directly the sequence->oversampling (a 2^n value)
 * shift is the corresponding LL_ADC_OVS_SHIFT_RIGHT_x constant
 */
static int adc_stm32_oversampling(ADC_TypeDef *adc, uint8_t ratio)
{
	if (ratio == 0) {
		adc_stm32_oversampling_scope(adc, LL_ADC_OVS_DISABLE);
		return 0;
	} else if (ratio < ARRAY_SIZE(table_oversampling_shift)) {
		adc_stm32_oversampling_scope(adc, LL_ADC_OVS_GRP_REGULAR_CONTINUED);
	} else {
		LOG_ERR("Invalid oversampling");
		return -EINVAL;
	}

	uint32_t shift = table_oversampling_shift[ratio];

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	/* Certain variants of the H7, such as STM32H72x/H73x has ADC3
	 * as a separate entity and require special handling.
	 */
#if defined(ADC_VER_V5_V90)
	if (adc != ADC3) {
		/* the LL function expects a value from 1 to 1024 */
		adc_stm32_oversampling_ratioshift(adc, 1 << ratio, shift);
	} else {
		/* the LL function expects a value LL_ADC_OVS_RATIO_x */
		adc_stm32_oversampling_ratioshift(adc, table_oversampling_ratio[ratio], shift);
	}
#else
	/* the LL function expects a value from 1 to 1024 */
	adc_stm32_oversampling_ratioshift(adc, 1 << ratio, shift);
#endif /* defined(ADC_VER_V5_V90) */
#elif defined(CONFIG_SOC_SERIES_STM32U5X)
	if (adc != ADC4) {
		/* the LL function expects a value from 1 to 1024 */
		adc_stm32_oversampling_ratioshift(adc, (1 << ratio), shift);
	} else {
		/* the LL function expects a value LL_ADC_OVS_RATIO_x */
		adc_stm32_oversampling_ratioshift(adc, table_oversampling_ratio[ratio], shift);
	}
#else /* CONFIG_SOC_SERIES_STM32H7X */
	adc_stm32_oversampling_ratioshift(adc, table_oversampling_ratio[ratio], shift);
#endif /* CONFIG_SOC_SERIES_STM32H7X */

	return 0;
}
#endif /* CONFIG_SOC_SERIES_STM32xxx */

#ifdef CONFIG_ADC_STM32_DMA
static void dma_callback(const struct device *dev, void *user_data,
			 uint32_t channel, int status)
{
	/* user_data directly holds the adc device */
	struct adc_stm32_data *data = user_data;
	const struct adc_stm32_cfg *config = data->dev->config;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;

	LOG_DBG("dma callback");

	if (channel == data->dma.channel) {
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
		if (LL_ADC_IsActiveFlag_OVR(adc) || (status >= 0)) {
#else
		if (status >= 0) {
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
			data->samples_count = data->channel_count;
			data->buffer += data->channel_count;
			/* Stop the DMA engine, only to start it again when the callback returns
			 * ADC_ACTION_REPEAT or ADC_ACTION_CONTINUE, or the number of samples
			 * haven't been reached Starting the DMA engine is done
			 * within adc_context_start_sampling
			 */
			dma_stop(data->dma.dma_dev, data->dma.channel);
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
			LL_ADC_ClearFlag_OVR(adc);
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
			/* No need to invalidate the cache because it's assumed that
			 * the address is in a non-cacheable SRAM region.
			 */
			adc_context_on_sampling_done(&data->ctx, dev);
			pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE,
						 PM_ALL_SUBSTATES);
			if (IS_ENABLED(CONFIG_PM_S2RAM)) {
				pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM,
							 PM_ALL_SUBSTATES);
			}
		} else if (status < 0) {
			LOG_ERR("DMA sampling complete, but DMA reported error %d", status);
			data->dma_error = status;
			LL_ADC_REG_StopConversion(adc);
			dma_stop(data->dma.dma_dev, data->dma.channel);
			adc_context_complete(&data->ctx, status);
		}
	}
}
#endif /* CONFIG_ADC_STM32_DMA */

static uint8_t get_reg_value(const struct device *dev, uint32_t reg,
			     uint32_t shift, uint32_t mask)
{
	const struct adc_stm32_cfg *config = dev->config;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;

	uintptr_t addr = (uintptr_t)adc + reg;

	return ((*(volatile uint32_t *)addr >> shift) & mask);
}

static void set_reg_value(const struct device *dev, uint32_t reg,
			  uint32_t shift, uint32_t mask, uint32_t value)
{
	const struct adc_stm32_cfg *config = dev->config;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;

	uintptr_t addr = (uintptr_t)adc + reg;

	MODIFY_REG(*(volatile uint32_t *)addr, (mask << shift), (value << shift));
}

static int set_resolution(const struct device *dev,
			  const struct adc_sequence *sequence)
{
	const struct adc_stm32_cfg *config = dev->config;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
	uint8_t res_reg_addr = 0xFF;
	uint8_t res_shift = 0;
	uint8_t res_mask = 0;
	uint8_t res_reg_val = 0;
	int i;

	for (i = 0; i < config->res_table_size; i++) {
		if (sequence->resolution == STM32_ADC_GET_REAL_VAL(config->res_table[i])) {
			res_reg_addr = STM32_ADC_GET_REG(config->res_table[i]);
			res_shift = STM32_ADC_GET_SHIFT(config->res_table[i]);
			res_mask = STM32_ADC_GET_MASK(config->res_table[i]);
			res_reg_val = STM32_ADC_GET_REG_VAL(config->res_table[i]);
			break;
		}
	}

	if (i == config->res_table_size) {
		LOG_ERR("Invalid resolution");
		return -EINVAL;
	}

	/*
	 * Some MCUs (like STM32F1x) have no register to configure resolution.
	 * These MCUs have a register address value of 0xFF and should be
	 * ignored.
	 */
	if (res_reg_addr != 0xFF) {
		/*
		 * We don't use LL_ADC_SetResolution and LL_ADC_GetResolution
		 * because they don't strictly use hardware resolution values
		 * and makes internal conversions for some series.
		 * (see stm32h7xx_ll_adc.h)
		 * Instead we set the register ourselves if needed.
		 */
		if (get_reg_value(dev, res_reg_addr, res_shift, res_mask) != res_reg_val) {
			/*
			 * Writing ADC_CFGR1 register while ADEN bit is set
			 * resets RES[1:0] bitfield. We need to disable and enable adc.
			 */
			adc_stm32_disable(adc);
			set_reg_value(dev, res_reg_addr, res_shift, res_mask, res_reg_val);
		}
	}

	return 0;
}

static int set_sequencer(const struct device *dev)
{
	const struct adc_stm32_cfg *config = dev->config;
	struct adc_stm32_data *data = dev->data;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;

	uint8_t channel_id;
	uint8_t channel_index = 0;
	uint32_t channels_mask = 0;

	/* Iterate over selected channels in bitmask keeping track of:
	 * - channel_index: ranging from 0 -> ( data->channel_count - 1 )
	 * - channel_id: ordinal position of channel in data->channels bitmask
	 */
	for (uint32_t channels = data->channels; channels;
		      channels &= ~BIT(channel_id), channel_index++) {
		channel_id = find_lsb_set(channels) - 1;

		uint32_t channel = __LL_ADC_DECIMAL_NB_TO_CHANNEL(channel_id);

		channels_mask |= channel;

#if ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE)
		if (config->sequencer_type == FULLY_CONFIGURABLE) {
#if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32U5X)
			/*
			 * Each channel in the sequence must be previously enabled in PCSEL.
			 * This register controls the analog switch integrated in the IO level.
			 */
			LL_ADC_SetChannelPreselection(adc, channel);
#endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32U5X */
			LL_ADC_REG_SetSequencerRanks(adc, table_rank[channel_index], channel);
			LL_ADC_REG_SetSequencerLength(adc, table_seq_len[channel_index]);
		}
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE) */
	}

#if ANY_ADC_SEQUENCER_TYPE_IS(NOT_FULLY_CONFIGURABLE)
	if (config->sequencer_type == NOT_FULLY_CONFIGURABLE) {
		LL_ADC_REG_SetSequencerChannels(adc, channels_mask);

#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
	!defined(CONFIG_SOC_SERIES_STM32L0X) && \
	!defined(CONFIG_SOC_SERIES_STM32U5X) && \
	!defined(CONFIG_SOC_SERIES_STM32WBAX)
		/*
		 * After modifying sequencer it is mandatory to wait for the
		 * assertion of CCRDY flag
		 */
		while (LL_ADC_IsActiveFlag_CCRDY(adc) == 0) {
		}
		LL_ADC_ClearFlag_CCRDY(adc);
#endif /* !CONFIG_SOC_SERIES_STM32F0X && !L0X && !U5X && !WBAX */
	}
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(NOT_FULLY_CONFIGURABLE) */

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) || \
	DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
	LL_ADC_SetSequencersScanMode(adc, LL_ADC_SEQ_SCAN_ENABLE);
#endif /* st_stm32f1_adc || st_stm32f4_adc */

	return 0;
}

static int start_read(const struct device *dev,
		      const struct adc_sequence *sequence)
{
	const struct adc_stm32_cfg *config = dev->config;
	struct adc_stm32_data *data = dev->data;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
	int err;

	data->buffer = sequence->buffer;
	data->channels = sequence->channels;
	data->channel_count = POPCOUNT(data->channels);
	data->samples_count = 0;

	if (data->channel_count == 0) {
		LOG_ERR("No channels selected");
		return -EINVAL;
	}

#if ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE)
	if (data->channel_count > ARRAY_SIZE(table_seq_len)) {
		LOG_ERR("Too many channels for sequencer. Max: %d", ARRAY_SIZE(table_seq_len));
		return -EINVAL;
	}
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE) */

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && !defined(CONFIG_ADC_STM32_DMA)
	/* Multiple samplings is only supported with DMA for F1 */
	if (data->channel_count > 1) {
		LOG_ERR("Without DMA, this device only supports single channel sampling");
		return -EINVAL;
	}
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && !CONFIG_ADC_STM32_DMA */

	/* Check and set the resolution */
	err = set_resolution(dev, sequence);
	if (err < 0) {
		return err;
	}

	/* Configure the sequencer */
	err = set_sequencer(dev);
	if (err < 0) {
		return err;
	}

	err = check_buffer(sequence, data->channel_count);
	if (err) {
		return err;
	}

#ifdef HAS_OVERSAMPLING
	err = adc_stm32_oversampling(adc, sequence->oversampling);
	if (err) {
		return err;
	}
#else
	if (sequence->oversampling) {
		LOG_ERR("Oversampling not supported");
		return -ENOTSUP;
	}
#endif /* HAS_OVERSAMPLING */

	if (sequence->calibrate) {
#if defined(HAS_CALIBRATION)
		adc_stm32_calibrate(dev);
#else
		LOG_ERR("Calibration not supported");
		return -ENOTSUP;
#endif
	}

	/*
	 * Make sure the ADC is enabled as it might have been disabled earlier
	 * to set the resolution, to set the oversampling or to perform the
	 * calibration.
	 */
	adc_stm32_enable(adc);

#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
	LL_ADC_ClearFlag_OVR(adc);
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */

#if !defined(CONFIG_ADC_STM32_DMA)
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
	/* Trigger an ISR after each sampling (not just end of sequence) */
	LL_ADC_REG_SetFlagEndOfConversion(adc, LL_ADC_REG_FLAG_EOC_UNITARY_CONV);
	LL_ADC_EnableIT_EOCS(adc);
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
	LL_ADC_EnableIT_EOS(adc);
#else
	LL_ADC_EnableIT_EOC(adc);
#endif
#endif /* CONFIG_ADC_STM32_DMA */

	/* This call will start the DMA */
	adc_context_start_read(&data->ctx, sequence);

	int result = adc_context_wait_for_completion(&data->ctx);

#ifdef CONFIG_ADC_STM32_DMA
	/* check if there's anything wrong with dma start */
	result = (data->dma_error ? data->dma_error : result);
#endif

	return result;
}

static void adc_context_start_sampling(struct adc_context *ctx)
{
	struct adc_stm32_data *data =
		CONTAINER_OF(ctx, struct adc_stm32_data, ctx);

	data->repeat_buffer = data->buffer;

#ifdef CONFIG_ADC_STM32_DMA
	adc_stm32_dma_start(data->dev, data->buffer, data->channel_count);
#endif
	adc_stm32_start_conversion(data->dev);
}

static void adc_context_update_buffer_pointer(struct adc_context *ctx,
					      bool repeat_sampling)
{
	struct adc_stm32_data *data =
		CONTAINER_OF(ctx, struct adc_stm32_data, ctx);

	if (repeat_sampling) {
		data->buffer = data->repeat_buffer;
	}
}

#ifndef CONFIG_ADC_STM32_DMA
static void adc_stm32_isr(const struct device *dev)
{
	struct adc_stm32_data *data = dev->data;
	const struct adc_stm32_cfg *config =
		(const struct adc_stm32_cfg *)dev->config;
	ADC_TypeDef *adc = config->base;

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
	if (LL_ADC_IsActiveFlag_EOS(adc) == 1) {
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
	if (LL_ADC_IsActiveFlag_EOCS(adc) == 1) {
#else
	if (LL_ADC_IsActiveFlag_EOC(adc) == 1) {
#endif
		*data->buffer++ = LL_ADC_REG_ReadConversionData32(adc);
		/* ISR is triggered after each conversion, and at the end-of-sequence. */
		if (++data->samples_count == data->channel_count) {
			data->samples_count = 0;
			adc_context_on_sampling_done(&data->ctx, dev);
			pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE,
						 PM_ALL_SUBSTATES);
			if (IS_ENABLED(CONFIG_PM_S2RAM)) {
				pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM,
							 PM_ALL_SUBSTATES);
			}
		}
	}

	LOG_DBG("%s ISR triggered.", dev->name);
}
#endif /* !CONFIG_ADC_STM32_DMA */

static void adc_context_on_complete(struct adc_context *ctx, int status)
{
	struct adc_stm32_data *data =
		CONTAINER_OF(ctx, struct adc_stm32_data, ctx);
	const struct adc_stm32_cfg *config = data->dev->config;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;

	ARG_UNUSED(status);

	/* Reset acquisition time used for the sequence */
	data->acq_time_index[0] = -1;
	data->acq_time_index[1] = -1;

#if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32U5X)
	/* Reset channel preselection register */
	LL_ADC_SetChannelPreselection(adc, 0);
#else
	ARG_UNUSED(adc);
#endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32U5X */
}

static int adc_stm32_read(const struct device *dev,
			  const struct adc_sequence *sequence)
{
	struct adc_stm32_data *data = dev->data;
	int error;

	adc_context_lock(&data->ctx, false, NULL);
	pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
	if (IS_ENABLED(CONFIG_PM_S2RAM)) {
		pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
	}
	error = start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}

#ifdef CONFIG_ADC_ASYNC
static int adc_stm32_read_async(const struct device *dev,
				 const struct adc_sequence *sequence,
				 struct k_poll_signal *async)
{
	struct adc_stm32_data *data = dev->data;
	int error;

	adc_context_lock(&data->ctx, true, async);
	pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
	if (IS_ENABLED(CONFIG_PM_S2RAM)) {
		pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
	}
	error = start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}
#endif

static int adc_stm32_sampling_time_check(const struct device *dev, uint16_t acq_time)
{
	const struct adc_stm32_cfg *config =
		(const struct adc_stm32_cfg *)dev->config;

	if (acq_time == ADC_ACQ_TIME_DEFAULT) {
		return 0;
	}

	if (acq_time == ADC_ACQ_TIME_MAX) {
		return STM32_NB_SAMPLING_TIME - 1;
	}

	for (int i = 0; i < STM32_NB_SAMPLING_TIME; i++) {
		if (acq_time == ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS,
					     config->sampling_time_table[i])) {
			return i;
		}
	}

	LOG_ERR("Sampling time value not supported.");
	return -EINVAL;
}

static int adc_stm32_sampling_time_setup(const struct device *dev, uint8_t id,
					 uint16_t acq_time)
{
	const struct adc_stm32_cfg *config =
		(const struct adc_stm32_cfg *)dev->config;
	ADC_TypeDef *adc = config->base;
	struct adc_stm32_data *data = dev->data;

	int acq_time_index;

	acq_time_index = adc_stm32_sampling_time_check(dev, acq_time);
	if (acq_time_index < 0) {
		return acq_time_index;
	}

	/*
	 * For all series we use the fact that the macros LL_ADC_SAMPLINGTIME_*
	 * that should be passed to the set functions are all coded on 3 bits
	 * with 0 shift (ie 0 to 7). So acq_time_index is equivalent to the
	 * macro we would use for the desired sampling time.
	 */
	switch (config->num_sampling_time_common_channels) {
	case 0:
#if ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(0)
		ARG_UNUSED(data);
		LL_ADC_SetChannelSamplingTime(adc,
					      __LL_ADC_DECIMAL_NB_TO_CHANNEL(id),
					      (uint32_t)acq_time_index);
#endif
		break;
	case 1:
#if ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(1)
		/* Only one sampling time can be selected for all channels.
		 * The first one we find is used, all others must match.
		 */
		if ((data->acq_time_index[0] == -1) ||
			(acq_time_index == data->acq_time_index[0])) {
			/* Reg is empty or value matches */
			data->acq_time_index[0] = acq_time_index;
			LL_ADC_SetSamplingTimeCommonChannels(adc,
							     (uint32_t)acq_time_index);
		} else {
			/* Reg is used and value does not match */
			LOG_ERR("Multiple sampling times not supported");
			return -EINVAL;
		}
#endif
		break;
	case 2:
#if ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(2)
		/* Two different sampling times can be selected for all channels.
		 * The first two we find are used, all others must match either one.
		 */
		if ((data->acq_time_index[0] == -1) ||
			(acq_time_index == data->acq_time_index[0])) {
			/* 1st reg is empty or value matches 1st reg */
			data->acq_time_index[0] = acq_time_index;
			LL_ADC_SetChannelSamplingTime(adc,
						      __LL_ADC_DECIMAL_NB_TO_CHANNEL(id),
						      LL_ADC_SAMPLINGTIME_COMMON_1);
			LL_ADC_SetSamplingTimeCommonChannels(adc,
							     LL_ADC_SAMPLINGTIME_COMMON_1,
							     (uint32_t)acq_time_index);
		} else if ((data->acq_time_index[1] == -1) ||
			(acq_time_index == data->acq_time_index[1])) {
			/* 2nd reg is empty or value matches 2nd reg */
			data->acq_time_index[1] = acq_time_index;
			LL_ADC_SetChannelSamplingTime(adc,
						      __LL_ADC_DECIMAL_NB_TO_CHANNEL(id),
						      LL_ADC_SAMPLINGTIME_COMMON_2);
			LL_ADC_SetSamplingTimeCommonChannels(adc,
							     LL_ADC_SAMPLINGTIME_COMMON_2,
							     (uint32_t)acq_time_index);
		} else {
			/* Both regs are used, value does not match any of them */
			LOG_ERR("Only two different sampling times supported");
			return -EINVAL;
		}
#endif
		break;
	default:
		LOG_ERR("Number of common sampling time channels not supported");
		return -EINVAL;
	}
	return 0;
}

static int adc_stm32_channel_setup(const struct device *dev,
				   const struct adc_channel_cfg *channel_cfg)
{
	if (channel_cfg->differential) {
		LOG_ERR("Differential channels are not supported");
		return -EINVAL;
	}

	if (channel_cfg->gain != ADC_GAIN_1) {
		LOG_ERR("Invalid channel gain");
		return -EINVAL;
	}

	if (channel_cfg->reference != ADC_REF_INTERNAL) {
		LOG_ERR("Invalid channel reference");
		return -EINVAL;
	}

	if (adc_stm32_sampling_time_setup(dev, channel_cfg->channel_id,
					  channel_cfg->acquisition_time) != 0) {
		LOG_ERR("Invalid sampling time");
		return -EINVAL;
	}

	LOG_DBG("Channel setup succeeded!");

	return 0;
}

/* This symbol takes the value 1 if one of the device instances */
/* is configured in dts with a domain clock */
#if STM32_DT_INST_DEV_DOMAIN_CLOCK_SUPPORT
#define STM32_ADC_DOMAIN_CLOCK_SUPPORT 1
#else
#define STM32_ADC_DOMAIN_CLOCK_SUPPORT 0
#endif

static int adc_stm32_set_clock(const struct device *dev)
{
	const struct adc_stm32_cfg *config = dev->config;
	const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;

	ARG_UNUSED(adc); /* Necessary to avoid warnings on some series */

	if (clock_control_on(clk,
		(clock_control_subsys_t) &config->pclken[0]) != 0) {
		return -EIO;
	}

	if (IS_ENABLED(STM32_ADC_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) {
		/* Enable ADC clock source */
		if (clock_control_configure(clk,
					    (clock_control_subsys_t) &config->pclken[1],
					    NULL) != 0) {
			return -EIO;
		}
	}

#if defined(CONFIG_SOC_SERIES_STM32F0X)
	LL_ADC_SetClock(adc, config->clk_prescaler);
#elif defined(CONFIG_SOC_SERIES_STM32C0X) || \
	defined(CONFIG_SOC_SERIES_STM32G0X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X) || \
	(defined(CONFIG_SOC_SERIES_STM32WBX) && defined(ADC_SUPPORT_2_5_MSPS)) || \
	defined(CONFIG_SOC_SERIES_STM32WLX)
	if ((config->clk_prescaler == LL_ADC_CLOCK_SYNC_PCLK_DIV1) ||
		(config->clk_prescaler == LL_ADC_CLOCK_SYNC_PCLK_DIV2) ||
		(config->clk_prescaler == LL_ADC_CLOCK_SYNC_PCLK_DIV4)) {
		LL_ADC_SetClock(adc, config->clk_prescaler);
	} else {
		LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(adc),
				      config->clk_prescaler);
		LL_ADC_SetClock(adc, LL_ADC_CLOCK_ASYNC);
	}
#elif !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
	LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(adc),
			      config->clk_prescaler);
#endif

	return 0;
}

static int adc_stm32_init(const struct device *dev)
{
	struct adc_stm32_data *data = dev->data;
	const struct adc_stm32_cfg *config = dev->config;
	const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
	int err;

	ARG_UNUSED(adc); /* Necessary to avoid warnings on some series */

	LOG_DBG("Initializing %s", dev->name);

	if (!device_is_ready(clk)) {
		LOG_ERR("clock control device not ready");
		return -ENODEV;
	}

	data->dev = dev;

	/*
	 * For series that use common channels for sampling time, all
	 * conversion time for all channels on one ADC instance has to
	 * be the same.
	 * For series that use two common channels, there can be up to two
	 * conversion times selected for all channels in a sequence.
	 * This additional table is for checking that the conversion time
	 * selection of all channels respects these requirements.
	 */
	data->acq_time_index[0] = -1;
	data->acq_time_index[1] = -1;

	adc_stm32_set_clock(dev);

	/* Configure dt provided device signals when available */
	err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
	if (err < 0) {
		LOG_ERR("ADC pinctrl setup failed (%d)", err);
		return err;
	}

#if defined(CONFIG_SOC_SERIES_STM32U5X)
	/* Enable the independent analog supply */
	LL_PWR_EnableVDDA();
#endif /* CONFIG_SOC_SERIES_STM32U5X */

#ifdef CONFIG_ADC_STM32_DMA
	if ((data->dma.dma_dev != NULL) &&
	    !device_is_ready(data->dma.dma_dev)) {
		LOG_ERR("%s device not ready", data->dma.dma_dev->name);
		return -ENODEV;
	}
#endif

#if defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32L5X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X) || \
	defined(CONFIG_SOC_SERIES_STM32H5X) || \
	defined(CONFIG_SOC_SERIES_STM32H7X) || \
	defined(CONFIG_SOC_SERIES_STM32U5X)
	/*
	 * L4, WB, G4, H5, H7 and U5 series STM32 needs to be awaken from deep sleep
	 * mode, and restore its calibration parameters if there are some
	 * previously stored calibration parameters.
	 */
	LL_ADC_DisableDeepPowerDown(adc);
#endif

	/*
	 * Many ADC modules need some time to be stabilized before performing
	 * any enable or calibration actions.
	 */
#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
	!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
	!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
	LL_ADC_EnableInternalRegulator(adc);
	k_busy_wait(LL_ADC_DELAY_INTERNAL_REGUL_STAB_US);
#endif

	if (config->irq_cfg_func) {
		config->irq_cfg_func();
	}

#if defined(HAS_CALIBRATION)
	adc_stm32_calibrate(dev);
	LL_ADC_REG_SetTriggerSource(adc, LL_ADC_REG_TRIG_SOFTWARE);
#endif /* HAS_CALIBRATION */

	adc_context_unlock_unconditionally(&data->ctx);

	return 0;
}

#ifdef CONFIG_PM_DEVICE
static int adc_stm32_suspend_setup(const struct device *dev)
{
	const struct adc_stm32_cfg *config = dev->config;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
	const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
	int err;

	/* Disable ADC */
	adc_stm32_disable(adc);

#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
	!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
	!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
	/* Disable ADC internal voltage regulator */
	LL_ADC_DisableInternalRegulator(adc);
	while (LL_ADC_IsInternalRegulatorEnabled(adc) == 1U) {
	}
#endif

#if defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32L5X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X) || \
	defined(CONFIG_SOC_SERIES_STM32H5X) || \
	defined(CONFIG_SOC_SERIES_STM32H7X) || \
	defined(CONFIG_SOC_SERIES_STM32U5X)
	/*
	 * L4, WB, G4, H5, H7 and U5 series STM32 needs to be put into
	 * deep sleep mode.
	 */

	LL_ADC_EnableDeepPowerDown(adc);
#endif

#if defined(CONFIG_SOC_SERIES_STM32U5X)
	/* Disable the independent analog supply */
	LL_PWR_DisableVDDA();
#endif /* CONFIG_SOC_SERIES_STM32U5X */

	/* Stop device clock. Note: fixed clocks are not handled yet. */
	err = clock_control_off(clk, (clock_control_subsys_t)&config->pclken[0]);
	if (err != 0) {
		LOG_ERR("Could not disable ADC clock");
		return err;
	}

	/* Move pins to sleep state */
	err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
	if ((err < 0) && (err != -ENOENT)) {
		/*
		 * If returning -ENOENT, no pins where defined for sleep mode :
		 * Do not output on console (might sleep already) when going to sleep,
		 * "ADC pinctrl sleep state not available"
		 * and don't block PM suspend.
		 * Else return the error.
		 */
		return err;
	}

	return 0;
}

static int adc_stm32_pm_action(const struct device *dev,
			       enum pm_device_action action)
{
	switch (action) {
	case PM_DEVICE_ACTION_RESUME:
		return adc_stm32_init(dev);
	case PM_DEVICE_ACTION_SUSPEND:
		return adc_stm32_suspend_setup(dev);
	default:
		return -ENOTSUP;
	}

	return 0;
}
#endif /* CONFIG_PM_DEVICE */

static const struct adc_driver_api api_stm32_driver_api = {
	.channel_setup = adc_stm32_channel_setup,
	.read = adc_stm32_read,
#ifdef CONFIG_ADC_ASYNC
	.read_async = adc_stm32_read_async,
#endif
	.ref_internal = STM32_ADC_VREF_MV, /* VREF is usually connected to VDD */
};

#if defined(CONFIG_SOC_SERIES_STM32F0X)
/* LL_ADC_CLOCK_ASYNC_DIV1 doesn't exist in F0 LL. Define it here. */
#define LL_ADC_CLOCK_ASYNC_DIV1 LL_ADC_CLOCK_ASYNC
#endif

/* st_prescaler property requires 2 elements : clock ASYNC/SYNC and DIV */
#define ADC_STM32_CLOCK(x)	DT_INST_PROP(x, st_adc_clock_source)
#define ADC_STM32_DIV(x)	DT_INST_PROP(x, st_adc_prescaler)

/* Macro to set the prefix depending on the 1st element: check if it is SYNC or ASYNC */
#define ADC_STM32_CLOCK_PREFIX(x)			\
	COND_CODE_1(IS_EQ(ADC_STM32_CLOCK(x), SYNC),	\
		(LL_ADC_CLOCK_SYNC_PCLK_DIV),		\
		(LL_ADC_CLOCK_ASYNC_DIV))

/* Concat prefix (1st element) and DIV value (2nd element) of st,adc-prescaler */
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
#define ADC_STM32_DT_PRESC(x)	0
#else
#define ADC_STM32_DT_PRESC(x)	\
	_CONCAT(ADC_STM32_CLOCK_PREFIX(x), ADC_STM32_DIV(x))
#endif

#if defined(CONFIG_ADC_STM32_DMA)

#define ADC_DMA_CHANNEL_INIT(index, src_dev, dest_dev)					\
	.dma = {									\
		.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_IDX(index, 0)),		\
		.channel = STM32_DMA_SLOT_BY_IDX(index, 0, channel),			\
		.dma_cfg = {								\
			.dma_slot = STM32_DMA_SLOT_BY_IDX(index, 0, slot),		\
			.channel_direction = STM32_DMA_CONFIG_DIRECTION(		\
				STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)),		\
			.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(	\
				STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)),		\
			.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(	\
				STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)),		\
			.source_burst_length = 1,       /* SINGLE transfer */		\
			.dest_burst_length = 1,         /* SINGLE transfer */		\
			.channel_priority = STM32_DMA_CONFIG_PRIORITY(			\
				STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)),		\
			.dma_callback = dma_callback,					\
			.block_count = 2,						\
		},									\
		.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC(		\
			STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)),			\
		.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC(		\
			STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)),			\
	}

#define ADC_STM32_IRQ_FUNC(index)					\
	.irq_cfg_func = NULL,

#else /* CONFIG_ADC_STM32_DMA */

/*
 * For series that share interrupt lines for multiple ADC instances
 * and have separate interrupt lines for other ADCs (example,
 * STM32G473 has 5 ADC instances, ADC1 and ADC2 share IRQn 18 while
 * ADC3, ADC4 and ADC5 use IRQns 47, 61 and 62 respectively), generate
 * a single common ISR function for each IRQn and call adc_stm32_isr
 * for each device using that interrupt line for all enabled ADCs.
 *
 * To achieve the above, a "first" ADC instance must be chosen for all
 * ADC instances sharing the same IRQn. This "first" ADC instance
 * generates the code for the common ISR and for installing and
 * enabling it while any other ADC sharing the same IRQn skips this
 * code generation and does nothing. The common ISR code is generated
 * to include calls to adc_stm32_isr for all instances using that same
 * IRQn. From the example above, four ISR functions would be generated
 * for IRQn 18, 47, 61 and 62, with possible "first" ADC instances
 * being ADC1, ADC3, ADC4 and ADC5 if all ADCs were enabled, with the
 * ISR function 18 calling adc_stm32_isr for both ADC1 and ADC2.
 *
 * For some of the macros below, pseudo-code is provided to describe
 * its function.
 */

/*
 * return (irqn == device_irqn(index)) ? index : NULL
 */
#define FIRST_WITH_IRQN_INTERNAL(index, irqn)                                                      \
	COND_CODE_1(IS_EQ(irqn, DT_INST_IRQN(index)), (index,), (EMPTY,))

/*
 * Returns the "first" instance's index:
 *
 * instances = []
 * for instance in all_active_adcs:
 *     instances.append(first_with_irqn_internal(device_irqn(index)))
 * for instance in instances:
 *     if instance == NULL:
 *         instances.remove(instance)
 * return instances[0]
 */
#define FIRST_WITH_IRQN(index)                                                                     \
	GET_ARG_N(1, LIST_DROP_EMPTY(DT_INST_FOREACH_STATUS_OKAY_VARGS(FIRST_WITH_IRQN_INTERNAL,   \
								       DT_INST_IRQN(index))))

/*
 * Provides code for calling adc_stm32_isr for an instance if its IRQn
 * matches:
 *
 * if (irqn == device_irqn(index)):
 *     return "adc_stm32_isr(DEVICE_DT_INST_GET(index));"
 */
#define HANDLE_IRQS(index, irqn)                                                                   \
	COND_CODE_1(IS_EQ(irqn, DT_INST_IRQN(index)), (adc_stm32_isr(DEVICE_DT_INST_GET(index));), \
		    (EMPTY))

/*
 * Name of the common ISR for a given IRQn (taken from a device with a
 * given index). Example, for an ADC instance with IRQn 18, returns
 * "adc_stm32_isr_18".
 */
#define ISR_FUNC(index) UTIL_CAT(adc_stm32_isr_, DT_INST_IRQN(index))

/*
 * Macro for generating code for the common ISRs (by looping of all
 * ADC instances that share the same IRQn as that of the given device
 * by index) and the function for setting up the ISR.
 *
 * Here is where both "first" and non-"first" instances have code
 * generated for their interrupts via HANDLE_IRQS.
 */
#define GENERATE_ISR_CODE(index)                                                                   \
	static void ISR_FUNC(index)(void)                                                          \
	{                                                                                          \
		DT_INST_FOREACH_STATUS_OKAY_VARGS(HANDLE_IRQS, DT_INST_IRQN(index))                \
	}                                                                                          \
                                                                                                   \
	static void UTIL_CAT(ISR_FUNC(index), _init)(void)                                         \
	{                                                                                          \
		IRQ_CONNECT(DT_INST_IRQN(index), DT_INST_IRQ(index, priority), ISR_FUNC(index),    \
			    NULL, 0);                                                              \
		irq_enable(DT_INST_IRQN(index));                                                   \
	}

/*
 * Limit generating code to only the "first" instance:
 *
 * if (first_with_irqn(index) == index):
 *     generate_isr_code(index)
 */
#define GENERATE_ISR(index)                                                                        \
	COND_CODE_1(IS_EQ(index, FIRST_WITH_IRQN(index)), (GENERATE_ISR_CODE(index)), (EMPTY))

DT_INST_FOREACH_STATUS_OKAY(GENERATE_ISR)

/* Only "first" instances need to call the ISR setup function */
#define ADC_STM32_IRQ_FUNC(index)                                                                  \
	.irq_cfg_func = COND_CODE_1(IS_EQ(index, FIRST_WITH_IRQN(index)),                          \
				    (UTIL_CAT(ISR_FUNC(index), _init)), (NULL)),

#endif /* CONFIG_ADC_STM32_DMA */

#define ADC_DMA_CHANNEL(id, src, dest)							\
	COND_CODE_1(DT_INST_DMAS_HAS_IDX(id, 0),					\
			(ADC_DMA_CHANNEL_INIT(id, src, dest)),				\
			(/* Required for other adc instances without dma */))

#define ADC_STM32_INIT(index)						\
									\
PINCTRL_DT_INST_DEFINE(index);						\
									\
static const struct stm32_pclken pclken_##index[] =			\
				 STM32_DT_INST_CLOCKS(index);		\
									\
static const struct adc_stm32_cfg adc_stm32_cfg_##index = {		\
	.base = (ADC_TypeDef *)DT_INST_REG_ADDR(index),			\
	ADC_STM32_IRQ_FUNC(index)					\
	.pclken = pclken_##index,					\
	.pclk_len = DT_INST_NUM_CLOCKS(index),				\
	.clk_prescaler = ADC_STM32_DT_PRESC(index),			\
	.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index),			\
	.sequencer_type = DT_INST_PROP(index, st_adc_sequencer),	\
	.sampling_time_table = DT_INST_PROP(index, sampling_times),	\
	.num_sampling_time_common_channels =				\
		DT_INST_PROP_OR(index, num_sampling_time_common_channels, 0),\
	.res_table_size = DT_INST_PROP_LEN(index, resolutions),		\
	.res_table = DT_INST_PROP(index, resolutions),			\
};									\
									\
static struct adc_stm32_data adc_stm32_data_##index = {			\
	ADC_CONTEXT_INIT_TIMER(adc_stm32_data_##index, ctx),		\
	ADC_CONTEXT_INIT_LOCK(adc_stm32_data_##index, ctx),		\
	ADC_CONTEXT_INIT_SYNC(adc_stm32_data_##index, ctx),		\
	ADC_DMA_CHANNEL(index, PERIPHERAL, MEMORY)			\
};									\
									\
PM_DEVICE_DT_INST_DEFINE(index, adc_stm32_pm_action);			\
									\
DEVICE_DT_INST_DEFINE(index,						\
		    &adc_stm32_init, PM_DEVICE_DT_INST_GET(index),	\
		    &adc_stm32_data_##index, &adc_stm32_cfg_##index,	\
		    POST_KERNEL, CONFIG_ADC_INIT_PRIORITY,		\
		    &api_stm32_driver_api);

DT_INST_FOREACH_STATUS_OKAY(ADC_STM32_INIT)