Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
/*
 * Copyright (c) 2010, 2012-2015 Wind River Systems, Inc.
 * Copyright (c) 2020 Intel Corp.
 * Copyright (c) 2021 Microchip Technology Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @brief Microchip XEC UART Serial Driver
 *
 * This is the driver for the Microchip XEC MCU UART. It is NS16550 compatible.
 *
 */

#define DT_DRV_COMPAT microchip_xec_uart

#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/types.h>
#include <soc.h>

#include <zephyr/init.h>
#include <zephyr/toolchain.h>
#include <zephyr/linker/sections.h>
#ifdef CONFIG_SOC_SERIES_MEC172X
#include <zephyr/drivers/clock_control/mchp_xec_clock_control.h>
#include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h>
#endif
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/sys/sys_io.h>
#include <zephyr/spinlock.h>
#include <zephyr/irq.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>

#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(uart_xec, CONFIG_UART_LOG_LEVEL);

/* Clock source is 1.8432 MHz derived from PLL 48 MHz */
#define XEC_UART_CLK_SRC_1P8M		0
/* Clock source is PLL 48 MHz output */
#define XEC_UART_CLK_SRC_48M		1
/* Clock source is the UART_CLK alternate pin function. */
#define XEC_UART_CLK_SRC_EXT_PIN	2

/* register definitions */

#define REG_THR 0x00  /* Transmitter holding reg.       */
#define REG_RDR 0x00  /* Receiver data reg.             */
#define REG_BRDL 0x00 /* Baud rate divisor (LSB)        */
#define REG_BRDH 0x01 /* Baud rate divisor (MSB)        */
#define REG_IER 0x01  /* Interrupt enable reg.          */
#define REG_IIR 0x02  /* Interrupt ID reg.              */
#define REG_FCR 0x02  /* FIFO control reg.              */
#define REG_LCR 0x03  /* Line control reg.              */
#define REG_MDC 0x04  /* Modem control reg.             */
#define REG_LSR 0x05  /* Line status reg.               */
#define REG_MSR 0x06  /* Modem status reg.              */
#define REG_SCR 0x07  /* scratch register               */
#define REG_LD_ACTV 0x330 /* Logical Device activate    */
#define REG_LD_CFG 0x3f0 /* Logical Device configuration */

/* equates for interrupt enable register */

#define IER_RXRDY 0x01 /* receiver data ready */
#define IER_TBE 0x02   /* transmit bit enable */
#define IER_LSR 0x04   /* line status interrupts */
#define IER_MSI 0x08   /* modem status interrupts */

/* equates for interrupt identification register */

#define IIR_MSTAT 0x00 /* modem status interrupt  */
#define IIR_NIP   0x01 /* no interrupt pending    */
#define IIR_THRE  0x02 /* transmit holding register empty interrupt */
#define IIR_RBRF  0x04 /* receiver buffer register full interrupt */
#define IIR_LS    0x06 /* receiver line status interrupt */
#define IIR_MASK  0x07 /* interrupt id bits mask  */
#define IIR_ID    0x06 /* interrupt ID mask without NIP */

/* equates for FIFO control register */

#define FCR_FIFO 0x01    /* enable XMIT and RCVR FIFO */
#define FCR_RCVRCLR 0x02 /* clear RCVR FIFO */
#define FCR_XMITCLR 0x04 /* clear XMIT FIFO */

/*
 * Per PC16550D (Literature Number: SNLS378B):
 *
 * RXRDY, Mode 0: When in the 16450 Mode (FCR0 = 0) or in
 * the FIFO Mode (FCR0 = 1, FCR3 = 0) and there is at least 1
 * character in the RCVR FIFO or RCVR holding register, the
 * RXRDY pin (29) will be low active. Once it is activated the
 * RXRDY pin will go inactive when there are no more charac-
 * ters in the FIFO or holding register.
 *
 * RXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when the
 * FCR3 = 1 and the trigger level or the timeout has been
 * reached, the RXRDY pin will go low active. Once it is acti-
 * vated it will go inactive when there are no more characters
 * in the FIFO or holding register.
 *
 * TXRDY, Mode 0: In the 16450 Mode (FCR0 = 0) or in the
 * FIFO Mode (FCR0 = 1, FCR3 = 0) and there are no charac-
 * ters in the XMIT FIFO or XMIT holding register, the TXRDY
 * pin (24) will be low active. Once it is activated the TXRDY
 * pin will go inactive after the first character is loaded into the
 * XMIT FIFO or holding register.
 *
 * TXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when
 * FCR3 = 1 and there are no characters in the XMIT FIFO, the
 * TXRDY pin will go low active. This pin will become inactive
 * when the XMIT FIFO is completely full.
 */
#define FCR_MODE0 0x00 /* set receiver in mode 0 */
#define FCR_MODE1 0x08 /* set receiver in mode 1 */

/* RCVR FIFO interrupt levels: trigger interrupt with this bytes in FIFO */
#define FCR_FIFO_1 0x00  /* 1 byte in RCVR FIFO */
#define FCR_FIFO_4 0x40  /* 4 bytes in RCVR FIFO */
#define FCR_FIFO_8 0x80  /* 8 bytes in RCVR FIFO */
#define FCR_FIFO_14 0xC0 /* 14 bytes in RCVR FIFO */

/* constants for line control register */

#define LCR_CS5 0x00   /* 5 bits data size */
#define LCR_CS6 0x01   /* 6 bits data size */
#define LCR_CS7 0x02   /* 7 bits data size */
#define LCR_CS8 0x03   /* 8 bits data size */
#define LCR_2_STB 0x04 /* 2 stop bits */
#define LCR_1_STB 0x00 /* 1 stop bit */
#define LCR_PEN 0x08   /* parity enable */
#define LCR_PDIS 0x00  /* parity disable */
#define LCR_EPS 0x10   /* even parity select */
#define LCR_SP 0x20    /* stick parity select */
#define LCR_SBRK 0x40  /* break control bit */
#define LCR_DLAB 0x80  /* divisor latch access enable */

/* constants for the modem control register */

#define MCR_DTR 0x01  /* dtr output */
#define MCR_RTS 0x02  /* rts output */
#define MCR_OUT1 0x04 /* output #1 */
#define MCR_OUT2 0x08 /* output #2 */
#define MCR_LOOP 0x10 /* loop back */
#define MCR_AFCE 0x20 /* auto flow control enable */

/* constants for line status register */

#define LSR_RXRDY 0x01 /* receiver data available */
#define LSR_OE 0x02    /* overrun error */
#define LSR_PE 0x04    /* parity error */
#define LSR_FE 0x08    /* framing error */
#define LSR_BI 0x10    /* break interrupt */
#define LSR_EOB_MASK 0x1E /* Error or Break mask */
#define LSR_THRE 0x20  /* transmit holding register empty */
#define LSR_TEMT 0x40  /* transmitter empty */

/* constants for modem status register */

#define MSR_DCTS 0x01 /* cts change */
#define MSR_DDSR 0x02 /* dsr change */
#define MSR_DRI 0x04  /* ring change */
#define MSR_DDCD 0x08 /* data carrier change */
#define MSR_CTS 0x10  /* complement of cts */
#define MSR_DSR 0x20  /* complement of dsr */
#define MSR_RI 0x40   /* complement of ring signal */
#define MSR_DCD 0x80  /* complement of dcd */

#define IIRC(dev) (((struct uart_xec_dev_data *)(dev)->data)->iir_cache)

enum uart_xec_pm_policy_state_flag {
	UART_XEC_PM_POLICY_STATE_TX_FLAG,
	UART_XEC_PM_POLICY_STATE_RX_FLAG,
	UART_XEC_PM_POLICY_STATE_FLAG_COUNT,
};

/* device config */
struct uart_xec_device_config {
	struct uart_regs *regs;
	uint32_t sys_clk_freq;
	uint8_t girq_id;
	uint8_t girq_pos;
	uint8_t pcr_idx;
	uint8_t pcr_bitpos;
	const struct pinctrl_dev_config *pcfg;
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
	uart_irq_config_func_t	irq_config_func;
#endif
#ifdef CONFIG_PM_DEVICE
	struct gpio_dt_spec wakerx_gpio;
	bool wakeup_source;
#endif
};

/** Device data structure */
struct uart_xec_dev_data {
	struct uart_config uart_config;
	struct k_spinlock lock;

	uint8_t fcr_cache;	/**< cache of FCR write only register */
	uint8_t iir_cache;	/**< cache of IIR since it clears when read */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	uart_irq_callback_user_data_t cb;  /**< Callback function pointer */
	void *cb_data;	/**< Callback function arg */
#endif
};

#ifdef CONFIG_PM_DEVICE
	ATOMIC_DEFINE(pm_policy_state_flag, UART_XEC_PM_POLICY_STATE_FLAG_COUNT);
#endif

#if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED)
	struct k_work_delayable rx_refresh_timeout_work;
#endif

static const struct uart_driver_api uart_xec_driver_api;

#ifdef CONFIG_PM_DEVICE
static void uart_xec_pm_policy_state_lock_get(enum uart_xec_pm_policy_state_flag flag)
{
	if (atomic_test_and_set_bit(pm_policy_state_flag, flag) == 0) {
		pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
	}
}

static void uart_xec_pm_policy_state_lock_put(enum uart_xec_pm_policy_state_flag flag)
{
	if (atomic_test_and_clear_bit(pm_policy_state_flag, flag) == 1) {
		pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
	}
}
#endif

#ifdef CONFIG_SOC_SERIES_MEC172X

static void uart_clr_slp_en(const struct device *dev)
{
	struct uart_xec_device_config const *dev_cfg = dev->config;

	z_mchp_xec_pcr_periph_sleep(dev_cfg->pcr_idx, dev_cfg->pcr_bitpos, 0);
}

static inline void uart_xec_girq_clr(const struct device *dev)
{
	struct uart_xec_device_config const *dev_cfg = dev->config;

	mchp_soc_ecia_girq_src_clr(dev_cfg->girq_id, dev_cfg->girq_pos);
}

static inline void uart_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn)
{
	mchp_xec_ecia_girq_src_en(girq_idx, girq_posn);
}

#else

static void uart_clr_slp_en(const struct device *dev)
{
	struct uart_xec_device_config const *dev_cfg = dev->config;

	if (dev_cfg->pcr_bitpos == MCHP_PCR2_UART0_POS) {
		mchp_pcr_periph_slp_ctrl(PCR_UART0, 0);
	} else if (dev_cfg->pcr_bitpos == MCHP_PCR2_UART1_POS) {
		mchp_pcr_periph_slp_ctrl(PCR_UART1, 0);
	} else {
		mchp_pcr_periph_slp_ctrl(PCR_UART2, 0);
	}
}

static inline void uart_xec_girq_clr(const struct device *dev)
{
	struct uart_xec_device_config const *dev_cfg = dev->config;

	MCHP_GIRQ_SRC(dev_cfg->girq_id) = BIT(dev_cfg->girq_pos);
}

static inline void uart_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn)
{
	MCHP_GIRQ_ENSET(girq_idx) = BIT(girq_posn);
}

#endif

static void set_baud_rate(const struct device *dev, uint32_t baud_rate)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data * const dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	uint32_t divisor; /* baud rate divisor */
	uint8_t lcr_cache;

	if ((baud_rate != 0U) && (dev_cfg->sys_clk_freq != 0U)) {
		/*
		 * calculate baud rate divisor. a variant of
		 * (uint32_t)(dev_cfg->sys_clk_freq / (16.0 * baud_rate) + 0.5)
		 */
		divisor = ((dev_cfg->sys_clk_freq + (baud_rate << 3))
					/ baud_rate) >> 4;

		/* set the DLAB to access the baud rate divisor registers */
		lcr_cache = regs->LCR;
		regs->LCR = LCR_DLAB | lcr_cache;
		regs->RTXB = (unsigned char)(divisor & 0xff);
		/* bit[7]=0 1.8MHz clock source, =1 48MHz clock source */
		regs->IER = (unsigned char)((divisor >> 8) & 0x7f);

		/* restore the DLAB to access the baud rate divisor registers */
		regs->LCR = lcr_cache;

		dev_data->uart_config.baudrate = baud_rate;
	}
}

/*
 * Configure UART.
 * MCHP XEC UART defaults to reset if external Host VCC_PWRGD is inactive.
 * We must change the UART reset signal to XEC VTR_PWRGD. Make sure UART
 * clock source is an internal clock and UART pins are not inverted.
 */
static int uart_xec_configure(const struct device *dev,
			      const struct uart_config *cfg)
{
	struct uart_xec_dev_data * const dev_data = dev->data;
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_regs *regs = dev_cfg->regs;
	uint8_t lcr_cache;

	/* temp for return value if error occurs in this locked region */
	int ret = 0;

	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	ARG_UNUSED(dev_data);

	dev_data->fcr_cache = 0U;
	dev_data->iir_cache = 0U;

	/* XEC UART specific configuration and enable */
	regs->CFG_SEL &= ~(MCHP_UART_LD_CFG_RESET_VCC |
			   MCHP_UART_LD_CFG_EXTCLK | MCHP_UART_LD_CFG_INVERT);
	/* set activate to enable clocks */
	regs->ACTV |= MCHP_UART_LD_ACTIVATE;

	set_baud_rate(dev, cfg->baudrate);

	/* Local structure to hold temporary values */
	struct uart_config uart_cfg;

	switch (cfg->data_bits) {
	case UART_CFG_DATA_BITS_5:
		uart_cfg.data_bits = LCR_CS5;
		break;
	case UART_CFG_DATA_BITS_6:
		uart_cfg.data_bits = LCR_CS6;
		break;
	case UART_CFG_DATA_BITS_7:
		uart_cfg.data_bits = LCR_CS7;
		break;
	case UART_CFG_DATA_BITS_8:
		uart_cfg.data_bits = LCR_CS8;
		break;
	default:
		ret = -ENOTSUP;
		goto out;
	}

	switch (cfg->stop_bits) {
	case UART_CFG_STOP_BITS_1:
		uart_cfg.stop_bits = LCR_1_STB;
		break;
	case UART_CFG_STOP_BITS_2:
		uart_cfg.stop_bits = LCR_2_STB;
		break;
	default:
		ret = -ENOTSUP;
		goto out;
	}

	switch (cfg->parity) {
	case UART_CFG_PARITY_NONE:
		uart_cfg.parity = LCR_PDIS;
		break;
	case UART_CFG_PARITY_EVEN:
		uart_cfg.parity = LCR_EPS;
		break;
	default:
		ret = -ENOTSUP;
		goto out;
	}

	dev_data->uart_config = *cfg;

	/* data bits, stop bits, parity, clear DLAB */
	regs->LCR = uart_cfg.data_bits | uart_cfg.stop_bits | uart_cfg.parity;

	regs->MCR = MCR_OUT2 | MCR_RTS | MCR_DTR;

	/*
	 * Program FIFO: enabled, mode 0
	 * generate the interrupt at 8th byte
	 * Clear TX and RX FIFO
	 */
	dev_data->fcr_cache = FCR_FIFO | FCR_MODE0 | FCR_FIFO_8 | FCR_RCVRCLR |
			      FCR_XMITCLR;
	regs->IIR_FCR = dev_data->fcr_cache;

	/* clear the port */
	lcr_cache = regs->LCR;
	regs->LCR = LCR_DLAB | lcr_cache;
	regs->SCR = regs->RTXB;
	regs->LCR = lcr_cache;

	/* disable interrupts  */
	regs->IER = 0;

out:
	k_spin_unlock(&dev_data->lock, key);
	return ret;
};

#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_xec_config_get(const struct device *dev,
			       struct uart_config *cfg)
{
	struct uart_xec_dev_data *data = dev->data;

	cfg->baudrate = data->uart_config.baudrate;
	cfg->parity = data->uart_config.parity;
	cfg->stop_bits = data->uart_config.stop_bits;
	cfg->data_bits = data->uart_config.data_bits;
	cfg->flow_ctrl = data->uart_config.flow_ctrl;

	return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */

#ifdef CONFIG_PM_DEVICE

static void uart_xec_wake_handler(const struct device *gpio, struct gpio_callback *cb,
		   uint32_t pins)
{
	/* Disable interrupts on UART RX pin to avoid repeated interrupts. */
	(void)gpio_pin_interrupt_configure(gpio, (find_msb_set(pins) - 1),
					   GPIO_INT_DISABLE);
	/* Refresh console expired time */
#ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED
	k_timeout_t delay = K_MSEC(CONFIG_UART_CONSOLE_INPUT_EXPIRED_TIMEOUT);

	uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_RX_FLAG);
	k_work_reschedule(&rx_refresh_timeout_work, delay);
#endif
}

static int uart_xec_pm_action(const struct device *dev,
					 enum pm_device_action action)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_regs *regs = dev_cfg->regs;
	int ret = 0;

	switch (action) {
	case PM_DEVICE_ACTION_RESUME:
		regs->ACTV = MCHP_UART_LD_ACTIVATE;
		break;
	case PM_DEVICE_ACTION_SUSPEND:
		/* Enable UART wake interrupt */
		regs->ACTV = 0;
		if ((dev_cfg->wakeup_source) && (dev_cfg->wakerx_gpio.port != NULL)) {
			ret = gpio_pin_interrupt_configure_dt(&dev_cfg->wakerx_gpio,
						  GPIO_INT_MODE_EDGE | GPIO_INT_TRIG_LOW);
			if (ret < 0) {
				LOG_ERR("Failed to configure UART wake interrupt (ret %d)", ret);
				return ret;
			}
		}
		break;
	default:
		return -ENOTSUP;
	}

	return 0;
}

#ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED
static void uart_xec_rx_refresh_timeout(struct k_work *work)
{
	ARG_UNUSED(work);

	uart_xec_pm_policy_state_lock_put(UART_XEC_PM_POLICY_STATE_RX_FLAG);
}
#endif
#endif /* CONFIG_PM_DEVICE */

/**
 * @brief Initialize individual UART port
 *
 * This routine is called to reset the chip in a quiescent state.
 *
 * @param dev UART device struct
 *
 * @return 0 if successful, failed otherwise
 */
static int uart_xec_init(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	int ret;

	uart_clr_slp_en(dev);

	ret = pinctrl_apply_state(dev_cfg->pcfg, PINCTRL_STATE_DEFAULT);
	if (ret != 0) {
		return ret;
	}

	ret = uart_xec_configure(dev, &dev_data->uart_config);
	if (ret != 0) {
		return ret;
	}

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	dev_cfg->irq_config_func(dev);
#endif

#ifdef CONFIG_PM_DEVICE
#ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED
		k_work_init_delayable(&rx_refresh_timeout_work, uart_xec_rx_refresh_timeout);
#endif
	if ((dev_cfg->wakeup_source) && (dev_cfg->wakerx_gpio.port != NULL)) {
		static struct gpio_callback uart_xec_wake_cb;

		gpio_init_callback(&uart_xec_wake_cb, uart_xec_wake_handler,
				   BIT(dev_cfg->wakerx_gpio.pin));

		ret = gpio_add_callback(dev_cfg->wakerx_gpio.port, &uart_xec_wake_cb);
		if (ret < 0) {
			LOG_ERR("Failed to add UART wake callback (err %d)", ret);
			return ret;
		}
	}
#endif

	return 0;
}

/**
 * @brief Poll the device for input.
 *
 * @param dev UART device struct
 * @param c Pointer to character
 *
 * @return 0 if a character arrived, -1 if the input buffer if empty.
 */
static int uart_xec_poll_in(const struct device *dev, unsigned char *c)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	int ret = -1;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	if ((regs->LSR & LSR_RXRDY) != 0) {
		/* got a character */
		*c = regs->RTXB;
		ret = 0;
	}

	k_spin_unlock(&dev_data->lock, key);

	return ret;
}

/**
 * @brief Output a character in polled mode.
 *
 * Checks if the transmitter is empty. If empty, a character is written to
 * the data register.
 *
 * If the hardware flow control is enabled then the handshake signal CTS has to
 * be asserted in order to send a character.
 *
 * @param dev UART device struct
 * @param c Character to send
 */
static void uart_xec_poll_out(const struct device *dev, unsigned char c)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	while ((regs->LSR & LSR_THRE) == 0) {
		;
	}

	regs->RTXB = c;

	k_spin_unlock(&dev_data->lock, key);
}

/**
 * @brief Check if an error was received
 *
 * @param dev UART device struct
 *
 * @return one of UART_ERROR_OVERRUN, UART_ERROR_PARITY, UART_ERROR_FRAMING,
 * UART_BREAK if an error was detected, 0 otherwise.
 */
static int uart_xec_err_check(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
	int check = regs->LSR & LSR_EOB_MASK;

	k_spin_unlock(&dev_data->lock, key);

	return check >> 1;
}

#if CONFIG_UART_INTERRUPT_DRIVEN

/**
 * @brief Fill FIFO with data
 *
 * @param dev UART device struct
 * @param tx_data Data to transmit
 * @param size Number of bytes to send
 *
 * @return Number of bytes sent
 */
static int uart_xec_fifo_fill(const struct device *dev, const uint8_t *tx_data,
			      int size)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	int i;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	for (i = 0; (i < size) && (regs->LSR & LSR_THRE) != 0; i++) {
#ifdef CONFIG_PM_DEVICE
		uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_TX_FLAG);
#endif
		regs->RTXB = tx_data[i];
	}

	k_spin_unlock(&dev_data->lock, key);

	return i;
}

/**
 * @brief Read data from FIFO
 *
 * @param dev UART device struct
 * @param rxData Data container
 * @param size Container size
 *
 * @return Number of bytes read
 */
static int uart_xec_fifo_read(const struct device *dev, uint8_t *rx_data,
			      const int size)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	int i;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	for (i = 0; (i < size) && (regs->LSR & LSR_RXRDY) != 0; i++) {
		rx_data[i] = regs->RTXB;
	}

	k_spin_unlock(&dev_data->lock, key);

	return i;
}

/**
 * @brief Enable TX interrupt in IER
 *
 * @param dev UART device struct
 */
static void uart_xec_irq_tx_enable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	regs->IER |= IER_TBE;

	k_spin_unlock(&dev_data->lock, key);
}

/**
 * @brief Disable TX interrupt in IER
 *
 * @param dev UART device struct
 */
static void uart_xec_irq_tx_disable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	regs->IER &= ~(IER_TBE);

	k_spin_unlock(&dev_data->lock, key);
}

/**
 * @brief Check if Tx IRQ has been raised
 *
 * @param dev UART device struct
 *
 * @return 1 if an IRQ is ready, 0 otherwise
 */
static int uart_xec_irq_tx_ready(const struct device *dev)
{
	struct uart_xec_dev_data *dev_data = dev->data;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	int ret = ((IIRC(dev) & IIR_ID) == IIR_THRE) ? 1 : 0;

	k_spin_unlock(&dev_data->lock, key);

	return ret;
}

/**
 * @brief Check if nothing remains to be transmitted
 *
 * @param dev UART device struct
 *
 * @return 1 if nothing remains to be transmitted, 0 otherwise
 */
static int uart_xec_irq_tx_complete(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	int ret = ((regs->LSR & (LSR_TEMT | LSR_THRE))
				== (LSR_TEMT | LSR_THRE)) ? 1 : 0;

	k_spin_unlock(&dev_data->lock, key);

	return ret;
}

/**
 * @brief Enable RX interrupt in IER
 *
 * @param dev UART device struct
 */
static void uart_xec_irq_rx_enable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	regs->IER |= IER_RXRDY;

	k_spin_unlock(&dev_data->lock, key);
}

/**
 * @brief Disable RX interrupt in IER
 *
 * @param dev UART device struct
 */
static void uart_xec_irq_rx_disable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	regs->IER &= ~(IER_RXRDY);

	k_spin_unlock(&dev_data->lock, key);
}

/**
 * @brief Check if Rx IRQ has been raised
 *
 * @param dev UART device struct
 *
 * @return 1 if an IRQ is ready, 0 otherwise
 */
static int uart_xec_irq_rx_ready(const struct device *dev)
{
	struct uart_xec_dev_data *dev_data = dev->data;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	int ret = ((IIRC(dev) & IIR_ID) == IIR_RBRF) ? 1 : 0;

	k_spin_unlock(&dev_data->lock, key);

	return ret;
}

/**
 * @brief Enable error interrupt in IER
 *
 * @param dev UART device struct
 */
static void uart_xec_irq_err_enable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	regs->IER |= IER_LSR;

	k_spin_unlock(&dev_data->lock, key);
}

/**
 * @brief Disable error interrupt in IER
 *
 * @param dev UART device struct
 *
 * @return 1 if an IRQ is ready, 0 otherwise
 */
static void uart_xec_irq_err_disable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	regs->IER &= ~(IER_LSR);

	k_spin_unlock(&dev_data->lock, key);
}

/**
 * @brief Check if any IRQ is pending
 *
 * @param dev UART device struct
 *
 * @return 1 if an IRQ is pending, 0 otherwise
 */
static int uart_xec_irq_is_pending(const struct device *dev)
{
	struct uart_xec_dev_data *dev_data = dev->data;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	int ret = (!(IIRC(dev) & IIR_NIP)) ? 1 : 0;

	k_spin_unlock(&dev_data->lock, key);

	return ret;
}

/**
 * @brief Update cached contents of IIR
 *
 * @param dev UART device struct
 *
 * @return Always 1
 */
static int uart_xec_irq_update(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	IIRC(dev) = regs->IIR_FCR;

	k_spin_unlock(&dev_data->lock, key);

	return 1;
}

/**
 * @brief Set the callback function pointer for IRQ.
 *
 * @param dev UART device struct
 * @param cb Callback function pointer.
 */
static void uart_xec_irq_callback_set(const struct device *dev,
				      uart_irq_callback_user_data_t cb,
				      void *cb_data)
{
	struct uart_xec_dev_data * const dev_data = dev->data;
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	dev_data->cb = cb;
	dev_data->cb_data = cb_data;

	k_spin_unlock(&dev_data->lock, key);
}

/**
 * @brief Interrupt service routine.
 *
 * This simply calls the callback function, if one exists.
 *
 * @param arg Argument to ISR.
 */
static void uart_xec_isr(const struct device *dev)
{
	struct uart_xec_dev_data * const dev_data = dev->data;
#if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED)
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_regs *regs = dev_cfg->regs;
	int rx_ready = 0;

	rx_ready = ((regs->LSR & LSR_RXRDY) == LSR_RXRDY) ? 1 : 0;
	if (rx_ready) {
		k_timeout_t delay = K_MSEC(CONFIG_UART_CONSOLE_INPUT_EXPIRED_TIMEOUT);

		uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_RX_FLAG);
		k_work_reschedule(&rx_refresh_timeout_work, delay);
	}
#endif

	if (dev_data->cb) {
		dev_data->cb(dev, dev_data->cb_data);
	}

#ifdef CONFIG_PM_DEVICE
	if (uart_xec_irq_tx_complete(dev)) {
		uart_xec_pm_policy_state_lock_put(UART_XEC_PM_POLICY_STATE_TX_FLAG);
	}
#endif /* CONFIG_PM */

	/* clear ECIA GIRQ R/W1C status bit after UART status cleared */
	uart_xec_girq_clr(dev);
}

#endif /* CONFIG_UART_INTERRUPT_DRIVEN */

#ifdef CONFIG_UART_XEC_LINE_CTRL

/**
 * @brief Manipulate line control for UART.
 *
 * @param dev UART device struct
 * @param ctrl The line control to be manipulated
 * @param val Value to set the line control
 *
 * @return 0 if successful, failed otherwise
 */
static int uart_xec_line_ctrl_set(const struct device *dev,
				  uint32_t ctrl, uint32_t val)
{
	const struct uart_xec_device_config * const dev_cfg = dev->config;
	struct uart_xec_dev_data *dev_data = dev->data;
	struct uart_regs *regs = dev_cfg->regs;
	uint32_t mdc, chg;
	k_spinlock_key_t key;

	switch (ctrl) {
	case UART_LINE_CTRL_BAUD_RATE:
		set_baud_rate(dev, val);
		return 0;

	case UART_LINE_CTRL_RTS:
	case UART_LINE_CTRL_DTR:
		key = k_spin_lock(&dev_data->lock);
		mdc = regs->MCR;

		if (ctrl == UART_LINE_CTRL_RTS) {
			chg = MCR_RTS;
		} else {
			chg = MCR_DTR;
		}

		if (val) {
			mdc |= chg;
		} else {
			mdc &= ~(chg);
		}
		regs->MCR = mdc;
		k_spin_unlock(&dev_data->lock, key);
		return 0;
	}

	return -ENOTSUP;
}

#endif /* CONFIG_UART_XEC_LINE_CTRL */

static const struct uart_driver_api uart_xec_driver_api = {
	.poll_in = uart_xec_poll_in,
	.poll_out = uart_xec_poll_out,
	.err_check = uart_xec_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
	.configure = uart_xec_configure,
	.config_get = uart_xec_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN

	.fifo_fill = uart_xec_fifo_fill,
	.fifo_read = uart_xec_fifo_read,
	.irq_tx_enable = uart_xec_irq_tx_enable,
	.irq_tx_disable = uart_xec_irq_tx_disable,
	.irq_tx_ready = uart_xec_irq_tx_ready,
	.irq_tx_complete = uart_xec_irq_tx_complete,
	.irq_rx_enable = uart_xec_irq_rx_enable,
	.irq_rx_disable = uart_xec_irq_rx_disable,
	.irq_rx_ready = uart_xec_irq_rx_ready,
	.irq_err_enable = uart_xec_irq_err_enable,
	.irq_err_disable = uart_xec_irq_err_disable,
	.irq_is_pending = uart_xec_irq_is_pending,
	.irq_update = uart_xec_irq_update,
	.irq_callback_set = uart_xec_irq_callback_set,

#endif

#ifdef CONFIG_UART_XEC_LINE_CTRL
	.line_ctrl_set = uart_xec_line_ctrl_set,
#endif
};

#define DEV_CONFIG_REG_INIT(n)						\
	.regs = (struct uart_regs *)(DT_INST_REG_ADDR(n)),

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define DEV_CONFIG_IRQ_FUNC_INIT(n) \
	.irq_config_func = irq_config_func##n,
#define UART_XEC_IRQ_FUNC_DECLARE(n) \
	static void irq_config_func##n(const struct device *dev);
#define UART_XEC_IRQ_FUNC_DEFINE(n)					\
	static void irq_config_func##n(const struct device *dev)	\
	{								\
		ARG_UNUSED(dev);					\
		IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority),	\
			    uart_xec_isr, DEVICE_DT_INST_GET(n),	\
			    0);						\
		irq_enable(DT_INST_IRQN(n));				\
		uart_xec_girq_en(DT_INST_PROP_BY_IDX(n, girqs, 0), \
					  DT_INST_PROP_BY_IDX(n, girqs, 1)); \
	}
#else
/* !CONFIG_UART_INTERRUPT_DRIVEN */
#define DEV_CONFIG_IRQ_FUNC_INIT(n)
#define UART_XEC_IRQ_FUNC_DECLARE(n)
#define UART_XEC_IRQ_FUNC_DEFINE(n)
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */

#define DEV_DATA_FLOW_CTRL(n)						\
	DT_INST_PROP_OR(n, hw_flow_control, UART_CFG_FLOW_CTRL_NONE)

/* To enable wakeup on the UART, the DTS needs to have two entries defined
 * in the corresponding UART node in the DTS specifying it as a wake source
 * and specifying the UART_RX GPIO; example as below
 *
 *	wakerx-gpios = <&gpio_140_176 25 GPIO_ACTIVE_HIGH>;
 *	wakeup-source;
 */
#ifdef CONFIG_PM_DEVICE
#define XEC_UART_PM_WAKEUP(n)						\
		.wakeup_source = (uint8_t)DT_INST_PROP_OR(n, wakeup_source, 0),	\
		.wakerx_gpio = GPIO_DT_SPEC_INST_GET_OR(n, wakerx_gpios, {0}),
#else
#define XEC_UART_PM_WAKEUP(index) /* Not used */
#endif

#define UART_XEC_DEVICE_INIT(n)						\
									\
	PINCTRL_DT_INST_DEFINE(n);					\
									\
	UART_XEC_IRQ_FUNC_DECLARE(n);					\
									\
	static const struct uart_xec_device_config uart_xec_dev_cfg_##n = { \
		DEV_CONFIG_REG_INIT(n)					\
		.sys_clk_freq = DT_INST_PROP(n, clock_frequency),	\
		.girq_id = DT_INST_PROP_BY_IDX(n, girqs, 0),		\
		.girq_pos = DT_INST_PROP_BY_IDX(n, girqs, 1),		\
		.pcr_idx = DT_INST_PROP_BY_IDX(n, pcrs, 0),		\
		.pcr_bitpos = DT_INST_PROP_BY_IDX(n, pcrs, 1),		\
		.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),		\
		XEC_UART_PM_WAKEUP(n)	\
		DEV_CONFIG_IRQ_FUNC_INIT(n)				\
	};								\
	static struct uart_xec_dev_data uart_xec_dev_data_##n = {	\
		.uart_config.baudrate = DT_INST_PROP_OR(n, current_speed, 0), \
		.uart_config.parity = UART_CFG_PARITY_NONE,		\
		.uart_config.stop_bits = UART_CFG_STOP_BITS_1,		\
		.uart_config.data_bits = UART_CFG_DATA_BITS_8,		\
		.uart_config.flow_ctrl = DEV_DATA_FLOW_CTRL(n),		\
	};								\
	PM_DEVICE_DT_INST_DEFINE(n, uart_xec_pm_action);		\
	DEVICE_DT_INST_DEFINE(n, &uart_xec_init,			\
			      PM_DEVICE_DT_INST_GET(n),			\
			      &uart_xec_dev_data_##n,			\
			      &uart_xec_dev_cfg_##n,			\
			      PRE_KERNEL_1,				\
			      CONFIG_SERIAL_INIT_PRIORITY,		\
			      &uart_xec_driver_api);			\
	UART_XEC_IRQ_FUNC_DEFINE(n)

DT_INST_FOREACH_STATUS_OKAY(UART_XEC_DEVICE_INIT)