Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/*
 * Copyright 2023 NXP
 * Copyright (c) 2020 Toby Firth
 *
 * Based on adc_mcux_adc16.c and adc_mcux_adc12.c, which are:
 * Copyright (c) 2017-2018, NXP
 * Copyright (c) 2019 Vestas Wind Systems A/S
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT nxp_lpc_lpadc

#include <errno.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/sys/util.h>
#include <fsl_lpadc.h>
#include <zephyr/drivers/regulator.h>

#include <zephyr/drivers/pinctrl.h>

#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(nxp_mcux_lpadc);

/*
 * Currently, no instance of the ADC IP has more than
 * 8 channels present. Therefore, we treat channels
 * with an index 8 or higher as a side b channel, with
 * the channel index given by channel_num % 8
 */
#define CHANNELS_PER_SIDE 0x8

#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"


struct mcux_lpadc_config {
	ADC_Type *base;
	lpadc_reference_voltage_source_t voltage_ref;
	uint8_t power_level;
	uint32_t calibration_average;
	uint32_t offset_a;
	uint32_t offset_b;
	void (*irq_config_func)(const struct device *dev);
	const struct pinctrl_dev_config *pincfg;
	const struct device **ref_supplies;
};

struct mcux_lpadc_data {
	const struct device *dev;
	struct adc_context ctx;
	uint16_t *buffer;
	uint16_t *repeat_buffer;
	uint32_t channels;
	lpadc_conv_command_config_t cmd_config[CONFIG_LPADC_CHANNEL_COUNT];
};



static int mcux_lpadc_channel_setup(const struct device *dev,
				const struct adc_channel_cfg *channel_cfg)
{


	struct mcux_lpadc_data *data = dev->data;
	lpadc_conv_command_config_t *cmd;
	uint8_t channel_side;
	uint8_t channel_num;

	/* User may configure maximum number of active channels */
	if (channel_cfg->channel_id >= CONFIG_LPADC_CHANNEL_COUNT) {
		LOG_ERR("Channel %d is not valid", channel_cfg->channel_id);
		return -EINVAL;
	}

	if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
		LOG_ERR("Invalid channel acquisition time");
		return -EINVAL;
	}

	/* Select ADC CMD register to configure based off channel ID */
	cmd = &data->cmd_config[channel_cfg->channel_id];

	/* If bit 5 of input_positive is set, then channel side B is used */
	channel_side = 0x20 & channel_cfg->input_positive;
	/* Channel number is selected by lower 4 bits of input_positive */
	channel_num = ADC_CMDL_ADCH(channel_cfg->input_positive);

	LOG_DBG("Channel num: %u, channel side: %c", channel_num,
		channel_side == 0 ? 'A' : 'B');

	LPADC_GetDefaultConvCommandConfig(cmd);

	if (channel_cfg->differential) {
		/* Channel pairs must match in differential mode */
		if ((ADC_CMDL_ADCH(channel_cfg->input_positive)) !=
		   (ADC_CMDL_ADCH(channel_cfg->input_negative))) {
			return -ENOTSUP;
		}

#if defined(FSL_FEATURE_LPADC_HAS_CMDL_DIFF) && FSL_FEATURE_LPADC_HAS_CMDL_DIFF
		/* Check to see which channel is the positive input */
		if (channel_cfg->input_positive & 0x20) {
			/* Channel B is positive side */
			cmd->sampleChannelMode =
				kLPADC_SampleChannelDiffBothSideBA;
		} else {
			/* Channel A is positive side */
			cmd->sampleChannelMode =
				kLPADC_SampleChannelDiffBothSideAB;
		}
#else
		cmd->sampleChannelMode = kLPADC_SampleChannelDiffBothSide;
#endif
	} else if (channel_side != 0) {
		cmd->sampleChannelMode = kLPADC_SampleChannelSingleEndSideB;
	} else {
		/* Default value for sampleChannelMode is SideA */
	}
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_CSCALE) && FSL_FEATURE_LPADC_HAS_CMDL_CSCALE
	/*
	 * The true scaling factor used by the LPADC is 30/64, instead of
	 * 1/2. Select 1/2 as this is the closest scaling factor available
	 * in Zephyr.
	 */
	if (channel_cfg->gain == ADC_GAIN_1_2) {
		LOG_INF("Channel gain of 30/64 selected");
		cmd->sampleScaleMode = kLPADC_SamplePartScale;
	} else if (channel_cfg->gain == ADC_GAIN_1) {
		cmd->sampleScaleMode = kLPADC_SampleFullScale;
	} else {
		LOG_ERR("Invalid channel gain");
		return -EINVAL;
	}
#else
	if (channel_cfg->gain != ADC_GAIN_1) {
		LOG_ERR("Invalid channel gain");
		return -EINVAL;
	}
#endif

	if (channel_cfg->reference != ADC_REF_EXTERNAL0) {
		LOG_ERR("Invalid channel reference");
		return -EINVAL;
	}

	cmd->channelNumber = channel_num;
	return 0;
}

static int mcux_lpadc_start_read(const struct device *dev,
		 const struct adc_sequence *sequence)
{
	const struct mcux_lpadc_config *config = dev->config;
	struct mcux_lpadc_data *data = dev->data;
	lpadc_hardware_average_mode_t hardware_average_mode;
	uint8_t channel, last_enabled;
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_MODE) \
	&& FSL_FEATURE_LPADC_HAS_CMDL_MODE
	lpadc_conversion_resolution_mode_t resolution_mode;

	switch (sequence->resolution) {
	case 12:
	case 13:
		resolution_mode = kLPADC_ConversionResolutionStandard;
		break;
	case 16:
		resolution_mode = kLPADC_ConversionResolutionHigh;
		break;
	default:
		LOG_ERR("Unsupported resolution %d", sequence->resolution);
		return -ENOTSUP;
	}
#else
	/* If FSL_FEATURE_LPADC_HAS_CMDL_MODE is not defined
	   only 12/13 bit resolution is supported. */
	if (sequence->resolution != 12 && sequence->resolution != 13) {
		LOG_ERR("Unsupported resolution %d", sequence->resolution);
		return -ENOTSUP;
	}
#endif /* FSL_FEATURE_LPADC_HAS_CMDL_MODE */

	switch (sequence->oversampling) {
	case 0:
		hardware_average_mode = kLPADC_HardwareAverageCount1;
		break;
	case 1:
		hardware_average_mode = kLPADC_HardwareAverageCount2;
		break;
	case 2:
		hardware_average_mode = kLPADC_HardwareAverageCount4;
		break;
	case 3:
		hardware_average_mode = kLPADC_HardwareAverageCount8;
		break;
	case 4:
		hardware_average_mode = kLPADC_HardwareAverageCount16;
		break;
	case 5:
		hardware_average_mode = kLPADC_HardwareAverageCount32;
		break;
	case 6:
		hardware_average_mode = kLPADC_HardwareAverageCount64;
		break;
	case 7:
		hardware_average_mode = kLPADC_HardwareAverageCount128;
		break;
	default:
		LOG_ERR("Unsupported oversampling value %d",
			sequence->oversampling);
		return -ENOTSUP;
	}

	/*
	 * Now, look at the selected channels to determine which ADC channels
	 * we need to configure, and set those channels up.
	 *
	 * Since this ADC supports chaining channels in hardware, we will
	 * start with the highest channel ID and work downwards, chaining
	 * channels as we go.
	 */
	channel = CONFIG_LPADC_CHANNEL_COUNT;
	last_enabled = 0;
	while (channel-- > 0) {
		if (sequence->channels & BIT(channel)) {
			/* Setup this channel command */
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_MODE) && FSL_FEATURE_LPADC_HAS_CMDL_MODE
			data->cmd_config[channel].conversionResolutionMode =
				resolution_mode;
#endif
			data->cmd_config[channel].hardwareAverageMode =
				hardware_average_mode;
			if (last_enabled) {
				/* Chain channel */
				data->cmd_config[channel].chainedNextCommandNumber =
					last_enabled + 1;
				LOG_DBG("Chaining channel %u to %u",
					channel, last_enabled);
			} else {
				/* End of chain */
				data->cmd_config[channel].chainedNextCommandNumber = 0;
			}
			last_enabled = channel;
			LPADC_SetConvCommandConfig(config->base,
				channel + 1, &data->cmd_config[channel]);
		}
	};

	data->buffer = sequence->buffer;

	adc_context_start_read(&data->ctx, sequence);
	int error = adc_context_wait_for_completion(&data->ctx);

	return error;
}

static int mcux_lpadc_read_async(const struct device *dev,
			const struct adc_sequence *sequence,
			struct k_poll_signal *async)
{
	struct mcux_lpadc_data *data = dev->data;
	int error;

	adc_context_lock(&data->ctx, async ? true : false, async);
	error = mcux_lpadc_start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}

static int mcux_lpadc_read(const struct device *dev,
		   const struct adc_sequence *sequence)
{
	return mcux_lpadc_read_async(dev, sequence, NULL);
}

static void mcux_lpadc_start_channel(const struct device *dev)
{
	const struct mcux_lpadc_config *config = dev->config;
	struct mcux_lpadc_data *data = dev->data;
	lpadc_conv_trigger_config_t trigger_config;
	uint8_t first_channel;

	first_channel = find_lsb_set(data->channels) - 1;

	LOG_DBG("Starting channel %d, input %d", first_channel,
		data->cmd_config[first_channel].channelNumber);

	LPADC_GetDefaultConvTriggerConfig(&trigger_config);

	trigger_config.targetCommandId = first_channel + 1;

	/* configures trigger0. */
	LPADC_SetConvTriggerConfig(config->base, 0, &trigger_config);

	/* 1 is trigger0 mask. */
	LPADC_DoSoftwareTrigger(config->base, 1);
}

static void adc_context_start_sampling(struct adc_context *ctx)
{
	struct mcux_lpadc_data *data =
	CONTAINER_OF(ctx, struct mcux_lpadc_data, ctx);

	data->channels = ctx->sequence.channels;
	data->repeat_buffer = data->buffer;

	mcux_lpadc_start_channel(data->dev);
}

static void adc_context_update_buffer_pointer(struct adc_context *ctx,
			  bool repeat_sampling)
{
	struct mcux_lpadc_data *data =
		CONTAINER_OF(ctx, struct mcux_lpadc_data, ctx);

	if (repeat_sampling) {
		data->buffer = data->repeat_buffer;
	}
}

static void mcux_lpadc_isr(const struct device *dev)
{
	const struct mcux_lpadc_config *config = dev->config;
	struct mcux_lpadc_data *data = dev->data;
	ADC_Type *base = config->base;

	lpadc_conv_result_t conv_result;
	lpadc_sample_channel_mode_t conv_mode;
	int16_t result;
	uint16_t channel;

#if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) \
	&& (FSL_FEATURE_LPADC_FIFO_COUNT == 2U))
	LPADC_GetConvResult(base, &conv_result, 0U);
#else
	LPADC_GetConvResult(base, &conv_result);
#endif /* FSL_FEATURE_LPADC_FIFO_COUNT */

	channel = conv_result.commandIdSource - 1;
	LOG_DBG("Finished channel %d. Raw result is 0x%04x",
		channel, conv_result.convValue);
	/*
	 * For 12 or 13 bit resolution the the LSBs will be 0, so a bit shift
	 * is needed. For differential modes, the ADC conversion to
	 * millivolts expects to use a shift one less than the resolution.
	 *
	 * For 16 bit modes, the adc value can be left untouched. ADC
	 * API should treat the value as signed if the channel is
	 * in differential mode
	 */
	conv_mode = data->cmd_config[channel].sampleChannelMode;
	if (data->ctx.sequence.resolution < 15) {
		result = ((conv_result.convValue >> 3) & 0xFFF);
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_DIFF) && FSL_FEATURE_LPADC_HAS_CMDL_DIFF
		if (conv_mode == kLPADC_SampleChannelDiffBothSideAB ||
		    conv_mode == kLPADC_SampleChannelDiffBothSideBA) {
#else
		if (conv_mode == kLPADC_SampleChannelDiffBothSide) {
#endif
			if ((conv_result.convValue & 0x8000)) {
				/* 13 bit mode, MSB is sign bit. (2's complement) */
				result -= 0x1000;
			}
		}
		*data->buffer++ = result;
	} else {
		*data->buffer++ = conv_result.convValue;
	}


	data->channels &= ~BIT(channel);

	/*
	 * Hardware will automatically continue sampling, so no need
	 * to issue new trigger
	 */
	if (data->channels == 0) {
		adc_context_on_sampling_done(&data->ctx, dev);
	}
}

static int mcux_lpadc_init(const struct device *dev)
{
	const struct mcux_lpadc_config *config = dev->config;
	struct mcux_lpadc_data *data = dev->data;
	ADC_Type *base = config->base;
	lpadc_config_t adc_config;
	int err;

	err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
	if (err) {
		return err;
	}

	/* Enable necessary regulators */
	const struct device **regulator = config->ref_supplies;

	while (*regulator != NULL) {
		err = regulator_enable(*(regulator++));
		if (err) {
			return err;
		}
	}

	LPADC_GetDefaultConfig(&adc_config);

	adc_config.enableAnalogPreliminary = true;
	adc_config.referenceVoltageSource = config->voltage_ref;

#if defined(FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS) \
	&& FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS
	adc_config.conversionAverageMode = config->calibration_average;
#endif /* FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS */

	adc_config.powerLevelMode = config->power_level;

	LPADC_Init(base, &adc_config);

	/* Do ADC calibration. */
#if defined(FSL_FEATURE_LPADC_HAS_CTRL_CALOFS) \
	&& FSL_FEATURE_LPADC_HAS_CTRL_CALOFS
#if defined(FSL_FEATURE_LPADC_HAS_OFSTRIM) \
	&& FSL_FEATURE_LPADC_HAS_OFSTRIM
	/* Request offset calibration. */
#if defined(CONFIG_LPADC_DO_OFFSET_CALIBRATION) \
	&& CONFIG_LPADC_DO_OFFSET_CALIBRATION
	LPADC_DoOffsetCalibration(base);
#else
	LPADC_SetOffsetValue(base,
			config->offset_a,
			config->offset_b);
#endif  /* DEMO_LPADC_DO_OFFSET_CALIBRATION */
#endif  /* FSL_FEATURE_LPADC_HAS_OFSTRIM */
	/* Request gain calibration. */
	LPADC_DoAutoCalibration(base);
#endif /* FSL_FEATURE_LPADC_HAS_CTRL_CALOFS */

#if (defined(FSL_FEATURE_LPADC_HAS_CFG_CALOFS) \
	&& FSL_FEATURE_LPADC_HAS_CFG_CALOFS)
	/* Do auto calibration. */
	LPADC_DoAutoCalibration(base);
#endif /* FSL_FEATURE_LPADC_HAS_CFG_CALOFS */

/* Enable the watermark interrupt. */
#if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) \
	&& (FSL_FEATURE_LPADC_FIFO_COUNT == 2U))
	LPADC_EnableInterrupts(base, kLPADC_FIFO0WatermarkInterruptEnable);
#else
	LPADC_EnableInterrupts(base, kLPADC_FIFOWatermarkInterruptEnable);
#endif /* FSL_FEATURE_LPADC_FIFO_COUNT */

	config->irq_config_func(dev);
	data->dev = dev;

	adc_context_unlock_unconditionally(&data->ctx);

	return 0;
}

static const struct adc_driver_api mcux_lpadc_driver_api = {
	.channel_setup = mcux_lpadc_channel_setup,
	.read = mcux_lpadc_read,
#ifdef CONFIG_ADC_ASYNC
	.read_async = mcux_lpadc_read_async,
#endif
};

#define LPADC_REGULATOR_DEPENDENCY(node_id, prop, idx) \
	DEVICE_DT_GET(DT_PHANDLE_BY_IDX(node_id, prop, idx)),

#define LPADC_REGULATORS_DEFINE(inst)				\
	static const struct device *mcux_lpadc_ref_supplies_##inst[] = {	\
		COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, nxp_reference_supply),	\
			(DT_INST_FOREACH_PROP_ELEM(inst, nxp_reference_supply,	\
				LPADC_REGULATOR_DEPENDENCY)), ()) NULL};

#define LPADC_MCUX_INIT(n)						\
	LPADC_REGULATORS_DEFINE(n)						\
									\
	static void mcux_lpadc_config_func_##n(const struct device *dev);	\
									\
	PINCTRL_DT_INST_DEFINE(n);						\
	static const struct mcux_lpadc_config mcux_lpadc_config_##n = {	\
		.base = (ADC_Type *)DT_INST_REG_ADDR(n),	\
		.voltage_ref =	DT_INST_PROP(n, voltage_ref),	\
		.calibration_average = DT_INST_ENUM_IDX_OR(n, calibration_average, 0),	\
		.power_level = DT_INST_PROP(n, power_level),	\
		.offset_a = DT_INST_PROP(n, offset_value_a),	\
		.offset_b = DT_INST_PROP(n, offset_value_b),	\
		.irq_config_func = mcux_lpadc_config_func_##n,				\
		.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),			\
		.ref_supplies = mcux_lpadc_ref_supplies_##n, \
	};									\
	static struct mcux_lpadc_data mcux_lpadc_data_##n = {	\
		ADC_CONTEXT_INIT_TIMER(mcux_lpadc_data_##n, ctx),	\
		ADC_CONTEXT_INIT_LOCK(mcux_lpadc_data_##n, ctx),	\
		ADC_CONTEXT_INIT_SYNC(mcux_lpadc_data_##n, ctx),	\
	};														\
										\
	DEVICE_DT_INST_DEFINE(n,						\
		&mcux_lpadc_init, NULL, &mcux_lpadc_data_##n,			\
		&mcux_lpadc_config_##n, POST_KERNEL,				\
		CONFIG_ADC_INIT_PRIORITY,					\
		&mcux_lpadc_driver_api);							\
										\
	static void mcux_lpadc_config_func_##n(const struct device *dev)	\
	{									\
		IRQ_CONNECT(DT_INST_IRQN(n),					\
			DT_INST_IRQ(n, priority), mcux_lpadc_isr,	\
			DEVICE_DT_INST_GET(n), 0);				\
										\
		irq_enable(DT_INST_IRQN(n));					\
	}

DT_INST_FOREACH_STATUS_OKAY(LPADC_MCUX_INIT)