Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 | /*
* Copyright (c) 2019-2021, Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nordic_qspi_nor
#include <errno.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/init.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/drivers/pinctrl.h>
#include <soc.h>
#include <string.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(qspi_nor, CONFIG_FLASH_LOG_LEVEL);
#include "spi_nor.h"
#include "jesd216.h"
#include "flash_priv.h"
#include <nrfx_qspi.h>
#include <hal/nrf_clock.h>
#include <hal/nrf_gpio.h>
struct qspi_nor_data {
#ifdef CONFIG_MULTITHREADING
/* The semaphore to control exclusive access on write/erase. */
struct k_sem trans;
/* The semaphore to control exclusive access to the device. */
struct k_sem sem;
/* The semaphore to indicate that transfer has completed. */
struct k_sem sync;
/* The semaphore to control driver init/uninit. */
struct k_sem count;
#else /* CONFIG_MULTITHREADING */
/* A flag that signals completed transfer when threads are
* not enabled.
*/
volatile bool ready;
#endif /* CONFIG_MULTITHREADING */
bool xip_enabled;
};
struct qspi_nor_config {
nrfx_qspi_config_t nrfx_cfg;
/* Size from devicetree, in bytes */
uint32_t size;
/* JEDEC id from devicetree */
uint8_t id[SPI_NOR_MAX_ID_LEN];
const struct pinctrl_dev_config *pcfg;
};
/* Status register bits */
#define QSPI_SECTOR_SIZE SPI_NOR_SECTOR_SIZE
#define QSPI_BLOCK_SIZE SPI_NOR_BLOCK_SIZE
/* instance 0 flash size in bytes */
#if DT_INST_NODE_HAS_PROP(0, size_in_bytes)
#define INST_0_BYTES (DT_INST_PROP(0, size_in_bytes))
#elif DT_INST_NODE_HAS_PROP(0, size)
#define INST_0_BYTES (DT_INST_PROP(0, size) / 8)
#else
#error "No size specified. 'size' or 'size-in-bytes' must be set"
#endif
BUILD_ASSERT(!(DT_INST_NODE_HAS_PROP(0, size_in_bytes) && DT_INST_NODE_HAS_PROP(0, size)),
"Node " DT_NODE_PATH(DT_DRV_INST(0)) " has both size and size-in-bytes "
"properties; use exactly one");
#define INST_0_SCK_FREQUENCY DT_INST_PROP(0, sck_frequency)
/*
* According to the respective specifications, the nRF52 QSPI supports clock
* frequencies 2 - 32 MHz and the nRF53 one supports 6 - 96 MHz.
*/
BUILD_ASSERT(INST_0_SCK_FREQUENCY >= (NRF_QSPI_BASE_CLOCK_FREQ / 16),
"Unsupported SCK frequency.");
/*
* Determine a configuration value (INST_0_SCK_CFG) and, if needed, a divider
* (BASE_CLOCK_DIV) for the clock from which the SCK frequency is derived that
* need to be used to achieve the SCK frequency as close as possible (but not
* higher) to the one specified in DT.
*/
#if defined(CONFIG_SOC_SERIES_NRF53X)
/*
* On nRF53 Series SoCs, the default /4 divider for the HFCLK192M clock can
* only be used when the QSPI peripheral is idle. When a QSPI operation is
* performed, the divider needs to be changed to /1 or /2 (particularly,
* the specification says that the peripheral "supports 192 MHz and 96 MHz
* PCLK192M frequency"), but after that operation is complete, the default
* divider needs to be restored to avoid increased current consumption.
*/
#if (INST_0_SCK_FREQUENCY >= NRF_QSPI_BASE_CLOCK_FREQ)
/* For requested SCK >= 96 MHz, use HFCLK192M / 1 / (2*1) = 96 MHz */
#define BASE_CLOCK_DIV NRF_CLOCK_HFCLK_DIV_1
#define INST_0_SCK_CFG NRF_QSPI_FREQ_DIV1
#elif (INST_0_SCK_FREQUENCY >= (NRF_QSPI_BASE_CLOCK_FREQ / 2))
/* For 96 MHz > SCK >= 48 MHz, use HFCLK192M / 2 / (2*1) = 48 MHz */
#define BASE_CLOCK_DIV NRF_CLOCK_HFCLK_DIV_2
#define INST_0_SCK_CFG NRF_QSPI_FREQ_DIV1
#elif (INST_0_SCK_FREQUENCY >= (NRF_QSPI_BASE_CLOCK_FREQ / 3))
/* For 48 MHz > SCK >= 32 MHz, use HFCLK192M / 1 / (2*3) = 32 MHz */
#define BASE_CLOCK_DIV NRF_CLOCK_HFCLK_DIV_1
#define INST_0_SCK_CFG NRF_QSPI_FREQ_DIV3
#else
/* For requested SCK < 32 MHz, use divider /2 for HFCLK192M. */
#define BASE_CLOCK_DIV NRF_CLOCK_HFCLK_DIV_2
#define INST_0_SCK_CFG (DIV_ROUND_UP(NRF_QSPI_BASE_CLOCK_FREQ / 2, \
INST_0_SCK_FREQUENCY) - 1)
#endif
#else
/*
* On nRF52 Series SoCs, the base clock divider is not configurable,
* so BASE_CLOCK_DIV is not defined.
*/
#if (INST_0_SCK_FREQUENCY >= NRF_QSPI_BASE_CLOCK_FREQ)
#define INST_0_SCK_CFG NRF_QSPI_FREQ_DIV1
#else
#define INST_0_SCK_CFG (DIV_ROUND_UP(NRF_QSPI_BASE_CLOCK_FREQ, \
INST_0_SCK_FREQUENCY) - 1)
#endif
#endif /* defined(CONFIG_SOC_SERIES_NRF53X) */
/* 0 for MODE0 (CPOL=0, CPHA=0), 1 for MODE3 (CPOL=1, CPHA=1). */
#define INST_0_SPI_MODE DT_INST_PROP(0, cpol)
BUILD_ASSERT(DT_INST_PROP(0, cpol) == DT_INST_PROP(0, cpha),
"Invalid combination of \"cpol\" and \"cpha\" properties.");
/* for accessing devicetree properties of the bus node */
#define QSPI_NODE DT_INST_BUS(0)
#define QSPI_PROP_AT(prop, idx) DT_PROP_BY_IDX(QSPI_NODE, prop, idx)
#define QSPI_PROP_LEN(prop) DT_PROP_LEN(QSPI_NODE, prop)
#define INST_0_QER _CONCAT(JESD216_DW15_QER_VAL_, \
DT_STRING_TOKEN(DT_DRV_INST(0), \
quad_enable_requirements))
#define IS_EQUAL(x, y) ((x) == (y))
#define SR1_WRITE_CLEARS_SR2 IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v1)
#define SR2_WRITE_NEEDS_SR1 (IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v1) || \
IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v4) || \
IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v5))
#define QER_IS_S2B1 (IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v1) || \
IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v4) || \
IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v5) || \
IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v6))
BUILD_ASSERT((IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_NONE)
|| IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S1B6)
|| IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v1)
|| IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v4)
|| IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v5)
|| IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v6)),
"Driver only supports NONE, S1B6, S2B1v1, S2B1v4, S2B1v5 or S2B1v6 for quad-enable-requirements");
#define INST_0_4BA DT_INST_PROP_OR(0, enter_4byte_addr, 0)
#if (INST_0_4BA != 0)
BUILD_ASSERT(((INST_0_4BA & 0x03) != 0),
"Driver only supports command (0xB7) for entering 4 byte addressing mode");
BUILD_ASSERT(DT_INST_PROP(0, address_size_32),
"After entering 4 byte addressing mode, 4 byte addressing is expected");
#endif
#ifndef CONFIG_PM_DEVICE_RUNTIME
static bool qspi_initialized;
#endif
static int qspi_device_init(const struct device *dev);
static void qspi_device_uninit(const struct device *dev);
void z_impl_nrf_qspi_nor_xip_enable(const struct device *dev, bool enable);
void z_vrfy_nrf_qspi_nor_xip_enable(const struct device *dev, bool enable);
#define WORD_SIZE 4
/**
* @brief QSPI buffer structure
* Structure used both for TX and RX purposes.
*
* @param buf is a valid pointer to a data buffer.
* Can not be NULL.
* @param len is the length of the data to be handled.
* If no data to transmit/receive - pass 0.
*/
struct qspi_buf {
uint8_t *buf;
size_t len;
};
/**
* @brief QSPI command structure
* Structure used for custom command usage.
*
* @param op_code is a command value (i.e 0x9F - get Jedec ID)
* @param tx_buf structure used for TX purposes. Can be NULL if not used.
* @param rx_buf structure used for RX purposes. Can be NULL if not used.
*/
struct qspi_cmd {
uint8_t op_code;
const struct qspi_buf *tx_buf;
const struct qspi_buf *rx_buf;
};
static int qspi_nor_write_protection_set(const struct device *dev,
bool write_protect);
static int exit_dpd(const struct device *const dev);
/**
* @brief Test whether offset is aligned.
*/
#define QSPI_IS_SECTOR_ALIGNED(_ofs) (((_ofs) & (QSPI_SECTOR_SIZE - 1U)) == 0)
#define QSPI_IS_BLOCK_ALIGNED(_ofs) (((_ofs) & (QSPI_BLOCK_SIZE - 1U)) == 0)
/**
* @brief Converts NRFX return codes to the zephyr ones
*/
static inline int qspi_get_zephyr_ret_code(nrfx_err_t res)
{
switch (res) {
case NRFX_SUCCESS:
return 0;
case NRFX_ERROR_INVALID_PARAM:
case NRFX_ERROR_INVALID_ADDR:
return -EINVAL;
case NRFX_ERROR_INVALID_STATE:
return -ECANCELED;
case NRFX_ERROR_BUSY:
case NRFX_ERROR_TIMEOUT:
default:
return -EBUSY;
}
}
static inline void qspi_lock(const struct device *dev)
{
struct qspi_nor_data *dev_data = dev->data;
pm_device_busy_set(dev);
#ifdef CONFIG_MULTITHREADING
k_sem_take(&dev_data->sem, K_FOREVER);
#else /* CONFIG_MULTITHREADING */
ARG_UNUSED(dev_data);
#endif /* CONFIG_MULTITHREADING */
/*
* Change the base clock divider only for the time the driver is locked
* to perform a QSPI operation, otherwise the power consumption would be
* increased also when the QSPI peripheral is idle.
* When XIP is enabled, there is nothing to do here as the changed
* divider is kept all the time.
*/
#if defined(CONFIG_SOC_SERIES_NRF53X)
if (!dev_data->xip_enabled) {
nrf_clock_hfclk192m_div_set(NRF_CLOCK, BASE_CLOCK_DIV);
}
#endif
}
static inline void qspi_unlock(const struct device *dev)
{
struct qspi_nor_data *dev_data = dev->data;
#if defined(CONFIG_SOC_SERIES_NRF53X)
/* Restore the default base clock divider to reduce power consumption.
* Unless XIP is enabled, then the changed divider needs to be kept.
*/
if (!dev_data->xip_enabled) {
nrf_clock_hfclk192m_div_set(NRF_CLOCK, NRF_CLOCK_HFCLK_DIV_4);
}
#endif
#ifdef CONFIG_MULTITHREADING
k_sem_give(&dev_data->sem);
#else
ARG_UNUSED(dev_data);
#endif
pm_device_busy_clear(dev);
}
static inline void qspi_trans_lock(const struct device *dev)
{
#ifdef CONFIG_MULTITHREADING
struct qspi_nor_data *dev_data = dev->data;
k_sem_take(&dev_data->trans, K_FOREVER);
#else /* CONFIG_MULTITHREADING */
ARG_UNUSED(dev);
#endif /* CONFIG_MULTITHREADING */
}
static inline void qspi_trans_unlock(const struct device *dev)
{
#ifdef CONFIG_MULTITHREADING
struct qspi_nor_data *dev_data = dev->data;
k_sem_give(&dev_data->trans);
#else /* CONFIG_MULTITHREADING */
ARG_UNUSED(dev);
#endif /* CONFIG_MULTITHREADING */
}
static inline void qspi_wait_for_completion(const struct device *dev,
nrfx_err_t res)
{
struct qspi_nor_data *dev_data = dev->data;
if (res == NRFX_SUCCESS) {
#ifdef CONFIG_MULTITHREADING
k_sem_take(&dev_data->sync, K_FOREVER);
#else /* CONFIG_MULTITHREADING */
unsigned int key = irq_lock();
while (!dev_data->ready) {
k_cpu_atomic_idle(key);
key = irq_lock();
}
dev_data->ready = false;
irq_unlock(key);
#endif /* CONFIG_MULTITHREADING */
}
}
static inline void qspi_complete(struct qspi_nor_data *dev_data)
{
#ifdef CONFIG_MULTITHREADING
k_sem_give(&dev_data->sync);
#else /* CONFIG_MULTITHREADING */
dev_data->ready = true;
#endif /* CONFIG_MULTITHREADING */
}
/**
* @brief QSPI handler
*
* @param event Driver event type
* @param p_context Pointer to context. Use in interrupt handler.
* @retval None
*/
static void qspi_handler(nrfx_qspi_evt_t event, void *p_context)
{
struct qspi_nor_data *dev_data = p_context;
if (event == NRFX_QSPI_EVENT_DONE) {
qspi_complete(dev_data);
}
}
static int qspi_device_init(const struct device *dev)
{
struct qspi_nor_data *dev_data = dev->data;
if (dev_data->xip_enabled) {
return 0;
}
#ifdef CONFIG_PM_DEVICE_RUNTIME
return pm_device_runtime_get(dev);
#else
nrfx_err_t res;
int ret = 0;
qspi_lock(dev);
/* In multithreading, driver can call qspi_device_init more than once
* before calling qspi_device_uninit. Keepping count, so QSPI is
* uninitialized only at the last call (count == 0).
*/
#ifdef CONFIG_MULTITHREADING
k_sem_give(&dev_data->count);
#endif
if (!qspi_initialized) {
const struct qspi_nor_config *dev_config = dev->config;
res = nrfx_qspi_init(&dev_config->nrfx_cfg,
qspi_handler,
dev_data);
ret = qspi_get_zephyr_ret_code(res);
qspi_initialized = (ret == 0);
}
qspi_unlock(dev);
return ret;
#endif
}
static void qspi_device_uninit(const struct device *dev)
{
struct qspi_nor_data *dev_data = dev->data;
if (dev_data->xip_enabled) {
return;
}
#ifdef CONFIG_PM_DEVICE_RUNTIME
int ret = pm_device_runtime_put(dev);
if (ret < 0) {
LOG_ERR("Failed to schedule device sleep: %d", ret);
}
#else
bool last = true;
qspi_lock(dev);
#ifdef CONFIG_MULTITHREADING
/* The last thread to finish using the driver uninit the QSPI */
(void) k_sem_take(&dev_data->count, K_NO_WAIT);
last = (k_sem_count_get(&dev_data->count) == 0);
#endif
if (last) {
while (nrfx_qspi_mem_busy_check() != NRFX_SUCCESS) {
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_msleep(50);
} else {
k_busy_wait(50000);
}
}
nrfx_qspi_uninit();
qspi_initialized = false;
}
qspi_unlock(dev);
#endif
}
/* QSPI send custom command.
*
* If this is used for both send and receive the buffer sizes must be
* equal and cover the whole transaction.
*/
static int qspi_send_cmd(const struct device *dev, const struct qspi_cmd *cmd,
bool wren)
{
/* Check input parameters */
if (!cmd) {
return -EINVAL;
}
const void *tx_buf = NULL;
size_t tx_len = 0;
void *rx_buf = NULL;
size_t rx_len = 0;
size_t xfer_len = sizeof(cmd->op_code);
if (cmd->tx_buf) {
tx_buf = cmd->tx_buf->buf;
tx_len = cmd->tx_buf->len;
}
if (cmd->rx_buf) {
rx_buf = cmd->rx_buf->buf;
rx_len = cmd->rx_buf->len;
}
if ((rx_len != 0) && (tx_len != 0)) {
if (rx_len != tx_len) {
return -EINVAL;
}
xfer_len += tx_len;
} else {
/* At least one of these is zero. */
xfer_len += tx_len + rx_len;
}
if (xfer_len > NRF_QSPI_CINSTR_LEN_9B) {
LOG_WRN("cinstr %02x transfer too long: %zu",
cmd->op_code, xfer_len);
return -EINVAL;
}
nrf_qspi_cinstr_conf_t cinstr_cfg = {
.opcode = cmd->op_code,
.length = xfer_len,
.io2_level = true,
.io3_level = true,
.wipwait = false,
.wren = wren,
};
qspi_lock(dev);
int res = nrfx_qspi_cinstr_xfer(&cinstr_cfg, tx_buf, rx_buf);
qspi_unlock(dev);
return qspi_get_zephyr_ret_code(res);
}
#if !IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_NONE)
/* RDSR. Negative value is error. */
static int qspi_rdsr(const struct device *dev, uint8_t sr_num)
{
uint8_t opcode = SPI_NOR_CMD_RDSR;
if (sr_num > 2 || sr_num == 0) {
return -EINVAL;
}
if (sr_num == 2) {
opcode = SPI_NOR_CMD_RDSR2;
}
uint8_t sr = 0xFF;
const struct qspi_buf sr_buf = {
.buf = &sr,
.len = sizeof(sr),
};
struct qspi_cmd cmd = {
.op_code = opcode,
.rx_buf = &sr_buf,
};
int ret = qspi_send_cmd(dev, &cmd, false);
return (ret < 0) ? ret : sr;
}
/* Wait until RDSR confirms write is not in progress. */
static int qspi_wait_while_writing(const struct device *dev)
{
int ret;
do {
ret = qspi_rdsr(dev, 1);
} while ((ret >= 0)
&& ((ret & SPI_NOR_WIP_BIT) != 0U));
return (ret < 0) ? ret : 0;
}
static int qspi_wrsr(const struct device *dev, uint8_t sr_val, uint8_t sr_num)
{
int ret = 0;
uint8_t opcode = SPI_NOR_CMD_WRSR;
uint8_t length = 1;
uint8_t sr_array[2] = {0};
if (sr_num > 2 || sr_num == 0) {
return -EINVAL;
}
if (sr_num == 1) {
sr_array[0] = sr_val;
#if SR1_WRITE_CLEARS_SR2
/* Writing sr1 clears sr2. need to read/modify/write both. */
ret = qspi_rdsr(dev, 2);
if (ret < 0) {
LOG_ERR("RDSR for WRSR failed: %d", ret);
return ret;
}
sr_array[1] = ret;
length = 2;
#endif
} else { /* sr_num == 2 */
#if SR2_WRITE_NEEDS_SR1
/* Writing sr2 requires writing sr1 as well.
* Uses standard WRSR opcode
*/
sr_array[1] = sr_val;
ret = qspi_rdsr(dev, 1);
if (ret < 0) {
LOG_ERR("RDSR for WRSR failed: %d", ret);
return ret;
}
sr_array[0] = ret;
length = 2;
#elif IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S2B1v6)
/* Writing sr2 uses a dedicated WRSR2 command */
sr_array[0] = sr_val;
opcode = SPI_NOR_CMD_WRSR2;
#else
LOG_ERR("Attempted to write status register 2, but no known method to write sr2");
return -EINVAL;
#endif
}
const struct qspi_buf sr_buf = {
.buf = sr_array,
.len = length,
};
struct qspi_cmd cmd = {
.op_code = opcode,
.tx_buf = &sr_buf,
};
ret = qspi_send_cmd(dev, &cmd, true);
/* Writing SR can take some time, and further
* commands sent while it's happening can be
* corrupted. Wait.
*/
if (ret == 0) {
ret = qspi_wait_while_writing(dev);
}
return ret;
}
#endif /* !IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_NONE) */
/* QSPI erase */
static int qspi_erase(const struct device *dev, uint32_t addr, uint32_t size)
{
/* address must be sector-aligned */
if ((addr % QSPI_SECTOR_SIZE) != 0) {
return -EINVAL;
}
/* size must be a non-zero multiple of sectors */
if ((size == 0) || (size % QSPI_SECTOR_SIZE) != 0) {
return -EINVAL;
}
int rv = 0;
const struct qspi_nor_config *params = dev->config;
rv = qspi_device_init(dev);
if (rv != 0) {
goto out;
}
qspi_trans_lock(dev);
rv = qspi_nor_write_protection_set(dev, false);
if (rv != 0) {
goto out_trans_unlock;
}
qspi_lock(dev);
while (size > 0) {
nrfx_err_t res = !NRFX_SUCCESS;
uint32_t adj = 0;
if (size == params->size) {
/* chip erase */
res = nrfx_qspi_chip_erase();
adj = size;
} else if ((size >= QSPI_BLOCK_SIZE) &&
QSPI_IS_BLOCK_ALIGNED(addr)) {
/* 64 kB block erase */
res = nrfx_qspi_erase(NRF_QSPI_ERASE_LEN_64KB, addr);
adj = QSPI_BLOCK_SIZE;
} else if ((size >= QSPI_SECTOR_SIZE) &&
QSPI_IS_SECTOR_ALIGNED(addr)) {
/* 4kB sector erase */
res = nrfx_qspi_erase(NRF_QSPI_ERASE_LEN_4KB, addr);
adj = QSPI_SECTOR_SIZE;
} else {
/* minimal erase size is at least a sector size */
LOG_ERR("unsupported at 0x%lx size %zu", (long)addr, size);
res = NRFX_ERROR_INVALID_PARAM;
}
qspi_wait_for_completion(dev, res);
if (res == NRFX_SUCCESS) {
addr += adj;
size -= adj;
} else {
LOG_ERR("erase error at 0x%lx size %zu", (long)addr, size);
rv = qspi_get_zephyr_ret_code(res);
break;
}
}
qspi_unlock(dev);
int rv2 = qspi_nor_write_protection_set(dev, true);
if (!rv) {
rv = rv2;
}
out_trans_unlock:
qspi_trans_unlock(dev);
out:
qspi_device_uninit(dev);
return rv;
}
/* Configures QSPI memory for the transfer */
static int qspi_nrfx_configure(const struct device *dev)
{
struct qspi_nor_data *dev_data = dev->data;
const struct qspi_nor_config *dev_config = dev->config;
#if defined(CONFIG_SOC_SERIES_NRF53X)
/* When the QSPI peripheral is activated, during the nrfx_qspi driver
* initialization, it reads the status of the connected flash chip.
* Make sure this transaction is performed with a valid base clock
* divider.
*/
nrf_clock_hfclk192m_div_set(NRF_CLOCK, BASE_CLOCK_DIV);
#endif
nrfx_err_t res = nrfx_qspi_init(&dev_config->nrfx_cfg,
qspi_handler,
dev_data);
#if defined(CONFIG_SOC_SERIES_NRF53X)
/* Restore the default /4 divider after the QSPI initialization. */
nrf_clock_hfclk192m_div_set(NRF_CLOCK, NRF_CLOCK_HFCLK_DIV_4);
#endif
int ret = qspi_get_zephyr_ret_code(res);
if (ret < 0) {
return ret;
}
#if DT_INST_NODE_HAS_PROP(0, rx_delay)
if (!nrf53_errata_121()) {
nrf_qspi_iftiming_set(NRF_QSPI, DT_INST_PROP(0, rx_delay));
}
#endif
/* It may happen that after the flash chip was previously put into
* the DPD mode, the system was reset but the flash chip was not.
* Consequently, the flash chip can be in the DPD mode at this point.
* Some flash chips will just exit the DPD mode on the first CS pulse,
* but some need to receive the dedicated command to do it, so send it.
* This can be the case even if the current image does not have
* CONFIG_PM_DEVICE set to enter DPD mode, as a previously executing image
* (for example the main image if the currently executing image is the
* bootloader) might have set DPD mode before reboot. As a result,
* attempt to exit DPD mode regardless of whether CONFIG_PM_DEVICE is set.
*/
ret = exit_dpd(dev);
if (ret < 0) {
return ret;
}
/* Set QE to match transfer mode. If not using quad
* it's OK to leave QE set, but doing so prevents use
* of WP#/RESET#/HOLD# which might be useful.
*
* Note build assert above ensures QER is S1B6 or
* S2B1v1/4/5/6. Other options require more logic.
*/
#if !IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_NONE)
nrf_qspi_prot_conf_t const *prot_if =
&dev_config->nrfx_cfg.prot_if;
bool qe_value = (prot_if->writeoc == NRF_QSPI_WRITEOC_PP4IO) ||
(prot_if->writeoc == NRF_QSPI_WRITEOC_PP4O) ||
(prot_if->readoc == NRF_QSPI_READOC_READ4IO) ||
(prot_if->readoc == NRF_QSPI_READOC_READ4O);
uint8_t sr_num = 0;
uint8_t qe_mask = 0;
#if IS_EQUAL(INST_0_QER, JESD216_DW15_QER_VAL_S1B6)
sr_num = 1;
qe_mask = BIT(6);
#elif QER_IS_S2B1
sr_num = 2;
qe_mask = BIT(1);
#else
LOG_ERR("Unsupported QER type");
return -EINVAL;
#endif
ret = qspi_rdsr(dev, sr_num);
if (ret < 0) {
LOG_ERR("RDSR failed: %d", ret);
return ret;
}
uint8_t sr = (uint8_t)ret;
bool qe_state = ((sr & qe_mask) != 0U);
LOG_DBG("RDSR %02x QE %d need %d: %s", sr, qe_state, qe_value,
(qe_state != qe_value) ? "updating" : "no-change");
ret = 0;
if (qe_state != qe_value) {
sr ^= qe_mask;
ret = qspi_wrsr(dev, sr, sr_num);
}
if (ret < 0) {
LOG_ERR("QE %s failed: %d", qe_value ? "set" : "clear",
ret);
return ret;
}
#endif
if (INST_0_4BA != 0) {
struct qspi_cmd cmd = {
.op_code = SPI_NOR_CMD_4BA,
};
/* Call will send write enable before instruction if that
* requirement is encoded in INST_0_4BA.
*/
ret = qspi_send_cmd(dev, &cmd, (INST_0_4BA & 0x02));
if (ret < 0) {
LOG_ERR("E4BA cmd issue failed: %d.", ret);
} else {
LOG_DBG("E4BA cmd issued.");
}
}
return ret;
}
static int qspi_read_jedec_id(const struct device *dev,
uint8_t *id)
{
const struct qspi_buf rx_buf = {
.buf = id,
.len = 3
};
const struct qspi_cmd cmd = {
.op_code = SPI_NOR_CMD_RDID,
.rx_buf = &rx_buf,
};
int ret = qspi_device_init(dev);
if (ret == 0) {
ret = qspi_send_cmd(dev, &cmd, false);
}
qspi_device_uninit(dev);
return ret;
}
#if defined(CONFIG_FLASH_JESD216_API)
static int qspi_sfdp_read(const struct device *dev, off_t offset,
void *data, size_t len)
{
__ASSERT(data != NULL, "null destination");
uint8_t addr_buf[] = {
offset >> 16,
offset >> 8,
offset,
0, /* wait state */
};
nrf_qspi_cinstr_conf_t cinstr_cfg = {
.opcode = JESD216_CMD_READ_SFDP,
.length = NRF_QSPI_CINSTR_LEN_1B,
.io2_level = true,
.io3_level = true,
};
int ret = qspi_device_init(dev);
nrfx_err_t res = NRFX_SUCCESS;
if (ret != 0) {
LOG_DBG("qspi_device_init: %d", ret);
qspi_device_uninit(dev);
return ret;
}
qspi_lock(dev);
res = nrfx_qspi_lfm_start(&cinstr_cfg);
if (res != NRFX_SUCCESS) {
LOG_DBG("lfm_start: %x", res);
goto out;
}
res = nrfx_qspi_lfm_xfer(addr_buf, NULL, sizeof(addr_buf), false);
if (res != NRFX_SUCCESS) {
LOG_DBG("lfm_xfer addr: %x", res);
goto out;
}
res = nrfx_qspi_lfm_xfer(NULL, data, len, true);
if (res != NRFX_SUCCESS) {
LOG_DBG("lfm_xfer read: %x", res);
goto out;
}
out:
qspi_unlock(dev);
qspi_device_uninit(dev);
return qspi_get_zephyr_ret_code(res);
}
#endif /* CONFIG_FLASH_JESD216_API */
/**
* @brief Retrieve the Flash JEDEC ID and compare it with the one expected
*
* @param dev The device structure
* @return 0 on success, negative errno code otherwise
*/
static inline int qspi_nor_read_id(const struct device *dev)
{
uint8_t id[SPI_NOR_MAX_ID_LEN];
int ret = qspi_read_jedec_id(dev, id);
if (ret != 0) {
return -EIO;
}
const struct qspi_nor_config *qnc = dev->config;
if (memcmp(qnc->id, id, SPI_NOR_MAX_ID_LEN) != 0) {
LOG_ERR("JEDEC id [%02x %02x %02x] expect [%02x %02x %02x]",
id[0], id[1], id[2],
qnc->id[0], qnc->id[1], qnc->id[2]);
return -ENODEV;
}
return 0;
}
static inline nrfx_err_t read_non_aligned(const struct device *dev,
off_t addr,
void *dest, size_t size)
{
uint8_t __aligned(WORD_SIZE) buf[WORD_SIZE * 2];
uint8_t *dptr = dest;
off_t flash_prefix = (WORD_SIZE - (addr % WORD_SIZE)) % WORD_SIZE;
if (flash_prefix > size) {
flash_prefix = size;
}
off_t dest_prefix = (WORD_SIZE - (off_t)dptr % WORD_SIZE) % WORD_SIZE;
if (dest_prefix > size) {
dest_prefix = size;
}
off_t flash_suffix = (size - flash_prefix) % WORD_SIZE;
off_t flash_middle = size - flash_prefix - flash_suffix;
off_t dest_middle = size - dest_prefix -
(size - dest_prefix) % WORD_SIZE;
if (flash_middle > dest_middle) {
flash_middle = dest_middle;
flash_suffix = size - flash_prefix - flash_middle;
}
nrfx_err_t res = NRFX_SUCCESS;
/* read from aligned flash to aligned memory */
if (flash_middle != 0) {
res = nrfx_qspi_read(dptr + dest_prefix, flash_middle,
addr + flash_prefix);
qspi_wait_for_completion(dev, res);
if (res != NRFX_SUCCESS) {
return res;
}
/* perform shift in RAM */
if (flash_prefix != dest_prefix) {
memmove(dptr + flash_prefix, dptr + dest_prefix, flash_middle);
}
}
/* read prefix */
if (flash_prefix != 0) {
res = nrfx_qspi_read(buf, WORD_SIZE, addr -
(WORD_SIZE - flash_prefix));
qspi_wait_for_completion(dev, res);
if (res != NRFX_SUCCESS) {
return res;
}
memcpy(dptr, buf + WORD_SIZE - flash_prefix, flash_prefix);
}
/* read suffix */
if (flash_suffix != 0) {
res = nrfx_qspi_read(buf, WORD_SIZE * 2,
addr + flash_prefix + flash_middle);
qspi_wait_for_completion(dev, res);
if (res != NRFX_SUCCESS) {
return res;
}
memcpy(dptr + flash_prefix + flash_middle, buf, flash_suffix);
}
return res;
}
static int qspi_nor_read(const struct device *dev, off_t addr, void *dest,
size_t size)
{
if (!dest) {
return -EINVAL;
}
/* read size must be non-zero */
if (!size) {
return 0;
}
const struct qspi_nor_config *params = dev->config;
/* affected region should be within device */
if (addr < 0 ||
(addr + size) > params->size) {
LOG_ERR("read error: address or size "
"exceeds expected values."
"Addr: 0x%lx size %zu", (long)addr, size);
return -EINVAL;
}
int rc = qspi_device_init(dev);
if (rc != 0) {
goto out;
}
qspi_lock(dev);
nrfx_err_t res = read_non_aligned(dev, addr, dest, size);
qspi_unlock(dev);
rc = qspi_get_zephyr_ret_code(res);
out:
qspi_device_uninit(dev);
return rc;
}
/* addr aligned, sptr not null, slen less than 4 */
static inline nrfx_err_t write_sub_word(const struct device *dev, off_t addr,
const void *sptr, size_t slen)
{
uint8_t __aligned(4) buf[4];
nrfx_err_t res;
/* read out the whole word so that unchanged data can be
* written back
*/
res = nrfx_qspi_read(buf, sizeof(buf), addr);
qspi_wait_for_completion(dev, res);
if (res == NRFX_SUCCESS) {
memcpy(buf, sptr, slen);
res = nrfx_qspi_write(buf, sizeof(buf), addr);
qspi_wait_for_completion(dev, res);
}
return res;
}
BUILD_ASSERT((CONFIG_NORDIC_QSPI_NOR_STACK_WRITE_BUFFER_SIZE % 4) == 0,
"NOR stack buffer must be multiple of 4 bytes");
/* If enabled write using a stack-allocated aligned SRAM buffer as
* required for DMA transfers by QSPI peripheral.
*
* If not enabled return the error the peripheral would have produced.
*/
static nrfx_err_t write_through_buffer(const struct device *dev, off_t addr,
const void *sptr, size_t slen)
{
nrfx_err_t res = NRFX_SUCCESS;
if (CONFIG_NORDIC_QSPI_NOR_STACK_WRITE_BUFFER_SIZE > 0) {
uint8_t __aligned(4) buf[CONFIG_NORDIC_QSPI_NOR_STACK_WRITE_BUFFER_SIZE];
const uint8_t *sp = sptr;
while ((slen > 0) && (res == NRFX_SUCCESS)) {
size_t len = MIN(slen, sizeof(buf));
memcpy(buf, sp, len);
res = nrfx_qspi_write(buf, len, addr);
qspi_wait_for_completion(dev, res);
if (res == NRFX_SUCCESS) {
slen -= len;
sp += len;
addr += len;
}
}
} else {
res = NRFX_ERROR_INVALID_ADDR;
}
return res;
}
static int qspi_nor_write(const struct device *dev, off_t addr,
const void *src,
size_t size)
{
if (!src) {
return -EINVAL;
}
/* write size must be non-zero, less than 4, or a multiple of 4 */
if ((size == 0)
|| ((size > 4) && ((size % 4U) != 0))) {
return -EINVAL;
}
/* address must be 4-byte aligned */
if ((addr % 4U) != 0) {
return -EINVAL;
}
const struct qspi_nor_config *params = dev->config;
/* affected region should be within device */
if (addr < 0 ||
(addr + size) > params->size) {
LOG_ERR("write error: address or size "
"exceeds expected values."
"Addr: 0x%lx size %zu", (long)addr, size);
return -EINVAL;
}
nrfx_err_t res = NRFX_SUCCESS;
int rc = qspi_device_init(dev);
if (rc != 0) {
goto out;
}
qspi_trans_lock(dev);
res = qspi_nor_write_protection_set(dev, false);
qspi_lock(dev);
if (!res) {
if (size < 4U) {
res = write_sub_word(dev, addr, src, size);
} else if (!nrfx_is_in_ram(src) ||
!nrfx_is_word_aligned(src)) {
res = write_through_buffer(dev, addr, src, size);
} else {
res = nrfx_qspi_write(src, size, addr);
qspi_wait_for_completion(dev, res);
}
}
qspi_unlock(dev);
int res2 = qspi_nor_write_protection_set(dev, true);
qspi_trans_unlock(dev);
if (!res) {
res = res2;
}
rc = qspi_get_zephyr_ret_code(res);
out:
qspi_device_uninit(dev);
return rc;
}
static int qspi_nor_erase(const struct device *dev, off_t addr, size_t size)
{
const struct qspi_nor_config *params = dev->config;
/* affected region should be within device */
if (addr < 0 ||
(addr + size) > params->size) {
LOG_ERR("erase error: address or size "
"exceeds expected values."
"Addr: 0x%lx size %zu", (long)addr, size);
return -EINVAL;
}
int ret = qspi_erase(dev, addr, size);
return ret;
}
static int qspi_nor_write_protection_set(const struct device *dev,
bool write_protect)
{
int ret = 0;
struct qspi_cmd cmd = {
.op_code = ((write_protect) ? SPI_NOR_CMD_WRDI : SPI_NOR_CMD_WREN),
};
if (qspi_send_cmd(dev, &cmd, false) != 0) {
ret = -EIO;
}
return ret;
}
/**
* @brief Configure the flash
*
* @param dev The flash device structure
* @param info The flash info structure
* @return 0 on success, negative errno code otherwise
*/
static int qspi_nor_configure(const struct device *dev)
{
int ret = qspi_nrfx_configure(dev);
if (ret != 0) {
return ret;
}
#ifdef CONFIG_PM_DEVICE_RUNTIME
ret = pm_device_runtime_enable(dev);
if (ret < 0) {
LOG_ERR("Failed to enable runtime power management: %d", ret);
} else {
LOG_DBG("Runtime power management enabled");
}
#else
qspi_device_uninit(dev);
#endif
/* now the spi bus is configured, we can verify the flash id */
if (qspi_nor_read_id(dev) != 0) {
return -ENODEV;
}
return 0;
}
/**
* @brief Initialize and configure the flash
*
* @param name The flash name
* @return 0 on success, negative errno code otherwise
*/
static int qspi_nor_init(const struct device *dev)
{
int rc;
const struct qspi_nor_config *dev_config = dev->config;
int ret = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
IRQ_CONNECT(DT_IRQN(QSPI_NODE), DT_IRQ(QSPI_NODE, priority),
nrfx_isr, nrfx_qspi_irq_handler, 0);
rc = qspi_nor_configure(dev);
#ifdef CONFIG_NORDIC_QSPI_NOR_XIP
if (!rc) {
/* Enable XIP mode for QSPI NOR flash, this will prevent the
* flash from being powered down
*/
z_impl_nrf_qspi_nor_xip_enable(dev, true);
}
#endif
return rc;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
/* instance 0 page count */
#define LAYOUT_PAGES_COUNT (INST_0_BYTES / \
CONFIG_NORDIC_QSPI_NOR_FLASH_LAYOUT_PAGE_SIZE)
BUILD_ASSERT((CONFIG_NORDIC_QSPI_NOR_FLASH_LAYOUT_PAGE_SIZE *
LAYOUT_PAGES_COUNT)
== INST_0_BYTES,
"QSPI_NOR_FLASH_LAYOUT_PAGE_SIZE incompatible with flash size");
static const struct flash_pages_layout dev_layout = {
.pages_count = LAYOUT_PAGES_COUNT,
.pages_size = CONFIG_NORDIC_QSPI_NOR_FLASH_LAYOUT_PAGE_SIZE,
};
#undef LAYOUT_PAGES_COUNT
static void qspi_nor_pages_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
*layout = &dev_layout;
*layout_size = 1;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
static const struct flash_parameters *
qspi_flash_get_parameters(const struct device *dev)
{
ARG_UNUSED(dev);
static const struct flash_parameters qspi_flash_parameters = {
.write_block_size = 4,
.erase_value = 0xff,
};
return &qspi_flash_parameters;
}
static const struct flash_driver_api qspi_nor_api = {
.read = qspi_nor_read,
.write = qspi_nor_write,
.erase = qspi_nor_erase,
.get_parameters = qspi_flash_get_parameters,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = qspi_nor_pages_layout,
#endif
#if defined(CONFIG_FLASH_JESD216_API)
.sfdp_read = qspi_sfdp_read,
.read_jedec_id = qspi_read_jedec_id,
#endif /* CONFIG_FLASH_JESD216_API */
};
#ifdef CONFIG_PM_DEVICE
static int enter_dpd(const struct device *const dev)
{
if (IS_ENABLED(DT_INST_PROP(0, has_dpd))) {
struct qspi_cmd cmd = {
.op_code = SPI_NOR_CMD_DPD,
};
uint32_t t_enter_dpd = DT_INST_PROP_OR(0, t_enter_dpd, 0);
int ret;
ret = qspi_send_cmd(dev, &cmd, false);
if (ret < 0) {
return ret;
}
if (t_enter_dpd) {
uint32_t t_enter_dpd_us =
DIV_ROUND_UP(t_enter_dpd, NSEC_PER_USEC);
k_busy_wait(t_enter_dpd_us);
}
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
static int exit_dpd(const struct device *const dev)
{
if (IS_ENABLED(DT_INST_PROP(0, has_dpd))) {
struct qspi_cmd cmd = {
.op_code = SPI_NOR_CMD_RDPD,
};
uint32_t t_exit_dpd = DT_INST_PROP_OR(0, t_exit_dpd, 0);
int ret;
ret = qspi_send_cmd(dev, &cmd, false);
if (ret < 0) {
return ret;
}
if (t_exit_dpd) {
uint32_t t_exit_dpd_us =
DIV_ROUND_UP(t_exit_dpd, NSEC_PER_USEC);
k_busy_wait(t_exit_dpd_us);
}
}
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int qspi_nor_pm_action(const struct device *dev,
enum pm_device_action action)
{
struct qspi_nor_data *dev_data = dev->data;
const struct qspi_nor_config *dev_config = dev->config;
int ret;
nrfx_err_t err;
if (pm_device_is_busy(dev)) {
return -EBUSY;
}
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:
#ifndef CONFIG_PM_DEVICE_RUNTIME
/* If PM_DEVICE_RUNTIME, we don't uninit after RESUME */
ret = qspi_device_init(dev);
if (ret < 0) {
return ret;
}
#endif
if (dev_data->xip_enabled) {
return -EBUSY;
}
if (nrfx_qspi_mem_busy_check() != NRFX_SUCCESS) {
return -EBUSY;
}
ret = enter_dpd(dev);
if (ret < 0) {
return ret;
}
nrfx_qspi_uninit();
ret = pinctrl_apply_state(dev_config->pcfg,
PINCTRL_STATE_SLEEP);
if (ret < 0) {
return ret;
}
break;
case PM_DEVICE_ACTION_RESUME:
ret = pinctrl_apply_state(dev_config->pcfg,
PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
err = nrfx_qspi_init(&dev_config->nrfx_cfg,
qspi_handler,
dev_data);
if (err != NRFX_SUCCESS) {
return -EIO;
}
ret = exit_dpd(dev);
if (ret < 0) {
return ret;
}
#ifndef CONFIG_PM_DEVICE_RUNTIME
/* If PM_DEVICE_RUNTIME, we're immediately going to use the device */
qspi_device_uninit(dev);
#endif
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
void z_impl_nrf_qspi_nor_xip_enable(const struct device *dev, bool enable)
{
struct qspi_nor_data *dev_data = dev->data;
int ret;
if (dev_data->xip_enabled == enable) {
return;
}
ret = qspi_device_init(dev);
if (ret != 0) {
LOG_ERR("NRF QSPI NOR XIP %s failed with %d\n", enable ? "enable" : "disable", ret);
return;
}
#if NRF_QSPI_HAS_XIPEN
nrf_qspi_xip_set(NRF_QSPI, enable);
#endif
qspi_lock(dev);
dev_data->xip_enabled = enable;
qspi_unlock(dev);
qspi_device_uninit(dev);
}
#ifdef CONFIG_USERSPACE
#include <zephyr/syscall_handler.h>
void z_vrfy_nrf_qspi_nor_xip_enable(const struct device *dev, bool enable)
{
Z_OOPS(Z_SYSCALL_SPECIFIC_DRIVER(dev, K_OBJ_DRIVER_FLASH,
&qspi_nor_api));
z_impl_nrf_qspi_nor_xip_enable(dev, enable);
}
#include <syscalls/nrf_qspi_nor_xip_enable_mrsh.c>
#endif /* CONFIG_USERSPACE */
static struct qspi_nor_data qspi_nor_dev_data = {
#ifdef CONFIG_MULTITHREADING
.trans = Z_SEM_INITIALIZER(qspi_nor_dev_data.trans, 1, 1),
.sem = Z_SEM_INITIALIZER(qspi_nor_dev_data.sem, 1, 1),
.sync = Z_SEM_INITIALIZER(qspi_nor_dev_data.sync, 0, 1),
.count = Z_SEM_INITIALIZER(qspi_nor_dev_data.count, 0, K_SEM_MAX_LIMIT),
#endif /* CONFIG_MULTITHREADING */
};
NRF_DT_CHECK_NODE_HAS_PINCTRL_SLEEP(QSPI_NODE);
PINCTRL_DT_DEFINE(QSPI_NODE);
static const struct qspi_nor_config qspi_nor_dev_config = {
.nrfx_cfg.skip_gpio_cfg = true,
.nrfx_cfg.skip_psel_cfg = true,
.pcfg = PINCTRL_DT_DEV_CONFIG_GET(QSPI_NODE),
.nrfx_cfg.prot_if = {
.readoc = COND_CODE_1(DT_INST_NODE_HAS_PROP(0, readoc),
(_CONCAT(NRF_QSPI_READOC_,
DT_STRING_UPPER_TOKEN(DT_DRV_INST(0),
readoc))),
(NRF_QSPI_READOC_FASTREAD)),
.writeoc = COND_CODE_1(DT_INST_NODE_HAS_PROP(0, writeoc),
(_CONCAT(NRF_QSPI_WRITEOC_,
DT_STRING_UPPER_TOKEN(DT_DRV_INST(0),
writeoc))),
(NRF_QSPI_WRITEOC_PP)),
.addrmode = DT_INST_PROP(0, address_size_32)
? NRF_QSPI_ADDRMODE_32BIT
: NRF_QSPI_ADDRMODE_24BIT,
},
.nrfx_cfg.phy_if = {
.sck_freq = INST_0_SCK_CFG,
.sck_delay = DT_INST_PROP(0, sck_delay),
.spi_mode = INST_0_SPI_MODE,
},
.size = INST_0_BYTES,
.id = DT_INST_PROP(0, jedec_id),
};
PM_DEVICE_DT_INST_DEFINE(0, qspi_nor_pm_action);
DEVICE_DT_INST_DEFINE(0, qspi_nor_init, PM_DEVICE_DT_INST_GET(0),
&qspi_nor_dev_data, &qspi_nor_dev_config,
POST_KERNEL, CONFIG_NORDIC_QSPI_NOR_INIT_PRIORITY,
&qspi_nor_api);
|