Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/*
 * Copyright (c) 2019 Intel Corporation.
 * Copyright (c) 2023 Microchip Technology Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT microchip_xec_adc

#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_mchp_xec);

#include <zephyr/drivers/adc.h>
#ifdef CONFIG_SOC_SERIES_MEC172X
#include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h>
#endif
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <soc.h>
#include <errno.h>
#include <zephyr/irq.h>

#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"

#define XEC_ADC_VREF_ANALOG 3300

/* ADC Control Register */
#define XEC_ADC_CTRL_SINGLE_DONE_STATUS		BIT(7)
#define XEC_ADC_CTRL_REPEAT_DONE_STATUS		BIT(6)
#define XER_ADC_CTRL_SOFT_RESET			BIT(4)
#define XEC_ADC_CTRL_POWER_SAVER_DIS		BIT(3)
#define XEC_ADC_CTRL_START_REPEAT		BIT(2)
#define XEC_ADC_CTRL_START_SINGLE		BIT(1)
#define XEC_ADC_CTRL_ACTIVATE			BIT(0)

/* ADC implements two interrupt signals:
 * One-shot(single) conversion of a set of channels
 * Repeat conversion of a set of channels
 * Channel sets for single and repeat may be different.
 */
enum adc_pm_policy_state_flag {
	ADC_PM_POLICY_STATE_SINGLE_FLAG,
	ADC_PM_POLICY_STATE_REPEAT_FLAG,
	ADC_PM_POLICY_STATE_FLAG_COUNT,
};


struct adc_xec_regs {
	uint32_t control_reg;
	uint32_t delay_reg;
	uint32_t status_reg;
	uint32_t single_reg;
	uint32_t repeat_reg;
	uint32_t channel_read_reg[8];
	uint32_t unused[18];
	uint32_t config_reg;
	uint32_t vref_channel_reg;
	uint32_t vref_control_reg;
	uint32_t sar_control_reg;
};

struct adc_xec_config {
	struct adc_xec_regs *regs;

	uint8_t girq_single;
	uint8_t girq_single_pos;
	uint8_t girq_repeat;
	uint8_t girq_repeat_pos;
	uint8_t pcr_regidx;
	uint8_t pcr_bitpos;
	const struct pinctrl_dev_config *pcfg;
};

struct adc_xec_data {
	struct adc_context ctx;
	const struct device *adc_dev;
	uint16_t *buffer;
	uint16_t *repeat_buffer;
#ifdef CONFIG_PM_DEVICE
	ATOMIC_DEFINE(pm_policy_state_flag, ADC_PM_POLICY_STATE_FLAG_COUNT);
#endif
};

#ifdef CONFIG_PM_DEVICE
static void adc_xec_pm_policy_state_lock_get(struct adc_xec_data *data,
					       enum adc_pm_policy_state_flag flag)
{
	if (atomic_test_and_set_bit(data->pm_policy_state_flag, flag) == 0) {
		pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
	}
}

static void adc_xec_pm_policy_state_lock_put(struct adc_xec_data *data,
					    enum adc_pm_policy_state_flag flag)
{
	if (atomic_test_and_clear_bit(data->pm_policy_state_flag, flag) == 1) {
		pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
	}
}
#endif

static void adc_context_start_sampling(struct adc_context *ctx)
{
	struct adc_xec_data *data = CONTAINER_OF(ctx, struct adc_xec_data, ctx);
	const struct device *adc_dev = data->adc_dev;
	const struct adc_xec_config * const devcfg = adc_dev->config;
	struct adc_xec_regs *regs = devcfg->regs;

	data->repeat_buffer = data->buffer;

#ifdef CONFIG_PM_DEVICE
	adc_xec_pm_policy_state_lock_get(data, ADC_PM_POLICY_STATE_SINGLE_FLAG);
#endif
	regs->single_reg = ctx->sequence.channels;
	regs->control_reg |= XEC_ADC_CTRL_START_SINGLE;
}

static void adc_context_update_buffer_pointer(struct adc_context *ctx,
					      bool repeat_sampling)
{
	struct adc_xec_data *data = CONTAINER_OF(ctx, struct adc_xec_data, ctx);

	if (repeat_sampling) {
		data->buffer = data->repeat_buffer;
	}
}

static int adc_xec_channel_setup(const struct device *dev,
				 const struct adc_channel_cfg *channel_cfg)
{
	const struct adc_xec_config *const cfg = dev->config;
	struct adc_xec_regs * const regs = cfg->regs;
	uint32_t areg;

	if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
		return -EINVAL;
	}

	if (channel_cfg->channel_id >= MCHP_ADC_MAX_CHAN) {
		return -EINVAL;
	}

	if (channel_cfg->gain != ADC_GAIN_1) {
		return -EINVAL;
	}

	/* Setup VREF */
	areg = regs->vref_channel_reg;
	areg &= ~MCHP_ADC_CH_VREF_SEL_MASK(channel_cfg->channel_id);

	if (channel_cfg->reference == ADC_REF_INTERNAL) {
		areg |= MCHP_ADC_CH_VREF_SEL_PAD(channel_cfg->channel_id);
	} else if (channel_cfg->reference == ADC_REF_EXTERNAL0) {
		areg |= MCHP_ADC_CH_VREF_SEL_GPIO(channel_cfg->channel_id);
	} else {
		return -EINVAL;
	}

	regs->vref_channel_reg = areg;

	/* Differential mode? */
	areg = regs->sar_control_reg;
	areg &= ~BIT(MCHP_ADC_SAR_CTRL_SELDIFF_POS);
	if (channel_cfg->differential != 0) {
		areg |= MCHP_ADC_SAR_CTRL_SELDIFF_EN;
	}
	regs->sar_control_reg = areg;

	return 0;
}

static bool adc_xec_validate_buffer_size(const struct adc_sequence *sequence)
{
	int chan_count = 0;
	size_t buff_need;
	uint32_t chan_mask;

	for (chan_mask = 0x80; chan_mask != 0; chan_mask >>= 1) {
		if (chan_mask & sequence->channels) {
			chan_count++;
		}
	}

	buff_need = chan_count * sizeof(uint16_t);

	if (sequence->options) {
		buff_need *= 1 + sequence->options->extra_samplings;
	}

	if (buff_need > sequence->buffer_size) {
		return false;
	}

	return true;
}

static int adc_xec_start_read(const struct device *dev,
			      const struct adc_sequence *sequence)
{
	const struct adc_xec_config *const cfg = dev->config;
	struct adc_xec_regs * const regs = cfg->regs;
	struct adc_xec_data * const data = dev->data;
	uint32_t sar_ctrl;

	if (sequence->channels & ~BIT_MASK(MCHP_ADC_MAX_CHAN)) {
		LOG_ERR("Incorrect channels, bitmask 0x%x", sequence->channels);
		return -EINVAL;
	}

	if (sequence->channels == 0UL) {
		LOG_ERR("No channel selected");
		return -EINVAL;
	}

	if (!adc_xec_validate_buffer_size(sequence)) {
		LOG_ERR("Incorrect buffer size");
		return -ENOMEM;
	}

	/* Setup ADC resolution */
	sar_ctrl = regs->sar_control_reg;
	sar_ctrl &= ~(MCHP_ADC_SAR_CTRL_RES_MASK |
		      (1 << MCHP_ADC_SAR_CTRL_SHIFTD_POS));

	if (sequence->resolution == 12) {
		sar_ctrl |= MCHP_ADC_SAR_CTRL_RES_12_BITS;
	} else if (sequence->resolution == 10) {
		sar_ctrl |= MCHP_ADC_SAR_CTRL_RES_10_BITS;
		sar_ctrl |= MCHP_ADC_SAR_CTRL_SHIFTD_EN;
	} else {
		return -EINVAL;
	}

	regs->sar_control_reg = sar_ctrl;

	data->buffer = sequence->buffer;

	adc_context_start_read(&data->ctx, sequence);

	return adc_context_wait_for_completion(&data->ctx);
}

static int adc_xec_read(const struct device *dev,
			const struct adc_sequence *sequence)
{
	struct adc_xec_data * const data = dev->data;
	int error;

	adc_context_lock(&data->ctx, false, NULL);
	error = adc_xec_start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}

#ifdef CONFIG_ADC_ASYNC
static int adc_xec_read_async(const struct device *dev,
			      const struct adc_sequence *sequence,
			      struct k_poll_signal *async)
{
	struct adc_xec_data * const data = dev->data;
	int error;

	adc_context_lock(&data->ctx, true, async);
	error = adc_xec_start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}
#endif /* CONFIG_ADC_ASYNC */

static void xec_adc_get_sample(const struct device *dev)
{
	const struct adc_xec_config *const cfg = dev->config;
	struct adc_xec_regs * const regs = cfg->regs;
	struct adc_xec_data * const data = dev->data;
	uint32_t idx;
	uint32_t channels = regs->status_reg;
	uint32_t ch_status = channels;
	uint32_t bit;

	/*
	 * Using the enabled channel bit set, from
	 * lowest channel number to highest, find out
	 * which channel is enabled and copy the ADC
	 * values from hardware registers to the data
	 * buffer.
	 */
	bit = find_lsb_set(channels);
	while (bit != 0) {
		idx = bit - 1;

		*data->buffer = (uint16_t)regs->channel_read_reg[idx];
		data->buffer++;

		channels &= ~BIT(idx);
		bit = find_lsb_set(channels);
	}

	/* Clear the status register */
	regs->status_reg = ch_status;
}

#ifdef CONFIG_SOC_SERIES_MEC172X
static inline void adc_xec_girq_clr(uint8_t girq_idx, uint8_t girq_posn)
{
	mchp_xec_ecia_girq_src_clr(girq_idx, girq_posn);
}

static inline void adc_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn)
{
	mchp_xec_ecia_girq_src_en(girq_idx, girq_posn);
}

static inline void adc_xec_girq_dis(uint8_t girq_idx, uint8_t girq_posn)
{
	mchp_xec_ecia_girq_src_dis(girq_idx, girq_posn);
}
#else

static inline void adc_xec_girq_clr(uint8_t girq_idx, uint8_t girq_posn)
{
	MCHP_GIRQ_SRC(girq_idx) = BIT(girq_posn);
}

static inline void adc_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn)
{
	MCHP_GIRQ_ENSET(girq_idx) = BIT(girq_posn);
}

static inline void adc_xec_girq_dis(uint8_t girq_idx, uint8_t girq_posn)
{
	MCHP_GIRQ_ENCLR(girq_idx) = MCHP_KBC_IBF_GIRQ;
}
#endif

static void adc_xec_single_isr(const struct device *dev)
{
	const struct adc_xec_config *const cfg = dev->config;
	struct adc_xec_regs * const regs = cfg->regs;
	struct adc_xec_data * const data = dev->data;
	uint32_t ctrl;

	/* Clear START_SINGLE bit and clear SINGLE_DONE_STATUS */
	ctrl = regs->control_reg;
	ctrl &= ~XEC_ADC_CTRL_START_SINGLE;
	ctrl |= XEC_ADC_CTRL_SINGLE_DONE_STATUS;
	regs->control_reg = ctrl;

	/* Also clear GIRQ source status bit */
	adc_xec_girq_clr(cfg->girq_single, cfg->girq_single_pos);

	xec_adc_get_sample(dev);

#ifdef CONFIG_PM_DEVICE
	adc_xec_pm_policy_state_lock_put(data, ADC_PM_POLICY_STATE_SINGLE_FLAG);
#endif

	adc_context_on_sampling_done(&data->ctx, dev);

	LOG_DBG("ADC ISR triggered.");
}


#ifdef CONFIG_PM_DEVICE
static int adc_xec_pm_action(const struct device *dev, enum pm_device_action action)
{
	const struct adc_xec_config *const devcfg = dev->config;
	struct adc_xec_regs * const adc_regs = devcfg->regs;
	int ret;

	switch (action) {
	case PM_DEVICE_ACTION_RESUME:
		ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT);
		/* ADC activate  */
		adc_regs->control_reg |= XEC_ADC_CTRL_ACTIVATE;
		break;
	case PM_DEVICE_ACTION_SUSPEND:
		/* ADC deactivate  */
		adc_regs->control_reg &= ~(XEC_ADC_CTRL_ACTIVATE);
		/* If application does not want to turn off ADC pins it will
		 * not define pinctrl-1 for this node.
		 */
		ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP);
		if (ret == -ENOENT) { /* pinctrl-1 does not exist.  */
			ret = 0;
		}
		break;
	default:
		ret = -ENOTSUP;
	}

	return ret;
}
#endif /* CONFIG_PM_DEVICE */

struct adc_driver_api adc_xec_api = {
	.channel_setup = adc_xec_channel_setup,
	.read = adc_xec_read,
#if defined(CONFIG_ADC_ASYNC)
	.read_async = adc_xec_read_async,
#endif
	.ref_internal = XEC_ADC_VREF_ANALOG,
};

/* ADC Config Register */
#define XEC_ADC_CFG_CLK_VAL(clk_time)	(		\
	(clk_time << MCHP_ADC_CFG_CLK_LO_TIME_POS) |	\
	(clk_time << MCHP_ADC_CFG_CLK_HI_TIME_POS))

static int adc_xec_init(const struct device *dev)
{
	const struct adc_xec_config *const cfg = dev->config;
	struct adc_xec_regs * const regs = cfg->regs;
	struct adc_xec_data * const data = dev->data;
	int ret;

	data->adc_dev = dev;

	ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
	if (ret != 0) {
		LOG_ERR("XEC ADC V2 pinctrl setup failed (%d)", ret);
		return ret;
	}

	regs->config_reg = XEC_ADC_CFG_CLK_VAL(DT_INST_PROP(0, clktime));

	regs->control_reg =  XEC_ADC_CTRL_ACTIVATE
		| XEC_ADC_CTRL_POWER_SAVER_DIS
		| XEC_ADC_CTRL_SINGLE_DONE_STATUS
		| XEC_ADC_CTRL_REPEAT_DONE_STATUS;

	adc_xec_girq_dis(cfg->girq_repeat, cfg->girq_repeat_pos);
	adc_xec_girq_clr(cfg->girq_repeat, cfg->girq_repeat_pos);
	adc_xec_girq_dis(cfg->girq_single, cfg->girq_single_pos);
	adc_xec_girq_clr(cfg->girq_single, cfg->girq_single_pos);
	adc_xec_girq_en(cfg->girq_single, cfg->girq_single_pos);

	IRQ_CONNECT(DT_INST_IRQN(0),
		    DT_INST_IRQ(0, priority),
		    adc_xec_single_isr, DEVICE_DT_INST_GET(0), 0);
	irq_enable(DT_INST_IRQN(0));

	adc_context_unlock_unconditionally(&data->ctx);

	return 0;
}

PINCTRL_DT_INST_DEFINE(0);

static struct adc_xec_config adc_xec_dev_cfg_0 = {
	.regs = (struct adc_xec_regs *)(DT_INST_REG_ADDR(0)),
	.girq_single = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 0)),
	.girq_single_pos = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 1)),
	.girq_repeat = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 2)),
	.girq_repeat_pos = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 3)),
	.pcr_regidx = (uint8_t)(DT_INST_PROP_BY_IDX(0, pcrs, 0)),
	.pcr_bitpos = (uint8_t)(DT_INST_PROP_BY_IDX(0, pcrs, 1)),
	.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
};

static struct adc_xec_data adc_xec_dev_data_0 = {
	ADC_CONTEXT_INIT_TIMER(adc_xec_dev_data_0, ctx),
	ADC_CONTEXT_INIT_LOCK(adc_xec_dev_data_0, ctx),
	ADC_CONTEXT_INIT_SYNC(adc_xec_dev_data_0, ctx),
};

PM_DEVICE_DT_INST_DEFINE(0, adc_xec_pm_action);

DEVICE_DT_INST_DEFINE(0, adc_xec_init, PM_DEVICE_DT_INST_GET(0),
		    &adc_xec_dev_data_0, &adc_xec_dev_cfg_0,
		    PRE_KERNEL_1, CONFIG_ADC_INIT_PRIORITY,
		    &adc_xec_api);