Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
/*
 * Copyright (c) 2016 Linaro Limited.
 * Copyright (c) 2020 Teslabs Engineering S.L.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT st_stm32_pwm

#include <errno.h>

#include <soc.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_tim.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/init.h>

#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/dt-bindings/pwm/stm32_pwm.h>

#include <zephyr/logging/log.h>
#include <zephyr/irq.h>

LOG_MODULE_REGISTER(pwm_stm32, CONFIG_PWM_LOG_LEVEL);

/* L0 series MCUs only have 16-bit timers and don't have below macro defined */
#ifndef IS_TIM_32B_COUNTER_INSTANCE
#define IS_TIM_32B_COUNTER_INSTANCE(INSTANCE) (0)
#endif

#ifdef CONFIG_PWM_CAPTURE
struct pwm_stm32_capture_data {
	pwm_capture_callback_handler_t callback;
	void *user_data;
	uint32_t period;
	uint32_t pulse;
	uint32_t overflows;
	uint8_t skip_irq;
	bool capture_period;
	bool capture_pulse;
	bool continuous;
};

/* first capture is always nonsense, second is nonsense when polarity changed */
#define SKIPPED_PWM_CAPTURES 2u

#endif /*CONFIG_PWM_CAPTURE*/

/** PWM data. */
struct pwm_stm32_data {
	/** Timer clock (Hz). */
	uint32_t tim_clk;
#ifdef CONFIG_PWM_CAPTURE
	struct pwm_stm32_capture_data capture;
#endif /* CONFIG_PWM_CAPTURE */
};

/** PWM configuration. */
struct pwm_stm32_config {
	TIM_TypeDef *timer;
	uint32_t prescaler;
	uint32_t countermode;
	struct stm32_pclken pclken;
	const struct pinctrl_dev_config *pcfg;
#ifdef CONFIG_PWM_CAPTURE
	void (*irq_config_func)(const struct device *dev);
#endif /* CONFIG_PWM_CAPTURE */
};

/** Maximum number of timer channels : some stm32 soc have 6 else only 4 */
#if defined(LL_TIM_CHANNEL_CH6)
#define TIMER_HAS_6CH 1
#define TIMER_MAX_CH 6u
#else
#define TIMER_HAS_6CH 0
#define TIMER_MAX_CH 4u
#endif

/** Channel to LL mapping. */
static const uint32_t ch2ll[TIMER_MAX_CH] = {
	LL_TIM_CHANNEL_CH1, LL_TIM_CHANNEL_CH2,
	LL_TIM_CHANNEL_CH3, LL_TIM_CHANNEL_CH4,
#if TIMER_HAS_6CH
	LL_TIM_CHANNEL_CH5, LL_TIM_CHANNEL_CH6
#endif
};

/** Some stm32 mcus have complementary channels : 3 or 4 */
static const uint32_t ch2ll_n[] = {
#if defined(LL_TIM_CHANNEL_CH1N)
	LL_TIM_CHANNEL_CH1N,
	LL_TIM_CHANNEL_CH2N,
	LL_TIM_CHANNEL_CH3N,
#if defined(LL_TIM_CHANNEL_CH4N)
/** stm32g4x and stm32u5x have 4 complementary channels */
	LL_TIM_CHANNEL_CH4N,
#endif /* LL_TIM_CHANNEL_CH4N */
#endif /* LL_TIM_CHANNEL_CH1N */
};
/** Maximum number of complemented timer channels is ARRAY_SIZE(ch2ll_n)*/

/** Channel to compare set function mapping. */
static void (*const set_timer_compare[TIMER_MAX_CH])(TIM_TypeDef *,
						     uint32_t) = {
	LL_TIM_OC_SetCompareCH1, LL_TIM_OC_SetCompareCH2,
	LL_TIM_OC_SetCompareCH3, LL_TIM_OC_SetCompareCH4,
#if TIMER_HAS_6CH
	LL_TIM_OC_SetCompareCH5, LL_TIM_OC_SetCompareCH6
#endif
};

/**
 * Obtain LL polarity from PWM flags.
 *
 * @param flags PWM flags.
 *
 * @return LL polarity.
 */
static uint32_t get_polarity(pwm_flags_t flags)
{
	if ((flags & PWM_POLARITY_MASK) == PWM_POLARITY_NORMAL) {
		return LL_TIM_OCPOLARITY_HIGH;
	}

	return LL_TIM_OCPOLARITY_LOW;
}

/**
 * @brief  Check if LL counter mode is center-aligned.
 *
 * @param  ll_countermode LL counter mode.
 *
 * @return `true` when center-aligned, otherwise `false`.
 */
static inline bool is_center_aligned(const uint32_t ll_countermode)
{
	return ((ll_countermode == LL_TIM_COUNTERMODE_CENTER_DOWN) ||
		(ll_countermode == LL_TIM_COUNTERMODE_CENTER_UP) ||
		(ll_countermode == LL_TIM_COUNTERMODE_CENTER_UP_DOWN));
}

/**
 * Obtain timer clock speed.
 *
 * @param pclken  Timer clock control subsystem.
 * @param tim_clk Where computed timer clock will be stored.
 *
 * @return 0 on success, error code otherwise.
 */
static int get_tim_clk(const struct stm32_pclken *pclken, uint32_t *tim_clk)
{
	int r;
	const struct device *clk;
	uint32_t bus_clk, apb_psc;

	clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);

	r = clock_control_get_rate(clk, (clock_control_subsys_t)pclken,
				   &bus_clk);
	if (r < 0) {
		return r;
	}

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	if (pclken->bus == STM32_CLOCK_BUS_APB1) {
		apb_psc = STM32_D2PPRE1;
	} else {
		apb_psc = STM32_D2PPRE2;
	}
#else
	if (pclken->bus == STM32_CLOCK_BUS_APB1) {
		apb_psc = STM32_APB1_PRESCALER;
	}
#if !defined(CONFIG_SOC_SERIES_STM32C0X) && !defined(CONFIG_SOC_SERIES_STM32F0X) &&                \
	!defined(CONFIG_SOC_SERIES_STM32G0X)
	else {
		apb_psc = STM32_APB2_PRESCALER;
	}
#endif
#endif

#if defined(RCC_DCKCFGR_TIMPRE) || defined(RCC_DCKCFGR1_TIMPRE) || \
	defined(RCC_CFGR_TIMPRE)
	/*
	 * There are certain series (some F4, F7 and H7) that have the TIMPRE
	 * bit to control the clock frequency of all the timers connected to
	 * APB1 and APB2 domains.
	 *
	 * Up to a certain threshold value of APB{1,2} prescaler, timer clock
	 * equals to HCLK. This threshold value depends on TIMPRE setting
	 * (2 if TIMPRE=0, 4 if TIMPRE=1). Above threshold, timer clock is set
	 * to a multiple of the APB domain clock PCLK{1,2} (2 if TIMPRE=0, 4 if
	 * TIMPRE=1).
	 */

	if (LL_RCC_GetTIMPrescaler() == LL_RCC_TIM_PRESCALER_TWICE) {
		/* TIMPRE = 0 */
		if (apb_psc <= 2u) {
			LL_RCC_ClocksTypeDef clocks;

			LL_RCC_GetSystemClocksFreq(&clocks);
			*tim_clk = clocks.HCLK_Frequency;
		} else {
			*tim_clk = bus_clk * 2u;
		}
	} else {
		/* TIMPRE = 1 */
		if (apb_psc <= 4u) {
			LL_RCC_ClocksTypeDef clocks;

			LL_RCC_GetSystemClocksFreq(&clocks);
			*tim_clk = clocks.HCLK_Frequency;
		} else {
			*tim_clk = bus_clk * 4u;
		}
	}
#else
	/*
	 * If the APB prescaler equals 1, the timer clock frequencies
	 * are set to the same frequency as that of the APB domain.
	 * Otherwise, they are set to twice (×2) the frequency of the
	 * APB domain.
	 */
	if (apb_psc == 1u) {
		*tim_clk = bus_clk;
	} else {
		*tim_clk = bus_clk * 2u;
	}
#endif

	return 0;
}

static int pwm_stm32_set_cycles(const struct device *dev, uint32_t channel,
				uint32_t period_cycles, uint32_t pulse_cycles,
				pwm_flags_t flags)
{
	const struct pwm_stm32_config *cfg = dev->config;

	uint32_t ll_channel;
	uint32_t current_ll_channel; /* complementary output if used */
	uint32_t negative_ll_channel;

	if (channel < 1u || channel > TIMER_MAX_CH) {
		LOG_ERR("Invalid channel (%d)", channel);
		return -EINVAL;
	}

	/*
	 * Non 32-bit timers count from 0 up to the value in the ARR register
	 * (16-bit). Thus period_cycles cannot be greater than UINT16_MAX + 1.
	 */
	if (!IS_TIM_32B_COUNTER_INSTANCE(cfg->timer) &&
	    (period_cycles > UINT16_MAX + 1)) {
		return -ENOTSUP;
	}

#ifdef CONFIG_PWM_CAPTURE
	if ((channel == 1u) || (channel == 2u)) {
		if (LL_TIM_IsEnabledIT_CC1(cfg->timer) ||
				LL_TIM_IsEnabledIT_CC2(cfg->timer)) {
			LOG_ERR("Cannot set PWM output, capture in progress");
			return -EBUSY;
		}
	}
#endif /* CONFIG_PWM_CAPTURE */

	ll_channel = ch2ll[channel - 1u];

	if (channel <= ARRAY_SIZE(ch2ll_n)) {
		negative_ll_channel = ch2ll_n[channel - 1u];
	} else {
		negative_ll_channel = 0;
	}

	/* in LL_TIM_CC_DisableChannel and LL_TIM_CC_IsEnabledChannel,
	 * the channel param could be the complementary one
	 */
	if ((flags & STM32_PWM_COMPLEMENTARY_MASK) == STM32_PWM_COMPLEMENTARY) {
		if (!negative_ll_channel) {
			/* setting a flag on a channel that has not this capability */
			LOG_ERR("Channel %d has NO complementary output", channel);
			return -EINVAL;
		}
		current_ll_channel = negative_ll_channel;
	} else {
		current_ll_channel = ll_channel;
	}

	if (period_cycles == 0u) {
		LL_TIM_CC_DisableChannel(cfg->timer, current_ll_channel);
		return 0;
	}

	if (cfg->countermode == LL_TIM_COUNTERMODE_UP) {
		/* remove 1 period cycle, accounts for 1 extra low cycle */
		period_cycles -= 1U;
	} else if (cfg->countermode == LL_TIM_COUNTERMODE_DOWN) {
		/* remove 1 pulse cycle, accounts for 1 extra high cycle */
		pulse_cycles -= 1U;
		/* remove 1 period cycle, accounts for 1 extra low cycle */
		period_cycles -= 1U;
	} else if (is_center_aligned(cfg->countermode)) {
		pulse_cycles /= 2U;
		period_cycles /= 2U;
	} else {
		return -ENOTSUP;
	}

	if (!LL_TIM_CC_IsEnabledChannel(cfg->timer, current_ll_channel)) {
		LL_TIM_OC_InitTypeDef oc_init;

		LL_TIM_OC_StructInit(&oc_init);

		oc_init.OCMode = LL_TIM_OCMODE_PWM1;

#if defined(LL_TIM_CHANNEL_CH1N)
		/* the flags holds the STM32_PWM_COMPLEMENTARY information */
		if ((flags & STM32_PWM_COMPLEMENTARY_MASK) == STM32_PWM_COMPLEMENTARY) {
			oc_init.OCNState = LL_TIM_OCSTATE_ENABLE;
			oc_init.OCNPolarity = get_polarity(flags);

			/* inherit the polarity of the positive output */
			oc_init.OCState = LL_TIM_CC_IsEnabledChannel(cfg->timer, ll_channel)
						  ? LL_TIM_OCSTATE_ENABLE
						  : LL_TIM_OCSTATE_DISABLE;
			oc_init.OCPolarity = LL_TIM_OC_GetPolarity(cfg->timer, ll_channel);
		} else {
			oc_init.OCState = LL_TIM_OCSTATE_ENABLE;
			oc_init.OCPolarity = get_polarity(flags);

			/* inherit the polarity of the negative output */
			if (negative_ll_channel) {
				oc_init.OCNState =
					LL_TIM_CC_IsEnabledChannel(cfg->timer, negative_ll_channel)
						? LL_TIM_OCSTATE_ENABLE
						: LL_TIM_OCSTATE_DISABLE;
				oc_init.OCNPolarity =
					LL_TIM_OC_GetPolarity(cfg->timer, negative_ll_channel);
			}
		}
#else /* LL_TIM_CHANNEL_CH1N */

		oc_init.OCState = LL_TIM_OCSTATE_ENABLE;
		oc_init.OCPolarity = get_polarity(flags);
#endif /* LL_TIM_CHANNEL_CH1N */
		oc_init.CompareValue = pulse_cycles;

#ifdef CONFIG_PWM_CAPTURE
		if (IS_TIM_SLAVE_INSTANCE(cfg->timer)) {
			LL_TIM_SetSlaveMode(cfg->timer,
					LL_TIM_SLAVEMODE_DISABLED);
			LL_TIM_SetTriggerInput(cfg->timer, LL_TIM_TS_ITR0);
			LL_TIM_DisableMasterSlaveMode(cfg->timer);
		}
#endif /* CONFIG_PWM_CAPTURE */

		/* in LL_TIM_OC_Init, the channel is always the non-complementary */
		if (LL_TIM_OC_Init(cfg->timer, ll_channel, &oc_init) != SUCCESS) {
			LOG_ERR("Could not initialize timer channel output");
			return -EIO;
		}

		LL_TIM_EnableARRPreload(cfg->timer);
		/* in LL_TIM_OC_EnablePreload, the channel is always the non-complementary */
		LL_TIM_OC_EnablePreload(cfg->timer, ll_channel);
		LL_TIM_SetAutoReload(cfg->timer, period_cycles);
		LL_TIM_GenerateEvent_UPDATE(cfg->timer);
	} else {
		/* in LL_TIM_OC_SetPolarity, the channel could be the complementary one */
		LL_TIM_OC_SetPolarity(cfg->timer, current_ll_channel, get_polarity(flags));
		set_timer_compare[channel - 1u](cfg->timer, pulse_cycles);
		LL_TIM_SetAutoReload(cfg->timer, period_cycles);
	}

	return 0;
}

#ifdef CONFIG_PWM_CAPTURE
static int init_capture_channel(const struct device *dev, uint32_t channel,
				pwm_flags_t flags, uint32_t ll_channel)
{
	const struct pwm_stm32_config *cfg = dev->config;
	bool is_inverted = (flags & PWM_POLARITY_MASK) == PWM_POLARITY_INVERTED;
	LL_TIM_IC_InitTypeDef ic;

	LL_TIM_IC_StructInit(&ic);
	ic.ICPrescaler = TIM_ICPSC_DIV1;
	ic.ICFilter = LL_TIM_IC_FILTER_FDIV1;

	if (ll_channel == LL_TIM_CHANNEL_CH1) {
		if (channel == 1u) {
			ic.ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
			ic.ICPolarity = is_inverted ? LL_TIM_IC_POLARITY_FALLING
					: LL_TIM_IC_POLARITY_RISING;
		} else {
			ic.ICActiveInput = LL_TIM_ACTIVEINPUT_INDIRECTTI;
			ic.ICPolarity = is_inverted ? LL_TIM_IC_POLARITY_RISING
					: LL_TIM_IC_POLARITY_FALLING;
		}
	} else {
		if (channel == 1u) {
			ic.ICActiveInput = LL_TIM_ACTIVEINPUT_INDIRECTTI;
			ic.ICPolarity = is_inverted ? LL_TIM_IC_POLARITY_RISING
					: LL_TIM_IC_POLARITY_FALLING;
		} else {
			ic.ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
			ic.ICPolarity = is_inverted ? LL_TIM_IC_POLARITY_FALLING
					: LL_TIM_IC_POLARITY_RISING;
		}
	}

	if (LL_TIM_IC_Init(cfg->timer, ll_channel, &ic) != SUCCESS) {
		LOG_ERR("Could not initialize channel for PWM capture");
		return -EIO;
	}

	return 0;
}

static int pwm_stm32_configure_capture(const struct device *dev,
				       uint32_t channel, pwm_flags_t flags,
				       pwm_capture_callback_handler_t cb,
				       void *user_data)
{

	/*
	 * Capture is implemented using the slave mode controller.
	 * This allows for high accuracy, but only CH1 and CH2 are supported.
	 * Alternatively all channels could be supported with ISR based resets.
	 * This is currently not implemented!
	 */

	const struct pwm_stm32_config *cfg = dev->config;
	struct pwm_stm32_data *data = dev->data;
	struct pwm_stm32_capture_data *cpt = &data->capture;
	int ret;

	if ((channel != 1u) && (channel != 2u)) {
		LOG_ERR("PWM capture only supported on first two channels");
		return -ENOTSUP;
	}

	if (LL_TIM_IsEnabledIT_CC1(cfg->timer)
			|| LL_TIM_IsEnabledIT_CC2(cfg->timer)) {
		LOG_ERR("PWM Capture already in progress");
		return -EBUSY;
	}

	if (!(flags & PWM_CAPTURE_TYPE_MASK)) {
		LOG_ERR("No PWM capture type specified");
		return -EINVAL;
	}

	if (!IS_TIM_SLAVE_INSTANCE(cfg->timer)) {
		LOG_ERR("Timer does not support slave mode for PWM capture");
		return -ENOTSUP;
	}

	cpt->callback = cb; /* even if the cb is reset, this is not an error */
	cpt->user_data = user_data;
	cpt->capture_period = (flags & PWM_CAPTURE_TYPE_PERIOD) ? true : false;
	cpt->capture_pulse = (flags & PWM_CAPTURE_TYPE_PULSE) ? true : false;
	cpt->continuous = (flags & PWM_CAPTURE_MODE_CONTINUOUS) ? true : false;

	/* Prevents faulty behavior while making changes */
	LL_TIM_SetSlaveMode(cfg->timer, LL_TIM_SLAVEMODE_DISABLED);

	ret = init_capture_channel(dev, channel, flags, LL_TIM_CHANNEL_CH1);
	if (ret < 0) {
		return ret;
	}

	ret = init_capture_channel(dev, channel, flags, LL_TIM_CHANNEL_CH2);
	if (ret < 0) {
		return ret;
	}

	if (channel == 1u) {
		LL_TIM_SetTriggerInput(cfg->timer, LL_TIM_TS_TI1FP1);
	} else {
		LL_TIM_SetTriggerInput(cfg->timer, LL_TIM_TS_TI2FP2);
	}
	LL_TIM_SetSlaveMode(cfg->timer, LL_TIM_SLAVEMODE_RESET);

	LL_TIM_EnableARRPreload(cfg->timer);
	if (!IS_TIM_32B_COUNTER_INSTANCE(cfg->timer)) {
		LL_TIM_SetAutoReload(cfg->timer, 0xffffu);
	} else {
		LL_TIM_SetAutoReload(cfg->timer, 0xffffffffu);
	}
	LL_TIM_EnableUpdateEvent(cfg->timer);

	return 0;
}

static int pwm_stm32_enable_capture(const struct device *dev, uint32_t channel)
{
	const struct pwm_stm32_config *cfg = dev->config;
	struct pwm_stm32_data *data = dev->data;

	if ((channel != 1u) && (channel != 2u)) {
		LOG_ERR("PWM capture only supported on first two channels");
		return -EINVAL;
	}

	if (LL_TIM_IsEnabledIT_CC1(cfg->timer)
			|| LL_TIM_IsEnabledIT_CC2(cfg->timer)) {
		LOG_ERR("PWM capture already active");
		return -EBUSY;
	}

	if (!data->capture.callback) {
		LOG_ERR("PWM capture not configured");
		return -EINVAL;
	}

	data->capture.skip_irq = SKIPPED_PWM_CAPTURES;
	data->capture.overflows = 0u;
	LL_TIM_ClearFlag_CC1(cfg->timer);
	LL_TIM_ClearFlag_CC2(cfg->timer);
	LL_TIM_ClearFlag_UPDATE(cfg->timer);

	LL_TIM_SetUpdateSource(cfg->timer, LL_TIM_UPDATESOURCE_COUNTER);
	if (channel == 1u) {
		LL_TIM_EnableIT_CC1(cfg->timer);
	} else {
		LL_TIM_EnableIT_CC2(cfg->timer);
	}
	LL_TIM_EnableIT_UPDATE(cfg->timer);
	LL_TIM_CC_EnableChannel(cfg->timer, LL_TIM_CHANNEL_CH1);
	LL_TIM_CC_EnableChannel(cfg->timer, LL_TIM_CHANNEL_CH2);

	return 0;
}

static int pwm_stm32_disable_capture(const struct device *dev, uint32_t channel)
{
	const struct pwm_stm32_config *cfg = dev->config;

	if ((channel != 1u) && (channel != 2u)) {
		LOG_ERR("PWM capture only supported on first two channels");
		return -EINVAL;
	}

	LL_TIM_SetUpdateSource(cfg->timer, LL_TIM_UPDATESOURCE_REGULAR);
	if (channel == 1u) {
		LL_TIM_DisableIT_CC1(cfg->timer);
	} else {
		LL_TIM_DisableIT_CC2(cfg->timer);
	}
	LL_TIM_DisableIT_UPDATE(cfg->timer);
	LL_TIM_CC_DisableChannel(cfg->timer, LL_TIM_CHANNEL_CH1);
	LL_TIM_CC_DisableChannel(cfg->timer, LL_TIM_CHANNEL_CH2);

	return 0;
}

static void get_pwm_capture(const struct device *dev, uint32_t channel)
{
	const struct pwm_stm32_config *cfg = dev->config;
	struct pwm_stm32_data *data = dev->data;
	struct pwm_stm32_capture_data *cpt = &data->capture;

	if (channel == 1u) {
		cpt->period = LL_TIM_IC_GetCaptureCH1(cfg->timer);
		cpt->pulse = LL_TIM_IC_GetCaptureCH2(cfg->timer);
	} else {
		cpt->period = LL_TIM_IC_GetCaptureCH2(cfg->timer);
		cpt->pulse = LL_TIM_IC_GetCaptureCH1(cfg->timer);
	}
}

static void pwm_stm32_isr(const struct device *dev)
{
	const struct pwm_stm32_config *cfg = dev->config;
	struct pwm_stm32_data *data = dev->data;
	struct pwm_stm32_capture_data *cpt = &data->capture;
	int status = 0;
	uint32_t in_ch = LL_TIM_IsEnabledIT_CC1(cfg->timer) ? 1u : 2u;

	if (cpt->skip_irq == 0u) {
		if (LL_TIM_IsActiveFlag_UPDATE(cfg->timer)) {
			LL_TIM_ClearFlag_UPDATE(cfg->timer);
			cpt->overflows++;
		}

		if (LL_TIM_IsActiveFlag_CC1(cfg->timer)
				|| LL_TIM_IsActiveFlag_CC2(cfg->timer)) {
			LL_TIM_ClearFlag_CC1(cfg->timer);
			LL_TIM_ClearFlag_CC2(cfg->timer);

			get_pwm_capture(dev, in_ch);

			if (cpt->overflows) {
				LOG_ERR("counter overflow during PWM capture");
				status = -ERANGE;
			}

			if (!cpt->continuous) {
				pwm_stm32_disable_capture(dev, in_ch);
			} else {
				cpt->overflows = 0u;
			}

			if (cpt->callback != NULL) {
				cpt->callback(dev, in_ch,
					cpt->capture_period ? cpt->period : 0u,
					cpt->capture_pulse ? cpt->pulse : 0u,
					status, cpt->user_data);
			}
		}
	} else {
		if (LL_TIM_IsActiveFlag_UPDATE(cfg->timer)) {
			LL_TIM_ClearFlag_UPDATE(cfg->timer);
		}

		if (LL_TIM_IsActiveFlag_CC1(cfg->timer)
				|| LL_TIM_IsActiveFlag_CC2(cfg->timer)) {
			LL_TIM_ClearFlag_CC1(cfg->timer);
			LL_TIM_ClearFlag_CC2(cfg->timer);
			cpt->skip_irq--;
		}
	}
}
#endif /* CONFIG_PWM_CAPTURE */

static int pwm_stm32_get_cycles_per_sec(const struct device *dev,
					uint32_t channel, uint64_t *cycles)
{
	struct pwm_stm32_data *data = dev->data;
	const struct pwm_stm32_config *cfg = dev->config;

	*cycles = (uint64_t)(data->tim_clk / (cfg->prescaler + 1));

	return 0;
}

static const struct pwm_driver_api pwm_stm32_driver_api = {
	.set_cycles = pwm_stm32_set_cycles,
	.get_cycles_per_sec = pwm_stm32_get_cycles_per_sec,
#ifdef CONFIG_PWM_CAPTURE
	.configure_capture = pwm_stm32_configure_capture,
	.enable_capture = pwm_stm32_enable_capture,
	.disable_capture = pwm_stm32_disable_capture,
#endif /* CONFIG_PWM_CAPTURE */
};

static int pwm_stm32_init(const struct device *dev)
{
	struct pwm_stm32_data *data = dev->data;
	const struct pwm_stm32_config *cfg = dev->config;

	int r;
	const struct device *clk;
	LL_TIM_InitTypeDef init;

	/* enable clock and store its speed */
	clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);

	if (!device_is_ready(clk)) {
		LOG_ERR("clock control device not ready");
		return -ENODEV;
	}

	r = clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken);
	if (r < 0) {
		LOG_ERR("Could not initialize clock (%d)", r);
		return r;
	}

	r = get_tim_clk(&cfg->pclken, &data->tim_clk);
	if (r < 0) {
		LOG_ERR("Could not obtain timer clock (%d)", r);
		return r;
	}

	/* configure pinmux */
	r = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
	if (r < 0) {
		LOG_ERR("PWM pinctrl setup failed (%d)", r);
		return r;
	}

	/* initialize timer */
	LL_TIM_StructInit(&init);

	init.Prescaler = cfg->prescaler;
	init.CounterMode = cfg->countermode;
	init.Autoreload = 0u;
	init.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;

	if (LL_TIM_Init(cfg->timer, &init) != SUCCESS) {
		LOG_ERR("Could not initialize timer");
		return -EIO;
	}

#if !defined(CONFIG_SOC_SERIES_STM32L0X) && !defined(CONFIG_SOC_SERIES_STM32L1X)
	/* enable outputs and counter */
	if (IS_TIM_BREAK_INSTANCE(cfg->timer)) {
		LL_TIM_EnableAllOutputs(cfg->timer);
	}
#endif

	LL_TIM_EnableCounter(cfg->timer);

#ifdef CONFIG_PWM_CAPTURE
	cfg->irq_config_func(dev);
#endif /* CONFIG_PWM_CAPTURE */

	return 0;
}

#ifdef CONFIG_PWM_CAPTURE
#define IRQ_CONNECT_AND_ENABLE_BY_NAME(index, name)				\
{										\
	IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), name, irq),		\
			DT_IRQ_BY_NAME(DT_INST_PARENT(index), name, priority),	\
			pwm_stm32_isr, DEVICE_DT_INST_GET(index), 0);		\
	irq_enable(DT_IRQ_BY_NAME(DT_INST_PARENT(index), name, irq));		\
}

#define IRQ_CONNECT_AND_ENABLE_DEFAULT(index)					\
{										\
	IRQ_CONNECT(DT_IRQN(DT_INST_PARENT(index)),				\
			DT_IRQ(DT_INST_PARENT(index), priority),		\
			pwm_stm32_isr, DEVICE_DT_INST_GET(index), 0);		\
	irq_enable(DT_IRQN(DT_INST_PARENT(index)));				\
}

#define IRQ_CONFIG_FUNC(index)                                                  \
static void pwm_stm32_irq_config_func_##index(const struct device *dev)		\
{										\
	COND_CODE_1(DT_IRQ_HAS_NAME(DT_INST_PARENT(index), cc),			\
		(IRQ_CONNECT_AND_ENABLE_BY_NAME(index, cc)),			\
		(IRQ_CONNECT_AND_ENABLE_DEFAULT(index))				\
	);									\
}
#define CAPTURE_INIT(index)                                                    \
	.irq_config_func = pwm_stm32_irq_config_func_##index
#else
#define IRQ_CONFIG_FUNC(index)
#define CAPTURE_INIT(index)
#endif /* CONFIG_PWM_CAPTURE */

#define DT_INST_CLK(index, inst)                                               \
	{                                                                      \
		.bus = DT_CLOCKS_CELL(DT_INST_PARENT(index), bus),             \
		.enr = DT_CLOCKS_CELL(DT_INST_PARENT(index), bits)             \
	}

#define PWM_DEVICE_INIT(index)                                                 \
	static struct pwm_stm32_data pwm_stm32_data_##index;                   \
	IRQ_CONFIG_FUNC(index)						       \
									       \
	PINCTRL_DT_INST_DEFINE(index);					       \
									       \
	static const struct pwm_stm32_config pwm_stm32_config_##index = {      \
		.timer = (TIM_TypeDef *)DT_REG_ADDR(DT_INST_PARENT(index)),    \
		.prescaler = DT_PROP(DT_INST_PARENT(index), st_prescaler),     \
		.countermode = DT_PROP(DT_INST_PARENT(index), st_countermode), \
		.pclken = DT_INST_CLK(index, timer),                           \
		.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index),		       \
		CAPTURE_INIT(index)					       \
	};                                                                     \
									       \
	DEVICE_DT_INST_DEFINE(index, &pwm_stm32_init, NULL,                    \
			    &pwm_stm32_data_##index,                           \
			    &pwm_stm32_config_##index, POST_KERNEL,            \
			    CONFIG_PWM_INIT_PRIORITY,                          \
			    &pwm_stm32_driver_api);

DT_INST_FOREACH_STATUS_OKAY(PWM_DEVICE_INIT)