/*
* Copyright (c) 2019 Intel Corporation.
* Copyright (c) 2023 Microchip Technology Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_xec_adc
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_mchp_xec);
#include <zephyr/drivers/adc.h>
#ifdef CONFIG_SOC_SERIES_MEC172X
#include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h>
#endif
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <soc.h>
#include <errno.h>
#include <zephyr/irq.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#define XEC_ADC_VREF_ANALOG 3300
/* ADC Control Register */
#define XEC_ADC_CTRL_SINGLE_DONE_STATUS BIT(7)
#define XEC_ADC_CTRL_REPEAT_DONE_STATUS BIT(6)
#define XER_ADC_CTRL_SOFT_RESET BIT(4)
#define XEC_ADC_CTRL_POWER_SAVER_DIS BIT(3)
#define XEC_ADC_CTRL_START_REPEAT BIT(2)
#define XEC_ADC_CTRL_START_SINGLE BIT(1)
#define XEC_ADC_CTRL_ACTIVATE BIT(0)
/* ADC implements two interrupt signals:
* One-shot(single) conversion of a set of channels
* Repeat conversion of a set of channels
* Channel sets for single and repeat may be different.
*/
enum adc_pm_policy_state_flag {
ADC_PM_POLICY_STATE_SINGLE_FLAG,
ADC_PM_POLICY_STATE_REPEAT_FLAG,
ADC_PM_POLICY_STATE_FLAG_COUNT,
};
struct adc_xec_regs {
uint32_t control_reg;
uint32_t delay_reg;
uint32_t status_reg;
uint32_t single_reg;
uint32_t repeat_reg;
uint32_t channel_read_reg[8];
uint32_t unused[18];
uint32_t config_reg;
uint32_t vref_channel_reg;
uint32_t vref_control_reg;
uint32_t sar_control_reg;
};
struct adc_xec_config {
struct adc_xec_regs *regs;
uint8_t girq_single;
uint8_t girq_single_pos;
uint8_t girq_repeat;
uint8_t girq_repeat_pos;
uint8_t pcr_regidx;
uint8_t pcr_bitpos;
const struct pinctrl_dev_config *pcfg;
};
struct adc_xec_data {
struct adc_context ctx;
const struct device *adc_dev;
uint16_t *buffer;
uint16_t *repeat_buffer;
#ifdef CONFIG_PM_DEVICE
ATOMIC_DEFINE(pm_policy_state_flag, ADC_PM_POLICY_STATE_FLAG_COUNT);
#endif
};
#ifdef CONFIG_PM_DEVICE
static void adc_xec_pm_policy_state_lock_get(struct adc_xec_data *data,
enum adc_pm_policy_state_flag flag)
{
if (atomic_test_and_set_bit(data->pm_policy_state_flag, flag) == 0) {
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
}
}
static void adc_xec_pm_policy_state_lock_put(struct adc_xec_data *data,
enum adc_pm_policy_state_flag flag)
{
if (atomic_test_and_clear_bit(data->pm_policy_state_flag, flag) == 1) {
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
}
}
#endif
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_xec_data *data = CONTAINER_OF(ctx, struct adc_xec_data, ctx);
const struct device *adc_dev = data->adc_dev;
const struct adc_xec_config * const devcfg = adc_dev->config;
struct adc_xec_regs *regs = devcfg->regs;
data->repeat_buffer = data->buffer;
#ifdef CONFIG_PM_DEVICE
adc_xec_pm_policy_state_lock_get(data, ADC_PM_POLICY_STATE_SINGLE_FLAG);
#endif
regs->single_reg = ctx->sequence.channels;
regs->control_reg |= XEC_ADC_CTRL_START_SINGLE;
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct adc_xec_data *data = CONTAINER_OF(ctx, struct adc_xec_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static int adc_xec_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct adc_xec_config *const cfg = dev->config;
struct adc_xec_regs * const regs = cfg->regs;
uint32_t areg;
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
return -EINVAL;
}
if (channel_cfg->channel_id >= MCHP_ADC_MAX_CHAN) {
return -EINVAL;
}
if (channel_cfg->gain != ADC_GAIN_1) {
return -EINVAL;
}
/* Setup VREF */
areg = regs->vref_channel_reg;
areg &= ~MCHP_ADC_CH_VREF_SEL_MASK(channel_cfg->channel_id);
if (channel_cfg->reference == ADC_REF_INTERNAL) {
areg |= MCHP_ADC_CH_VREF_SEL_PAD(channel_cfg->channel_id);
} else if (channel_cfg->reference == ADC_REF_EXTERNAL0) {
areg |= MCHP_ADC_CH_VREF_SEL_GPIO(channel_cfg->channel_id);
} else {
return -EINVAL;
}
regs->vref_channel_reg = areg;
/* Differential mode? */
areg = regs->sar_control_reg;
areg &= ~BIT(MCHP_ADC_SAR_CTRL_SELDIFF_POS);
if (channel_cfg->differential != 0) {
areg |= MCHP_ADC_SAR_CTRL_SELDIFF_EN;
}
regs->sar_control_reg = areg;
return 0;
}
static bool adc_xec_validate_buffer_size(const struct adc_sequence *sequence)
{
int chan_count = 0;
size_t buff_need;
uint32_t chan_mask;
for (chan_mask = 0x80; chan_mask != 0; chan_mask >>= 1) {
if (chan_mask & sequence->channels) {
chan_count++;
}
}
buff_need = chan_count * sizeof(uint16_t);
if (sequence->options) {
buff_need *= 1 + sequence->options->extra_samplings;
}
if (buff_need > sequence->buffer_size) {
return false;
}
return true;
}
static int adc_xec_start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct adc_xec_config *const cfg = dev->config;
struct adc_xec_regs * const regs = cfg->regs;
struct adc_xec_data * const data = dev->data;
uint32_t sar_ctrl;
if (sequence->channels & ~BIT_MASK(MCHP_ADC_MAX_CHAN)) {
LOG_ERR("Incorrect channels, bitmask 0x%x", sequence->channels);
return -EINVAL;
}
if (sequence->channels == 0UL) {
LOG_ERR("No channel selected");
return -EINVAL;
}
if (!adc_xec_validate_buffer_size(sequence)) {
LOG_ERR("Incorrect buffer size");
return -ENOMEM;
}
/* Setup ADC resolution */
sar_ctrl = regs->sar_control_reg;
sar_ctrl &= ~(MCHP_ADC_SAR_CTRL_RES_MASK |
(1 << MCHP_ADC_SAR_CTRL_SHIFTD_POS));
if (sequence->resolution == 12) {
sar_ctrl |= MCHP_ADC_SAR_CTRL_RES_12_BITS;
} else if (sequence->resolution == 10) {
sar_ctrl |= MCHP_ADC_SAR_CTRL_RES_10_BITS;
sar_ctrl |= MCHP_ADC_SAR_CTRL_SHIFTD_EN;
} else {
return -EINVAL;
}
regs->sar_control_reg = sar_ctrl;
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int adc_xec_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_xec_data * const data = dev->data;
int error;
adc_context_lock(&data->ctx, false, NULL);
error = adc_xec_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#ifdef CONFIG_ADC_ASYNC
static int adc_xec_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_xec_data * const data = dev->data;
int error;
adc_context_lock(&data->ctx, true, async);
error = adc_xec_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif /* CONFIG_ADC_ASYNC */
static void xec_adc_get_sample(const struct device *dev)
{
const struct adc_xec_config *const cfg = dev->config;
struct adc_xec_regs * const regs = cfg->regs;
struct adc_xec_data * const data = dev->data;
uint32_t idx;
uint32_t channels = regs->status_reg;
uint32_t ch_status = channels;
uint32_t bit;
/*
* Using the enabled channel bit set, from
* lowest channel number to highest, find out
* which channel is enabled and copy the ADC
* values from hardware registers to the data
* buffer.
*/
bit = find_lsb_set(channels);
while (bit != 0) {
idx = bit - 1;
*data->buffer = (uint16_t)regs->channel_read_reg[idx];
data->buffer++;
channels &= ~BIT(idx);
bit = find_lsb_set(channels);
}
/* Clear the status register */
regs->status_reg = ch_status;
}
#ifdef CONFIG_SOC_SERIES_MEC172X
static inline void adc_xec_girq_clr(uint8_t girq_idx, uint8_t girq_posn)
{
mchp_xec_ecia_girq_src_clr(girq_idx, girq_posn);
}
static inline void adc_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn)
{
mchp_xec_ecia_girq_src_en(girq_idx, girq_posn);
}
static inline void adc_xec_girq_dis(uint8_t girq_idx, uint8_t girq_posn)
{
mchp_xec_ecia_girq_src_dis(girq_idx, girq_posn);
}
#else
static inline void adc_xec_girq_clr(uint8_t girq_idx, uint8_t girq_posn)
{
MCHP_GIRQ_SRC(girq_idx) = BIT(girq_posn);
}
static inline void adc_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn)
{
MCHP_GIRQ_ENSET(girq_idx) = BIT(girq_posn);
}
static inline void adc_xec_girq_dis(uint8_t girq_idx, uint8_t girq_posn)
{
MCHP_GIRQ_ENCLR(girq_idx) = MCHP_KBC_IBF_GIRQ;
}
#endif
static void adc_xec_single_isr(const struct device *dev)
{
const struct adc_xec_config *const cfg = dev->config;
struct adc_xec_regs * const regs = cfg->regs;
struct adc_xec_data * const data = dev->data;
uint32_t ctrl;
/* Clear START_SINGLE bit and clear SINGLE_DONE_STATUS */
ctrl = regs->control_reg;
ctrl &= ~XEC_ADC_CTRL_START_SINGLE;
ctrl |= XEC_ADC_CTRL_SINGLE_DONE_STATUS;
regs->control_reg = ctrl;
/* Also clear GIRQ source status bit */
adc_xec_girq_clr(cfg->girq_single, cfg->girq_single_pos);
xec_adc_get_sample(dev);
#ifdef CONFIG_PM_DEVICE
adc_xec_pm_policy_state_lock_put(data, ADC_PM_POLICY_STATE_SINGLE_FLAG);
#endif
adc_context_on_sampling_done(&data->ctx, dev);
LOG_DBG("ADC ISR triggered.");
}
#ifdef CONFIG_PM_DEVICE
static int adc_xec_pm_action(const struct device *dev, enum pm_device_action action)
{
const struct adc_xec_config *const devcfg = dev->config;
struct adc_xec_regs * const adc_regs = devcfg->regs;
int ret;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT);
/* ADC activate */
adc_regs->control_reg |= XEC_ADC_CTRL_ACTIVATE;
break;
case PM_DEVICE_ACTION_SUSPEND:
/* ADC deactivate */
adc_regs->control_reg &= ~(XEC_ADC_CTRL_ACTIVATE);
/* If application does not want to turn off ADC pins it will
* not define pinctrl-1 for this node.
*/
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP);
if (ret == -ENOENT) { /* pinctrl-1 does not exist. */
ret = 0;
}
break;
default:
ret = -ENOTSUP;
}
return ret;
}
#endif /* CONFIG_PM_DEVICE */
struct adc_driver_api adc_xec_api = {
.channel_setup = adc_xec_channel_setup,
.read = adc_xec_read,
#if defined(CONFIG_ADC_ASYNC)
.read_async = adc_xec_read_async,
#endif
.ref_internal = XEC_ADC_VREF_ANALOG,
};
/* ADC Config Register */
#define XEC_ADC_CFG_CLK_VAL(clk_time) ( \
(clk_time << MCHP_ADC_CFG_CLK_LO_TIME_POS) | \
(clk_time << MCHP_ADC_CFG_CLK_HI_TIME_POS))
static int adc_xec_init(const struct device *dev)
{
const struct adc_xec_config *const cfg = dev->config;
struct adc_xec_regs * const regs = cfg->regs;
struct adc_xec_data * const data = dev->data;
int ret;
data->adc_dev = dev;
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret != 0) {
LOG_ERR("XEC ADC V2 pinctrl setup failed (%d)", ret);
return ret;
}
regs->config_reg = XEC_ADC_CFG_CLK_VAL(DT_INST_PROP(0, clktime));
regs->control_reg = XEC_ADC_CTRL_ACTIVATE
| XEC_ADC_CTRL_POWER_SAVER_DIS
| XEC_ADC_CTRL_SINGLE_DONE_STATUS
| XEC_ADC_CTRL_REPEAT_DONE_STATUS;
adc_xec_girq_dis(cfg->girq_repeat, cfg->girq_repeat_pos);
adc_xec_girq_clr(cfg->girq_repeat, cfg->girq_repeat_pos);
adc_xec_girq_dis(cfg->girq_single, cfg->girq_single_pos);
adc_xec_girq_clr(cfg->girq_single, cfg->girq_single_pos);
adc_xec_girq_en(cfg->girq_single, cfg->girq_single_pos);
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
adc_xec_single_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQN(0));
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
PINCTRL_DT_INST_DEFINE(0);
static struct adc_xec_config adc_xec_dev_cfg_0 = {
.regs = (struct adc_xec_regs *)(DT_INST_REG_ADDR(0)),
.girq_single = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 0)),
.girq_single_pos = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 1)),
.girq_repeat = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 2)),
.girq_repeat_pos = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 3)),
.pcr_regidx = (uint8_t)(DT_INST_PROP_BY_IDX(0, pcrs, 0)),
.pcr_bitpos = (uint8_t)(DT_INST_PROP_BY_IDX(0, pcrs, 1)),
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
};
static struct adc_xec_data adc_xec_dev_data_0 = {
ADC_CONTEXT_INIT_TIMER(adc_xec_dev_data_0, ctx),
ADC_CONTEXT_INIT_LOCK(adc_xec_dev_data_0, ctx),
ADC_CONTEXT_INIT_SYNC(adc_xec_dev_data_0, ctx),
};
PM_DEVICE_DT_INST_DEFINE(0, adc_xec_pm_action);
DEVICE_DT_INST_DEFINE(0, adc_xec_init, PM_DEVICE_DT_INST_GET(0),
&adc_xec_dev_data_0, &adc_xec_dev_cfg_0,
PRE_KERNEL_1, CONFIG_ADC_INIT_PRIORITY,
&adc_xec_api);