Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | /*
* Copyright (c) 2022, Basalte bv
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT atmel_sam_adc
#include <soc.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(adc_sam, CONFIG_ADC_LOG_LEVEL);
#define SAM_ADC_NUM_CHANNELS 16
#define SAM_ADC_TEMP_CHANNEL 15
struct adc_sam_config {
Adc *regs;
const struct atmel_sam_pmc_config clock_cfg;
uint8_t prescaler;
uint8_t startup_time;
uint8_t settling_time;
uint8_t tracking_time;
const struct pinctrl_dev_config *pcfg;
void (*config_func)(const struct device *dev);
};
struct adc_sam_data {
struct adc_context ctx;
const struct device *dev;
/* Pointer to the buffer in the sequence. */
uint16_t *buffer;
/* Pointer to the beginning of a sample. Consider the number of
* channels in the sequence: this buffer changes by that amount
* so all the channels would get repeated.
*/
uint16_t *repeat_buffer;
/* Number of active channels to fill buffer */
uint8_t num_active_channels;
};
static uint8_t count_bits(uint32_t val)
{
uint8_t res = 0;
while (val) {
res += val & 1U;
val >>= 1;
}
return res;
}
static int adc_sam_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct adc_sam_config *const cfg = dev->config;
Adc *const adc = cfg->regs;
uint8_t channel_id = channel_cfg->channel_id;
if (channel_cfg->differential) {
if (channel_id != (channel_cfg->input_positive / 2U)
|| channel_id != (channel_cfg->input_negative / 2U)) {
LOG_ERR("Invalid ADC differential input for channel %u", channel_id);
return -EINVAL;
}
} else {
if (channel_id != channel_cfg->input_positive) {
LOG_ERR("Invalid ADC single-ended input for channel %u", channel_id);
return -EINVAL;
}
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Invalid ADC channel acquisition time");
return -EINVAL;
}
if (channel_cfg->reference != ADC_REF_EXTERNAL0) {
LOG_ERR("Invalid ADC channel reference (%d)", channel_cfg->reference);
return -EINVAL;
}
/* Enable internal temperature sensor (channel 15 / single-ended) */
if (channel_cfg->channel_id == SAM_ADC_TEMP_CHANNEL) {
adc->ADC_ACR |= ADC_ACR_TSON;
}
/* Set channel mode, always on both inputs */
if (channel_cfg->differential) {
adc->ADC_COR |= (ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U);
} else {
adc->ADC_COR &= ~((ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U));
}
/* Reset current gain */
adc->ADC_CGR &= ~(ADC_CGR_GAIN0_Msk << (channel_id * 2U));
switch (channel_cfg->gain) {
case ADC_GAIN_1_2:
if (!channel_cfg->differential) {
LOG_ERR("ADC 1/2x gain only allowed for differential channel");
return -EINVAL;
}
/* NOP */
break;
case ADC_GAIN_1:
adc->ADC_CGR |= ADC_CGR_GAIN0(1) << (channel_id * 2U);
break;
case ADC_GAIN_2:
adc->ADC_CGR |= ADC_CGR_GAIN0(2) << (channel_id * 2U);
break;
case ADC_GAIN_4:
if (channel_cfg->differential) {
LOG_ERR("ADC 4x gain only allowed for single-ended channel");
return -EINVAL;
}
adc->ADC_CGR |= ADC_CGR_GAIN0(3) << (channel_id * 2U);
break;
default:
LOG_ERR("Invalid ADC channel gain (%d)", channel_cfg->gain);
return -EINVAL;
}
return 0;
}
static void adc_sam_start_conversion(const struct device *dev)
{
const struct adc_sam_config *const cfg = dev->config;
Adc *const adc = cfg->regs;
adc->ADC_CR = ADC_CR_START;
}
/**
* This is only called once at the beginning of all the conversions,
* all channels as a group.
*/
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
const struct adc_sam_config *const cfg = data->dev->config;
Adc *const adc = cfg->regs;
data->num_active_channels = count_bits(ctx->sequence.channels);
/* Disable all */
adc->ADC_CHDR = 0xffff;
/* Enable selected */
adc->ADC_CHER = ctx->sequence.channels;
LOG_DBG("Starting conversion for %u channels", data->num_active_channels);
adc_sam_start_conversion(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat)
{
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
if (repeat) {
data->buffer = data->repeat_buffer;
}
}
static int check_buffer_size(const struct adc_sequence *sequence,
uint8_t active_channels)
{
size_t needed_buffer_size = active_channels * sizeof(uint16_t);
if (sequence->options) {
needed_buffer_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed_buffer_size) {
LOG_ERR("Provided buffer is too small (%u/%u)",
sequence->buffer_size, needed_buffer_size);
return -ENOMEM;
}
return 0;
}
static int start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_sam_data *data = dev->data;
uint32_t channels = sequence->channels;
int error;
/* Signal an error if the channel selection is invalid (no channels or
* a non-existing one is selected).
*/
if (channels == 0U ||
(channels & (~0UL << SAM_ADC_NUM_CHANNELS))) {
LOG_ERR("Invalid selection of channels");
return -EINVAL;
}
if (sequence->oversampling != 0U) {
LOG_ERR("Oversampling is not supported");
return -EINVAL;
}
if (sequence->resolution != 12U) {
LOG_ERR("ADC resolution %d is not valid", sequence->resolution);
return -EINVAL;
}
data->num_active_channels = count_bits(channels);
error = check_buffer_size(sequence, data->num_active_channels);
if (error) {
return error;
}
data->buffer = sequence->buffer;
data->repeat_buffer = sequence->buffer;
/* At this point we allow the scheduler to do other things while
* we wait for the conversions to complete. This is provided by the
* adc_context functions. However, the caller of this function is
* blocked until the results are in.
*/
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int adc_sam_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_sam_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, false, NULL);
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
static void adc_sam_isr(const struct device *dev)
{
const struct adc_sam_config *const cfg = dev->config;
struct adc_sam_data *data = dev->data;
Adc *const adc = cfg->regs;
uint16_t result;
if (adc->ADC_ISR & ADC_ISR_DRDY) {
result = adc->ADC_LCDR & ADC_LCDR_LDATA_Msk;
*data->buffer++ = result;
data->num_active_channels--;
if (data->num_active_channels == 0) {
/* Called once all conversions have completed.*/
adc_context_on_sampling_done(&data->ctx, dev);
} else {
adc_sam_start_conversion(dev);
}
}
}
static int adc_sam_init(const struct device *dev)
{
const struct adc_sam_config *const cfg = dev->config;
struct adc_sam_data *data = dev->data;
Adc *const adc = cfg->regs;
int ret;
uint32_t frequency, conv_periods;
/* Get peripheral clock frequency */
ret = clock_control_get_rate(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&cfg->clock_cfg,
&frequency);
if (ret < 0) {
LOG_ERR("Failed to get ADC peripheral clock rate (%d)", ret);
return -ENODEV;
}
/* Calculate ADC clock frequency */
frequency = frequency / 2U / (cfg->prescaler + 1U);
if (frequency < 1000000U || frequency > 22000000U) {
LOG_ERR("Invalid ADC clock frequency %d (1MHz < freq < 22Mhz)", frequency);
return -EINVAL;
}
/* The number of ADC pulses for conversion */
conv_periods = MAX(20U, cfg->tracking_time + 6U);
/* Calculate the sampling frequency */
frequency /= conv_periods;
/* Reset ADC controller */
adc->ADC_CR = ADC_CR_SWRST;
/* Reset Mode */
adc->ADC_MR = 0U;
/* Reset PDC transfer */
adc->ADC_PTCR = ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS;
adc->ADC_RCR = 0U;
adc->ADC_RNCR = 0U;
/* Set prescaler, timings and allow different analog settings for each channel */
adc->ADC_MR = ADC_MR_PRESCAL(cfg->prescaler)
| ADC_MR_STARTUP(cfg->startup_time)
| ADC_MR_SETTLING(cfg->settling_time)
| ADC_MR_TRACKTIM(cfg->tracking_time)
| ADC_MR_TRANSFER(2U) /* Should be 2 to guarantee the optimal hold time. */
| ADC_MR_ANACH_ALLOWED;
/**
* Set bias current control
* IBCTL = 00 is the required value for a sampling frequency below 500 kHz,
* and IBCTL = 01 for a sampling frequency between 500 kHz and 1 MHz.
*/
adc->ADC_ACR = ADC_ACR_IBCTL(frequency < 500000U ? 0U : 1U);
/* Enable ADC clock in PMC */
ret = clock_control_on(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&cfg->clock_cfg);
if (ret < 0) {
LOG_ERR("Failed to enable ADC clock (%d)", ret);
return -ENODEV;
}
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
cfg->config_func(dev);
/* Enable data ready interrupt */
adc->ADC_IER = ADC_IER_DRDY;
data->dev = dev;
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
#ifdef CONFIG_ADC_ASYNC
static int adc_sam_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_sam_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, true, async);
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif
static const struct adc_driver_api adc_sam_api = {
.channel_setup = adc_sam_channel_setup,
.read = adc_sam_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_sam_read_async,
#endif
};
#define ADC_SAM_DEVICE(n) \
PINCTRL_DT_INST_DEFINE(n); \
static void adc_sam_irq_config_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
adc_sam_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
} \
static const struct adc_sam_config adc_sam_config_##n = { \
.regs = (Adc *)DT_INST_REG_ADDR(n), \
.clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n), \
.prescaler = DT_INST_PROP(n, prescaler), \
.startup_time = DT_INST_ENUM_IDX(n, startup_time), \
.settling_time = DT_INST_ENUM_IDX(n, settling_time), \
.tracking_time = DT_INST_ENUM_IDX(n, tracking_time), \
.config_func = &adc_sam_irq_config_##n, \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
}; \
static struct adc_sam_data adc_sam_data_##n = { \
ADC_CONTEXT_INIT_TIMER(adc_sam_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(adc_sam_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(adc_sam_data_##n, ctx), \
.dev = DEVICE_DT_INST_GET(n), \
}; \
DEVICE_DT_INST_DEFINE(n, adc_sam_init, NULL, \
&adc_sam_data_##n, \
&adc_sam_config_##n, POST_KERNEL, \
CONFIG_ADC_INIT_PRIORITY, \
&adc_sam_api);
DT_INST_FOREACH_STATUS_OKAY(ADC_SAM_DEVICE)
|