Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/*
 * Copyright (c) 2022, Basalte bv
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT atmel_sam_adc

#include <soc.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/atmel_sam_pmc.h>

#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"

#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(adc_sam, CONFIG_ADC_LOG_LEVEL);

#define SAM_ADC_NUM_CHANNELS 16
#define SAM_ADC_TEMP_CHANNEL 15

struct adc_sam_config {
	Adc *regs;
	const struct atmel_sam_pmc_config clock_cfg;

	uint8_t prescaler;
	uint8_t startup_time;
	uint8_t settling_time;
	uint8_t tracking_time;

	const struct pinctrl_dev_config *pcfg;
	void (*config_func)(const struct device *dev);
};

struct adc_sam_data {
	struct adc_context ctx;
	const struct device *dev;

	/* Pointer to the buffer in the sequence. */
	uint16_t *buffer;

	/* Pointer to the beginning of a sample. Consider the number of
	 * channels in the sequence: this buffer changes by that amount
	 * so all the channels would get repeated.
	 */
	uint16_t *repeat_buffer;

	/* Number of active channels to fill buffer */
	uint8_t num_active_channels;
};

static uint8_t count_bits(uint32_t val)
{
	uint8_t res = 0;

	while (val) {
		res += val & 1U;
		val >>= 1;
	}

	return res;
}

static int adc_sam_channel_setup(const struct device *dev,
				 const struct adc_channel_cfg *channel_cfg)
{
	const struct adc_sam_config *const cfg = dev->config;
	Adc *const adc = cfg->regs;

	uint8_t channel_id = channel_cfg->channel_id;

	if (channel_cfg->differential) {
		if (channel_id != (channel_cfg->input_positive / 2U)
		    || channel_id != (channel_cfg->input_negative / 2U)) {
			LOG_ERR("Invalid ADC differential input for channel %u", channel_id);
			return -EINVAL;
		}
	} else {
		if (channel_id != channel_cfg->input_positive) {
			LOG_ERR("Invalid ADC single-ended input for channel %u", channel_id);
			return -EINVAL;
		}
	}

	if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
		LOG_ERR("Invalid ADC channel acquisition time");
		return -EINVAL;
	}

	if (channel_cfg->reference != ADC_REF_EXTERNAL0) {
		LOG_ERR("Invalid ADC channel reference (%d)", channel_cfg->reference);
		return -EINVAL;
	}

	/* Enable internal temperature sensor (channel 15 / single-ended) */
	if (channel_cfg->channel_id == SAM_ADC_TEMP_CHANNEL) {
		adc->ADC_ACR |= ADC_ACR_TSON;
	}

	/* Set channel mode, always on both inputs */
	if (channel_cfg->differential) {
		adc->ADC_COR |= (ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U);
	} else {
		adc->ADC_COR &= ~((ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U));
	}

	/* Reset current gain */
	adc->ADC_CGR &= ~(ADC_CGR_GAIN0_Msk << (channel_id * 2U));

	switch (channel_cfg->gain) {
	case ADC_GAIN_1_2:
		if (!channel_cfg->differential) {
			LOG_ERR("ADC 1/2x gain only allowed for differential channel");
			return -EINVAL;
		}
		/* NOP */
		break;
	case ADC_GAIN_1:
		adc->ADC_CGR |= ADC_CGR_GAIN0(1) << (channel_id * 2U);
		break;
	case ADC_GAIN_2:
		adc->ADC_CGR |= ADC_CGR_GAIN0(2) << (channel_id * 2U);
		break;
	case ADC_GAIN_4:
		if (channel_cfg->differential) {
			LOG_ERR("ADC 4x gain only allowed for single-ended channel");
			return -EINVAL;
		}
		adc->ADC_CGR |= ADC_CGR_GAIN0(3) << (channel_id * 2U);
		break;
	default:
		LOG_ERR("Invalid ADC channel gain (%d)", channel_cfg->gain);
		return -EINVAL;
	}

	return 0;
}

static void adc_sam_start_conversion(const struct device *dev)
{
	const struct adc_sam_config *const cfg = dev->config;
	Adc *const adc = cfg->regs;

	adc->ADC_CR = ADC_CR_START;
}

/**
 * This is only called once at the beginning of all the conversions,
 * all channels as a group.
 */
static void adc_context_start_sampling(struct adc_context *ctx)
{
	struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
	const struct adc_sam_config *const cfg = data->dev->config;
	Adc *const adc = cfg->regs;

	data->num_active_channels = count_bits(ctx->sequence.channels);

	/* Disable all */
	adc->ADC_CHDR = 0xffff;

	/* Enable selected */
	adc->ADC_CHER = ctx->sequence.channels;

	LOG_DBG("Starting conversion for %u channels", data->num_active_channels);

	adc_sam_start_conversion(data->dev);
}

static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat)
{
	struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);

	if (repeat) {
		data->buffer = data->repeat_buffer;
	}
}

static int check_buffer_size(const struct adc_sequence *sequence,
			     uint8_t active_channels)
{
	size_t needed_buffer_size = active_channels * sizeof(uint16_t);

	if (sequence->options) {
		needed_buffer_size *= (1 + sequence->options->extra_samplings);
	}

	if (sequence->buffer_size < needed_buffer_size) {
		LOG_ERR("Provided buffer is too small (%u/%u)",
				sequence->buffer_size, needed_buffer_size);
		return -ENOMEM;
	}

	return 0;
}

static int start_read(const struct device *dev,
		      const struct adc_sequence *sequence)
{
	struct adc_sam_data *data = dev->data;
	uint32_t channels = sequence->channels;
	int error;

	/* Signal an error if the channel selection is invalid (no channels or
	 * a non-existing one is selected).
	 */
	if (channels == 0U ||
	    (channels & (~0UL << SAM_ADC_NUM_CHANNELS))) {
		LOG_ERR("Invalid selection of channels");
		return -EINVAL;
	}

	if (sequence->oversampling != 0U) {
		LOG_ERR("Oversampling is not supported");
		return -EINVAL;
	}

	if (sequence->resolution != 12U) {
		LOG_ERR("ADC resolution %d is not valid", sequence->resolution);
		return -EINVAL;
	}

	data->num_active_channels = count_bits(channels);

	error = check_buffer_size(sequence, data->num_active_channels);
	if (error) {
		return error;
	}

	data->buffer = sequence->buffer;
	data->repeat_buffer = sequence->buffer;

	/* At this point we allow the scheduler to do other things while
	 * we wait for the conversions to complete. This is provided by the
	 * adc_context functions. However, the caller of this function is
	 * blocked until the results are in.
	 */
	adc_context_start_read(&data->ctx, sequence);

	return adc_context_wait_for_completion(&data->ctx);
}

static int adc_sam_read(const struct device *dev,
			const struct adc_sequence *sequence)
{
	struct adc_sam_data *data = dev->data;
	int error;

	adc_context_lock(&data->ctx, false, NULL);
	error = start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}

static void adc_sam_isr(const struct device *dev)
{
	const struct adc_sam_config *const cfg = dev->config;
	struct adc_sam_data *data = dev->data;
	Adc *const adc = cfg->regs;

	uint16_t result;

	if (adc->ADC_ISR & ADC_ISR_DRDY) {
		result = adc->ADC_LCDR & ADC_LCDR_LDATA_Msk;

		*data->buffer++ = result;
		data->num_active_channels--;

		if (data->num_active_channels == 0) {
			/* Called once all conversions have completed.*/
			adc_context_on_sampling_done(&data->ctx, dev);
		} else {
			adc_sam_start_conversion(dev);
		}
	}
}

static int adc_sam_init(const struct device *dev)
{
	const struct adc_sam_config *const cfg = dev->config;
	struct adc_sam_data *data = dev->data;
	Adc *const adc = cfg->regs;

	int ret;
	uint32_t frequency, conv_periods;

	/* Get peripheral clock frequency */
	ret = clock_control_get_rate(SAM_DT_PMC_CONTROLLER,
				     (clock_control_subsys_t)&cfg->clock_cfg,
				     &frequency);
	if (ret < 0) {
		LOG_ERR("Failed to get ADC peripheral clock rate (%d)", ret);
		return -ENODEV;
	}

	/* Calculate ADC clock frequency */
	frequency = frequency / 2U / (cfg->prescaler + 1U);
	if (frequency < 1000000U || frequency > 22000000U) {
		LOG_ERR("Invalid ADC clock frequency %d (1MHz < freq < 22Mhz)", frequency);
		return -EINVAL;
	}

	/* The number of ADC pulses for conversion  */
	conv_periods = MAX(20U, cfg->tracking_time + 6U);

	/* Calculate the sampling frequency */
	frequency /= conv_periods;

	/* Reset ADC controller */
	adc->ADC_CR = ADC_CR_SWRST;

	/* Reset Mode */
	adc->ADC_MR = 0U;

	/* Reset PDC transfer */
	adc->ADC_PTCR = ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS;
	adc->ADC_RCR = 0U;
	adc->ADC_RNCR = 0U;

	/* Set prescaler, timings and allow different analog settings for each channel */
	adc->ADC_MR = ADC_MR_PRESCAL(cfg->prescaler)
		    | ADC_MR_STARTUP(cfg->startup_time)
		    | ADC_MR_SETTLING(cfg->settling_time)
		    | ADC_MR_TRACKTIM(cfg->tracking_time)
		    | ADC_MR_TRANSFER(2U) /* Should be 2 to guarantee the optimal hold time. */
		    | ADC_MR_ANACH_ALLOWED;

	/**
	 * Set bias current control
	 * IBCTL = 00 is the required value for a sampling frequency below 500 kHz,
	 * and IBCTL = 01 for a sampling frequency between 500 kHz and 1 MHz.
	 */
	adc->ADC_ACR = ADC_ACR_IBCTL(frequency < 500000U ? 0U : 1U);

	/* Enable ADC clock in PMC */
	ret = clock_control_on(SAM_DT_PMC_CONTROLLER,
			       (clock_control_subsys_t)&cfg->clock_cfg);
	if (ret < 0) {
		LOG_ERR("Failed to enable ADC clock (%d)", ret);
		return -ENODEV;
	}

	ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
	if (ret < 0) {
		return ret;
	}

	cfg->config_func(dev);

	/* Enable data ready interrupt */
	adc->ADC_IER = ADC_IER_DRDY;

	data->dev = dev;

	adc_context_unlock_unconditionally(&data->ctx);

	return 0;
}

#ifdef CONFIG_ADC_ASYNC
static int adc_sam_read_async(const struct device *dev,
			      const struct adc_sequence *sequence,
			      struct k_poll_signal *async)
{
	struct adc_sam_data *data = dev->data;
	int error;

	adc_context_lock(&data->ctx, true, async);
	error = start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}
#endif

static const struct adc_driver_api adc_sam_api = {
	.channel_setup = adc_sam_channel_setup,
	.read = adc_sam_read,
#ifdef CONFIG_ADC_ASYNC
	.read_async = adc_sam_read_async,
#endif
};

#define ADC_SAM_DEVICE(n)						\
	PINCTRL_DT_INST_DEFINE(n);					\
	static void adc_sam_irq_config_##n(const struct device *dev)	\
	{								\
		IRQ_CONNECT(DT_INST_IRQN(n),				\
			    DT_INST_IRQ(n, priority),			\
			    adc_sam_isr,				\
			    DEVICE_DT_INST_GET(n), 0);			\
		irq_enable(DT_INST_IRQN(n));				\
	}								\
	static const struct adc_sam_config adc_sam_config_##n = {	\
		.regs = (Adc *)DT_INST_REG_ADDR(n),			\
		.clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n),		\
		.prescaler = DT_INST_PROP(n, prescaler),		\
		.startup_time = DT_INST_ENUM_IDX(n, startup_time),	\
		.settling_time = DT_INST_ENUM_IDX(n, settling_time),	\
		.tracking_time = DT_INST_ENUM_IDX(n, tracking_time),	\
		.config_func = &adc_sam_irq_config_##n,			\
		.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),		\
	};								\
	static struct adc_sam_data adc_sam_data_##n = {			\
		ADC_CONTEXT_INIT_TIMER(adc_sam_data_##n, ctx),		\
		ADC_CONTEXT_INIT_LOCK(adc_sam_data_##n, ctx),		\
		ADC_CONTEXT_INIT_SYNC(adc_sam_data_##n, ctx),		\
		.dev = DEVICE_DT_INST_GET(n),				\
	};								\
	DEVICE_DT_INST_DEFINE(n, adc_sam_init, NULL,			\
			      &adc_sam_data_##n,			\
			      &adc_sam_config_##n, POST_KERNEL,		\
			      CONFIG_ADC_INIT_PRIORITY,			\
			      &adc_sam_api);

DT_INST_FOREACH_STATUS_OKAY(ADC_SAM_DEVICE)