Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
/*
 * Copyright (c) 2018, NXP
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT nxp_imx_lpspi

#include <errno.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/clock_control.h>
#include <fsl_lpspi.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
#include <zephyr/drivers/dma.h>
#endif
#include <zephyr/drivers/pinctrl.h>

LOG_MODULE_REGISTER(spi_mcux_lpspi, CONFIG_SPI_LOG_LEVEL);

#include "spi_context.h"

#define CHIP_SELECT_COUNT	4
#define MAX_DATA_WIDTH		4096

struct spi_mcux_config {
	LPSPI_Type *base;
	const struct device *clock_dev;
	clock_control_subsys_t clock_subsys;
	void (*irq_config_func)(const struct device *dev);
	uint32_t pcs_sck_delay;
	uint32_t sck_pcs_delay;
	uint32_t transfer_delay;
	const struct pinctrl_dev_config *pincfg;
};

#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
#define SPI_MCUX_LPSPI_DMA_ERROR_FLAG	0x01
#define SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG	0x02
#define SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG	0x04
#define SPI_MCUX_LPSPI_DMA_DONE_FLAG		\
	(SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG | SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG)

struct stream {
	const struct device *dma_dev;
	uint32_t channel; /* stores the channel for dma */
	struct dma_config dma_cfg;
	struct dma_block_config dma_blk_cfg;
};
#endif

struct spi_mcux_data {
	const struct device *dev;
	lpspi_master_handle_t handle;
	struct spi_context ctx;
	size_t transfer_len;
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
	volatile uint32_t status_flags;
	struct stream dma_rx;
	struct stream dma_tx;
	/* dummy value used for transferring NOP when tx buf is null */
	uint32_t dummy_tx_buffer;
	/* dummy value used to read RX data into when rx buf is null */
	uint32_t dummy_rx_buffer;
#endif
};

static void spi_mcux_transfer_next_packet(const struct device *dev)
{
	const struct spi_mcux_config *config = dev->config;
	struct spi_mcux_data *data = dev->data;
	LPSPI_Type *base = config->base;
	struct spi_context *ctx = &data->ctx;
	lpspi_transfer_t transfer;
	status_t status;

	if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
		/* nothing left to rx or tx, we're done! */
		spi_context_cs_control(&data->ctx, false);
		spi_context_complete(&data->ctx, dev, 0);
		return;
	}

	transfer.configFlags = kLPSPI_MasterPcsContinuous |
			       (ctx->config->slave << LPSPI_MASTER_PCS_SHIFT);

	if (ctx->tx_len == 0) {
		/* rx only, nothing to tx */
		transfer.txData = NULL;
		transfer.rxData = ctx->rx_buf;
		transfer.dataSize = ctx->rx_len;
	} else if (ctx->rx_len == 0) {
		/* tx only, nothing to rx */
		transfer.txData = (uint8_t *) ctx->tx_buf;
		transfer.rxData = NULL;
		transfer.dataSize = ctx->tx_len;
	} else if (ctx->tx_len == ctx->rx_len) {
		/* rx and tx are the same length */
		transfer.txData = (uint8_t *) ctx->tx_buf;
		transfer.rxData = ctx->rx_buf;
		transfer.dataSize = ctx->tx_len;
	} else if (ctx->tx_len > ctx->rx_len) {
		/* Break up the tx into multiple transfers so we don't have to
		 * rx into a longer intermediate buffer. Leave chip select
		 * active between transfers.
		 */
		transfer.txData = (uint8_t *) ctx->tx_buf;
		transfer.rxData = ctx->rx_buf;
		transfer.dataSize = ctx->rx_len;
		transfer.configFlags |= kLPSPI_MasterPcsContinuous;
	} else {
		/* Break up the rx into multiple transfers so we don't have to
		 * tx from a longer intermediate buffer. Leave chip select
		 * active between transfers.
		 */
		transfer.txData = (uint8_t *) ctx->tx_buf;
		transfer.rxData = ctx->rx_buf;
		transfer.dataSize = ctx->tx_len;
		transfer.configFlags |= kLPSPI_MasterPcsContinuous;
	}

	if (!(ctx->tx_count <= 1 && ctx->rx_count <= 1)) {
		transfer.configFlags |= kLPSPI_MasterPcsContinuous;
	}

	data->transfer_len = transfer.dataSize;

	status = LPSPI_MasterTransferNonBlocking(base, &data->handle,
						 &transfer);
	if (status != kStatus_Success) {
		LOG_ERR("Transfer could not start");
	}
}

static void spi_mcux_isr(const struct device *dev)
{
	const struct spi_mcux_config *config = dev->config;
	struct spi_mcux_data *data = dev->data;
	LPSPI_Type *base = config->base;

	LPSPI_MasterTransferHandleIRQ(base, &data->handle);
}

static void spi_mcux_master_transfer_callback(LPSPI_Type *base,
		lpspi_master_handle_t *handle, status_t status, void *userData)
{
	struct spi_mcux_data *data = userData;

	spi_context_update_tx(&data->ctx, 1, data->transfer_len);
	spi_context_update_rx(&data->ctx, 1, data->transfer_len);

	spi_mcux_transfer_next_packet(data->dev);
}

static int spi_mcux_configure(const struct device *dev,
			      const struct spi_config *spi_cfg)
{
	const struct spi_mcux_config *config = dev->config;
	struct spi_mcux_data *data = dev->data;
	LPSPI_Type *base = config->base;
	lpspi_master_config_t master_config;
	uint32_t clock_freq;
	uint32_t word_size;

	if (spi_context_configured(&data->ctx, spi_cfg)) {
		/* This configuration is already in use */
		return 0;
	}

	if (spi_cfg->operation & SPI_HALF_DUPLEX) {
		LOG_ERR("Half-duplex not supported");
		return -ENOTSUP;
	}

	LPSPI_MasterGetDefaultConfig(&master_config);

	if (spi_cfg->slave > CHIP_SELECT_COUNT) {
		LOG_ERR("Slave %d is greater than %d",
			    spi_cfg->slave,
			    CHIP_SELECT_COUNT);
		return -EINVAL;
	}

	word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
	if (word_size > MAX_DATA_WIDTH) {
		LOG_ERR("Word size %d is greater than %d",
			    word_size, MAX_DATA_WIDTH);
		return -EINVAL;
	}

	master_config.bitsPerFrame = word_size;

	master_config.cpol =
		(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
		? kLPSPI_ClockPolarityActiveLow
		: kLPSPI_ClockPolarityActiveHigh;

	master_config.cpha =
		(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
		? kLPSPI_ClockPhaseSecondEdge
		: kLPSPI_ClockPhaseFirstEdge;

	master_config.direction =
		(spi_cfg->operation & SPI_TRANSFER_LSB)
		? kLPSPI_LsbFirst
		: kLPSPI_MsbFirst;

	master_config.baudRate = spi_cfg->frequency;

	master_config.pcsToSckDelayInNanoSec = config->pcs_sck_delay;
	master_config.lastSckToPcsDelayInNanoSec = config->sck_pcs_delay;
	master_config.betweenTransferDelayInNanoSec = config->transfer_delay;

	if (!device_is_ready(config->clock_dev)) {
		LOG_ERR("clock control device not ready");
		return -ENODEV;
	}

	if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
				   &clock_freq)) {
		return -EINVAL;
	}

	/* Setting the baud rate in LPSPI_MasterInit requires module to be disabled */
	LPSPI_Enable(base, false);
	while ((base->CR & LPSPI_CR_MEN_MASK) != 0U) {
		/* Wait until LPSPI is disabled. Datasheet:
		 * After writing 0, MEN (Module Enable) remains set until the LPSPI has completed
		 * the current transfer and is idle.
		 */
	}

	LPSPI_MasterInit(base, &master_config, clock_freq);

	LPSPI_MasterTransferCreateHandle(base, &data->handle,
					 spi_mcux_master_transfer_callback,
					 data);

	LPSPI_SetDummyData(base, 0);

	data->ctx.config = spi_cfg;

	return 0;
}

#ifdef CONFIG_SPI_MCUX_LPSPI_DMA

/* This function is executed in the interrupt context */
static void spi_mcux_dma_callback(const struct device *dev, void *arg,
			 uint32_t channel, int status)
{
	/* arg directly holds the spi device */
	const struct device *spi_dev = arg;
	struct spi_mcux_data *data = (struct spi_mcux_data *)spi_dev->data;

	if (status < 0) {
		LOG_ERR("DMA callback error with channel %d.", channel);
		data->status_flags |= SPI_MCUX_LPSPI_DMA_ERROR_FLAG;
	} else {
		/* identify the origin of this callback */
		if (channel == data->dma_tx.channel) {
			/* this part of the transfer ends */
			data->status_flags |= SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG;
			LOG_DBG("DMA TX Block Complete");
		} else if (channel == data->dma_rx.channel) {
			/* this part of the transfer ends */
			data->status_flags |= SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG;
			LOG_DBG("DMA RX Block Complete");
		} else {
			LOG_ERR("DMA callback channel %d is not valid.",
								channel);
			data->status_flags |= SPI_MCUX_LPSPI_DMA_ERROR_FLAG;
		}
	}
	spi_context_complete(&data->ctx, spi_dev, 0);
}

static int spi_mcux_dma_tx_load(const struct device *dev, const uint8_t *buf, size_t len)
{
	const struct spi_mcux_config *cfg = dev->config;
	struct spi_mcux_data *data = dev->data;
	struct dma_block_config *blk_cfg;
	LPSPI_Type *base = cfg->base;

	/* remember active TX DMA channel (used in callback) */
	struct stream *stream = &data->dma_tx;

	blk_cfg = &stream->dma_blk_cfg;

	/* prepare the block for this TX DMA channel */
	memset(blk_cfg, 0, sizeof(struct dma_block_config));

	if (buf == NULL) {
		/* Treat the transfer as a peripheral to peripheral one, so that DMA
		 * reads from this address each time
		 */
		blk_cfg->source_address = (uint32_t)&data->dummy_tx_buffer;
		stream->dma_cfg.channel_direction = PERIPHERAL_TO_PERIPHERAL;
	} else {
		/* tx direction has memory as source and periph as dest. */
		blk_cfg->source_address = (uint32_t)buf;
		stream->dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
	}
	/* Enable scatter/gather */
	blk_cfg->source_gather_en = 1;
	/* Dest is LPSPI tx fifo */
	blk_cfg->dest_address = LPSPI_GetTxRegisterAddress(base);
	blk_cfg->block_size = len;
	/* Transfer 1 byte each DMA loop */
	stream->dma_cfg.source_burst_length = 1;

	stream->dma_cfg.head_block = &stream->dma_blk_cfg;
	/* give the client dev as arg, as the callback comes from the dma */
	stream->dma_cfg.user_data = (struct device *)dev;
	/* pass our client origin to the dma: data->dma_tx.dma_channel */
	return dma_config(data->dma_tx.dma_dev, data->dma_tx.channel,
			&stream->dma_cfg);
}

static int spi_mcux_dma_rx_load(const struct device *dev, uint8_t *buf,
				 size_t len)
{
	const struct spi_mcux_config *cfg = dev->config;
	struct spi_mcux_data *data = dev->data;
	struct dma_block_config *blk_cfg;
	LPSPI_Type *base = cfg->base;

	/* retrieve active RX DMA channel (used in callback) */
	struct stream *stream = &data->dma_rx;

	blk_cfg = &stream->dma_blk_cfg;

	/* prepare the block for this RX DMA channel */
	memset(blk_cfg, 0, sizeof(struct dma_block_config));

	if (buf == NULL) {
		/* Treat the transfer as a peripheral to peripheral one, so that DMA
		 * reads from this address each time
		 */
		blk_cfg->dest_address = (uint32_t)&data->dummy_rx_buffer;
		stream->dma_cfg.channel_direction = PERIPHERAL_TO_PERIPHERAL;
	} else {
		/* rx direction has periph as source and mem as dest. */
		blk_cfg->dest_address = (uint32_t)buf;
		stream->dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
	}
	blk_cfg->block_size = len;
	/* Enable scatter/gather */
	blk_cfg->dest_scatter_en = 1;
	/* Source is LPSPI rx fifo */
	blk_cfg->source_address = LPSPI_GetRxRegisterAddress(base);
	stream->dma_cfg.source_burst_length = 1;

	stream->dma_cfg.head_block = blk_cfg;
	stream->dma_cfg.user_data = (struct device *)dev;

	/* pass our client origin to the dma: data->dma_rx.channel */
	return dma_config(data->dma_rx.dma_dev, data->dma_rx.channel,
			&stream->dma_cfg);
}

static int wait_dma_rx_tx_done(const struct device *dev)
{
	struct spi_mcux_data *data = dev->data;
	int ret = -1;

	while (1) {
		ret = spi_context_wait_for_completion(&data->ctx);
		if (ret) {
			LOG_DBG("Timed out waiting for SPI context to complete");
			return ret;
		}
		if (data->status_flags & SPI_MCUX_LPSPI_DMA_ERROR_FLAG) {
			return -EIO;
		}

		if ((data->status_flags & SPI_MCUX_LPSPI_DMA_DONE_FLAG) ==
			SPI_MCUX_LPSPI_DMA_DONE_FLAG) {
			LOG_DBG("DMA block completed");
			return 0;
		}
	}
}

static int transceive_dma(const struct device *dev,
		      const struct spi_config *spi_cfg,
		      const struct spi_buf_set *tx_bufs,
		      const struct spi_buf_set *rx_bufs,
		      bool asynchronous,
		      spi_callback_t cb,
		      void *userdata)
{
	const struct spi_mcux_config *config = dev->config;
	struct spi_mcux_data *data = dev->data;
	LPSPI_Type *base = config->base;
	int ret;
	size_t dma_size;

	spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);

	ret = spi_mcux_configure(dev, spi_cfg);
	if (ret) {
		goto out;
	}

	spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);

	spi_context_cs_control(&data->ctx, true);

	/* DMA is fast enough watermarks are not required */
	LPSPI_SetFifoWatermarks(base, 0U, 0U);

	/* Send each spi buf via DMA, updating context as DMA completes */
	while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) {
		/* Clear status flags */
		data->status_flags = 0U;
		/* Load dma blocks of equal length */
		dma_size = MIN(data->ctx.tx_len, data->ctx.rx_len);
		if (dma_size == 0) {
			dma_size = MAX(data->ctx.tx_len, data->ctx.rx_len);
		}
		ret = spi_mcux_dma_tx_load(dev, data->ctx.tx_buf, dma_size);
		if (ret != 0) {
			goto out;
		}

		ret = spi_mcux_dma_rx_load(dev, data->ctx.rx_buf, dma_size);
		if (ret != 0) {
			goto out;
		}

		/* Start DMA */
		ret = dma_start(data->dma_tx.dma_dev, data->dma_tx.channel);
		if (ret != 0) {
			goto out;
		}
		ret = dma_start(data->dma_rx.dma_dev, data->dma_rx.channel);
		if (ret != 0) {
			goto out;
		}

		/* Enable DMA Requests */
		LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);

		/* Wait for DMA to finish */
		ret = wait_dma_rx_tx_done(dev);
		if (ret != 0) {
			goto out;
		}

		while ((LPSPI_GetStatusFlags(base) & kLPSPI_ModuleBusyFlag)) {
			/* wait until module is idle */
		}

		/* Disable DMA */
		LPSPI_DisableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);

		/* Update SPI contexts with amount of data we just sent */
		spi_context_update_tx(&data->ctx, 1, dma_size);
		spi_context_update_rx(&data->ctx, 1, dma_size);
	}

	spi_context_cs_control(&data->ctx, false);

out:
	spi_context_release(&data->ctx, ret);

	return ret;
}

#endif

static int transceive(const struct device *dev,
		      const struct spi_config *spi_cfg,
		      const struct spi_buf_set *tx_bufs,
		      const struct spi_buf_set *rx_bufs,
		      bool asynchronous,
		      spi_callback_t cb,
		      void *userdata)
{
	struct spi_mcux_data *data = dev->data;
	int ret;

	spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);

	ret = spi_mcux_configure(dev, spi_cfg);
	if (ret) {
		goto out;
	}

	spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);

	spi_context_cs_control(&data->ctx, true);

	spi_mcux_transfer_next_packet(dev);

	ret = spi_context_wait_for_completion(&data->ctx);
out:
	spi_context_release(&data->ctx, ret);

	return ret;
}

static int spi_mcux_transceive(const struct device *dev,
			       const struct spi_config *spi_cfg,
			       const struct spi_buf_set *tx_bufs,
			       const struct spi_buf_set *rx_bufs)
{
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
	return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
#endif /* CONFIG_SPI_MCUX_LPSPI_DMA */
	return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}

#ifdef CONFIG_SPI_ASYNC
static int spi_mcux_transceive_async(const struct device *dev,
				     const struct spi_config *spi_cfg,
				     const struct spi_buf_set *tx_bufs,
				     const struct spi_buf_set *rx_bufs,
				     spi_callback_t cb,
				     void *userdata)
{
	return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */

static int spi_mcux_release(const struct device *dev,
			    const struct spi_config *spi_cfg)
{
	struct spi_mcux_data *data = dev->data;

	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

static int spi_mcux_init(const struct device *dev)
{
	int err;
	const struct spi_mcux_config *config = dev->config;
	struct spi_mcux_data *data = dev->data;

	config->irq_config_func(dev);

	err = spi_context_cs_configure_all(&data->ctx);
	if (err < 0) {
		return err;
	}

	spi_context_unlock_unconditionally(&data->ctx);

	data->dev = dev;

#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
	if (!device_is_ready(data->dma_tx.dma_dev)) {
		LOG_ERR("%s device is not ready", data->dma_tx.dma_dev->name);
		return -ENODEV;
	}

	if (!device_is_ready(data->dma_rx.dma_dev)) {
		LOG_ERR("%s device is not ready", data->dma_rx.dma_dev->name);
		return -ENODEV;
	}
#endif /* CONFIG_SPI_MCUX_LPSPI_DMA */

	err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
	if (err) {
		return err;
	}

	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

static const struct spi_driver_api spi_mcux_driver_api = {
	.transceive = spi_mcux_transceive,
#ifdef CONFIG_SPI_ASYNC
	.transceive_async = spi_mcux_transceive_async,
#endif
	.release = spi_mcux_release,
};

#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
#define SPI_DMA_CHANNELS(n)		\
	.dma_tx = {						\
		.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, tx)), \
		.channel =					\
			DT_INST_DMAS_CELL_BY_NAME(n, tx, mux),	\
		.dma_cfg = {					\
			.channel_direction = MEMORY_TO_PERIPHERAL,	\
			.dma_callback = spi_mcux_dma_callback,		\
			.source_data_size = 1,				\
			.dest_data_size = 1,				\
			.block_count = 1,		\
			.dma_slot = DT_INST_DMAS_CELL_BY_NAME(n, tx, source) \
		}							\
	},								\
	.dma_rx = {						\
		.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, rx)), \
		.channel =					\
			DT_INST_DMAS_CELL_BY_NAME(n, rx, mux),	\
		.dma_cfg = {				\
			.channel_direction = PERIPHERAL_TO_MEMORY,	\
			.dma_callback = spi_mcux_dma_callback,		\
			.source_data_size = 1,				\
			.dest_data_size = 1,				\
			.block_count = 1,		\
			.dma_slot = DT_INST_DMAS_CELL_BY_NAME(n, rx, source) \
		}							\
	}
#else
#define SPI_DMA_CHANNELS(n)
#endif /* CONFIG_SPI_MCUX_LPSPI_DMA */

#define SPI_MCUX_LPSPI_INIT(n)						\
	PINCTRL_DT_INST_DEFINE(n);					\
									\
	static void spi_mcux_config_func_##n(const struct device *dev);	\
									\
	static const struct spi_mcux_config spi_mcux_config_##n = {	\
		.base = (LPSPI_Type *) DT_INST_REG_ADDR(n),		\
		.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)),	\
		.clock_subsys =						\
		(clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name),	\
		.irq_config_func = spi_mcux_config_func_##n,		\
		.pcs_sck_delay = UTIL_AND(				\
			DT_INST_NODE_HAS_PROP(n, pcs_sck_delay),	\
			DT_INST_PROP(n, pcs_sck_delay)),		\
		.sck_pcs_delay = UTIL_AND(				\
			DT_INST_NODE_HAS_PROP(n, sck_pcs_delay),	\
			DT_INST_PROP(n, sck_pcs_delay)),		\
		.transfer_delay = UTIL_AND(				\
			DT_INST_NODE_HAS_PROP(n, transfer_delay),	\
			DT_INST_PROP(n, transfer_delay)),		\
		.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),		\
	};								\
									\
	static struct spi_mcux_data spi_mcux_data_##n = {		\
		SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##n, ctx),		\
		SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##n, ctx),		\
		SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx)	\
		SPI_DMA_CHANNELS(n)					\
	};								\
									\
	DEVICE_DT_INST_DEFINE(n, &spi_mcux_init, NULL,			\
			    &spi_mcux_data_##n,				\
			    &spi_mcux_config_##n, POST_KERNEL,		\
			    CONFIG_SPI_INIT_PRIORITY,			\
			    &spi_mcux_driver_api);			\
									\
	static void spi_mcux_config_func_##n(const struct device *dev)	\
	{								\
		IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority),	\
			    spi_mcux_isr, DEVICE_DT_INST_GET(n), 0);	\
									\
		irq_enable(DT_INST_IRQN(n));				\
	}

DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_LPSPI_INIT)