Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | /* * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <stdlib.h> #include <zephyr/kernel.h> #include <zephyr/init.h> #include <errno.h> #include <zephyr/sys/math_extras.h> #include <string.h> #include <zephyr/app_memory/app_memdomain.h> #ifdef CONFIG_MULTITHREADING #include <zephyr/sys/mutex.h> #endif #include <zephyr/sys/sys_heap.h> #include <zephyr/sys/libc-hooks.h> #include <zephyr/types.h> #ifdef CONFIG_MMU #include <zephyr/sys/mem_manage.h> #endif #define LOG_LEVEL CONFIG_KERNEL_LOG_LEVEL #include <zephyr/logging/log.h> LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); #ifdef CONFIG_COMMON_LIBC_MALLOC #if (CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE != 0) /* Figure out where the malloc variables live */ # if Z_MALLOC_PARTITION_EXISTS K_APPMEM_PARTITION_DEFINE(z_malloc_partition); # define POOL_SECTION Z_GENERIC_SECTION(K_APP_DMEM_SECTION(z_malloc_partition)) # define MALLOC_SECTION Z_GENERIC_SECTION(K_APP_DMEM_SECTION(z_malloc_partition)) # else # define POOL_SECTION __noinit # define MALLOC_SECTION # endif /* CONFIG_USERSPACE */ # if defined(CONFIG_MMU) && CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE < 0 # define ALLOCATE_HEAP_AT_STARTUP # endif # ifndef ALLOCATE_HEAP_AT_STARTUP /* Figure out alignment requirement */ # ifdef Z_MALLOC_PARTITION_EXISTS # ifdef CONFIG_MMU # define HEAP_ALIGN CONFIG_MMU_PAGE_SIZE # elif defined(CONFIG_MPU) # if defined(CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT) && \ (CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE > 0) # if (CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE & (CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE - 1)) != 0 # error CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE must be power of two on this target # endif # define HEAP_ALIGN CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE # elif defined(CONFIG_ARM) || defined(CONFIG_ARM64) # define HEAP_ALIGN MAX(sizeof(double), CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE) # elif defined(CONFIG_ARC) # define HEAP_ALIGN MAX(sizeof(double), Z_ARC_MPU_ALIGN) # elif defined(CONFIG_RISCV) # define HEAP_ALIGN Z_POW2_CEIL(MAX(sizeof(double), Z_RISCV_STACK_GUARD_SIZE)) # else /* Default to 64-bytes; we'll get a run-time error if this doesn't work. */ # define HEAP_ALIGN 64 # endif /* CONFIG_<arch> */ # endif /* elif CONFIG_MPU */ # endif /* else Z_MALLOC_PARTITION_EXISTS */ # ifndef HEAP_ALIGN # define HEAP_ALIGN sizeof(double) # endif # if CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE > 0 /* Static allocation of heap in BSS */ # define HEAP_SIZE ROUND_UP(CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE, HEAP_ALIGN) # define HEAP_BASE POINTER_TO_UINT(malloc_arena) static POOL_SECTION unsigned char __aligned(HEAP_ALIGN) malloc_arena[HEAP_SIZE]; # else /* CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE > 0 */ /* * Heap base and size are determined based on the available unused SRAM, in the * interval from a properly aligned address after the linker symbol `_end`, to * the end of SRAM */ # define USED_RAM_END_ADDR POINTER_TO_UINT(&_end) /* * No partition, heap can just start wherever _end is, with * suitable alignment */ # define HEAP_BASE ROUND_UP(USED_RAM_END_ADDR, HEAP_ALIGN) # if defined(CONFIG_XTENSA) && (defined(CONFIG_SOC_FAMILY_INTEL_ADSP) \ || defined(CONFIG_HAS_ESPRESSIF_HAL)) extern char _heap_sentry[]; # define HEAP_SIZE ROUND_DOWN((POINTER_TO_UINT(_heap_sentry) - HEAP_BASE), HEAP_ALIGN) # else # define HEAP_SIZE ROUND_DOWN((KB((size_t) CONFIG_SRAM_SIZE) - \ ((size_t) HEAP_BASE - (size_t) CONFIG_SRAM_BASE_ADDRESS)), HEAP_ALIGN) # endif /* else CONFIG_XTENSA */ # endif /* else CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE > 0 */ # endif /* else ALLOCATE_HEAP_AT_STARTUP */ POOL_SECTION static struct sys_heap z_malloc_heap; #ifdef CONFIG_MULTITHREADING MALLOC_SECTION SYS_MUTEX_DEFINE(z_malloc_heap_mutex); static inline void malloc_lock(void) { int lock_ret; lock_ret = sys_mutex_lock(&z_malloc_heap_mutex, K_FOREVER); __ASSERT_NO_MSG(lock_ret == 0); } static inline void malloc_unlock(void) { (void) sys_mutex_unlock(&z_malloc_heap_mutex); } #else #define malloc_lock() #define malloc_unlock() #endif void *malloc(size_t size) { malloc_lock(); void *ret = sys_heap_aligned_alloc(&z_malloc_heap, __alignof__(z_max_align_t), size); if (ret == NULL && size != 0) { errno = ENOMEM; } malloc_unlock(); return ret; } void *aligned_alloc(size_t alignment, size_t size) { malloc_lock(); void *ret = sys_heap_aligned_alloc(&z_malloc_heap, alignment, size); if (ret == NULL && size != 0) { errno = ENOMEM; } malloc_unlock(); return ret; } #ifdef CONFIG_GLIBCXX_LIBCPP /* * GCC's libstdc++ may use this function instead of aligned_alloc due to a * bug in the configuration for "newlib" environments (which includes picolibc). * When toolchains including that bug fix can become a dependency for Zephyr, * this work-around can be removed. * * Note that aligned_alloc isn't defined to work as a replacement for * memalign as it requires that the size be a multiple of the alignment, * while memalign does not. However, the aligned_alloc implementation here * is just a wrapper around sys_heap_aligned_alloc which doesn't have that * requirement and so can be used by memalign. */ void *memalign(size_t alignment, size_t size) { return aligned_alloc(alignment, size); } #endif static int malloc_prepare(void) { void *heap_base = NULL; size_t heap_size; #ifdef ALLOCATE_HEAP_AT_STARTUP heap_size = k_mem_free_get(); if (heap_size != 0) { heap_base = k_mem_map(heap_size, K_MEM_PERM_RW); __ASSERT(heap_base != NULL, "failed to allocate heap of size %zu", heap_size); } #elif defined(Z_MALLOC_PARTITION_EXISTS) && \ defined(CONFIG_MPU) && \ defined(CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT) /* Align size to power of two */ heap_size = 1; while (heap_size * 2 <= HEAP_SIZE) heap_size *= 2; /* Search for an aligned heap that fits within the available space */ while (heap_size >= HEAP_ALIGN) { heap_base = UINT_TO_POINTER(ROUND_UP(HEAP_BASE, heap_size)); if (POINTER_TO_UINT(heap_base) + heap_size <= HEAP_BASE + HEAP_SIZE) break; heap_size >>= 1; } #else heap_base = UINT_TO_POINTER(HEAP_BASE); heap_size = HEAP_SIZE; #endif #if Z_MALLOC_PARTITION_EXISTS z_malloc_partition.start = POINTER_TO_UINT(heap_base); z_malloc_partition.size = heap_size; z_malloc_partition.attr = K_MEM_PARTITION_P_RW_U_RW; #endif sys_heap_init(&z_malloc_heap, heap_base, heap_size); return 0; } void *realloc(void *ptr, size_t requested_size) { malloc_lock(); void *ret = sys_heap_aligned_realloc(&z_malloc_heap, ptr, __alignof__(z_max_align_t), requested_size); if (ret == NULL && requested_size != 0) { errno = ENOMEM; } malloc_unlock(); return ret; } void free(void *ptr) { malloc_lock(); sys_heap_free(&z_malloc_heap, ptr); malloc_unlock(); } SYS_INIT(malloc_prepare, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT); #else /* No malloc arena */ void *malloc(size_t size) { ARG_UNUSED(size); LOG_ERR("CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE is 0"); errno = ENOMEM; return NULL; } void free(void *ptr) { ARG_UNUSED(ptr); } void *realloc(void *ptr, size_t size) { ARG_UNUSED(ptr); return malloc(size); } #endif /* else no malloc arena */ #endif /* CONFIG_COMMON_LIBC_MALLOC */ #ifdef CONFIG_COMMON_LIBC_CALLOC void *calloc(size_t nmemb, size_t size) { void *ret; if (size_mul_overflow(nmemb, size, &size)) { errno = ENOMEM; return NULL; } ret = malloc(size); if (ret != NULL) { (void)memset(ret, 0, size); } return ret; } #endif /* CONFIG_COMMON_LIBC_CALLOC */ #ifdef CONFIG_COMMON_LIBC_REALLOCARRAY void *reallocarray(void *ptr, size_t nmemb, size_t size) { if (size_mul_overflow(nmemb, size, &size)) { errno = ENOMEM; return NULL; } return realloc(ptr, size); } #endif /* CONFIG_COMMON_LIBC_REALLOCARRAY */ |