Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
/*
 * Copyright (c) 2019 Mohamed ElShahawi (extremegtx@hotmail.com)
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT espressif_esp32_uart

/* Include esp-idf headers first to avoid redefining BIT() macro */
/* TODO: include w/o prefix */
#ifdef CONFIG_SOC_ESP32
#include <esp32/rom/ets_sys.h>
#include <esp32/rom/gpio.h>
#include <soc/dport_reg.h>
#elif defined(CONFIG_SOC_ESP32S2)
#include <esp32s2/rom/ets_sys.h>
#include <esp32s2/rom/gpio.h>
#include <soc/dport_reg.h>
#elif defined(CONFIG_SOC_ESP32S3)
#include <esp32s3/rom/ets_sys.h>
#include <esp32s3/rom/gpio.h>
#elif defined(CONFIG_SOC_ESP32C3)
#include <esp32c3/rom/ets_sys.h>
#include <esp32c3/rom/gpio.h>
#ifdef CONFIG_UART_ASYNC_API
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/dma/dma_esp32.h>
#include <hal/uhci_ll.h>
#include <zephyr/dt-bindings/clock/esp32c3_clock.h>
#endif
#endif
#include <soc/uart_struct.h>
#include <hal/uart_ll.h>
#include <hal/uart_hal.h>
#include <hal/uart_types.h>

#include <zephyr/drivers/pinctrl.h>

#include <soc/uart_reg.h>
#include <zephyr/device.h>
#include <soc.h>
#include <zephyr/drivers/uart.h>

#ifndef CONFIG_SOC_ESP32C3
#include <zephyr/drivers/interrupt_controller/intc_esp32.h>
#else
#include <zephyr/drivers/interrupt_controller/intc_esp32c3.h>
#endif
#include <zephyr/drivers/clock_control.h>
#include <errno.h>
#include <zephyr/sys/util.h>
#include <esp_attr.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(uart_esp32, CONFIG_UART_LOG_LEVEL);

#ifdef CONFIG_SOC_ESP32C3
#define ISR_HANDLER isr_handler_t
#else
#define ISR_HANDLER intr_handler_t
#endif

struct uart_esp32_config {
	const struct device *clock_dev;
	const struct pinctrl_dev_config *pcfg;
	const clock_control_subsys_t clock_subsys;
	int irq_source;
#if CONFIG_UART_ASYNC_API
	const struct device *dma_dev;
	uint8_t tx_dma_channel;
	uint8_t rx_dma_channel;
	bool uart_id;
#endif
};

#if CONFIG_UART_ASYNC_API
struct uart_esp32_async_data {
	struct k_work_delayable tx_timeout_work;
	const uint8_t *tx_buf;
	size_t tx_len;
	struct k_work_delayable rx_timeout_work;
	uint8_t *rx_buf;
	uint8_t *rx_next_buf;
	size_t rx_len;
	size_t rx_next_len;
	size_t rx_timeout;
	volatile size_t rx_counter;
	size_t rx_offset;
	uart_callback_t cb;
	void *user_data;
};
#endif

/* driver data */
struct uart_esp32_data {
	struct uart_config uart_config;
	uart_hal_context_t hal;
	int irq_line;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	uart_irq_callback_user_data_t irq_cb;
	void *irq_cb_data;
#endif
#if CONFIG_UART_ASYNC_API
	struct uart_esp32_async_data async;
	uhci_dev_t *uhci_dev;
	const struct device *uart_dev;
#endif
};

#define UART_FIFO_LIMIT	    (UART_LL_FIFO_DEF_LEN)
#define UART_TX_FIFO_THRESH 0x1
#define UART_RX_FIFO_THRESH 0x16

#if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API
static void uart_esp32_isr(void *arg);
#endif

static int uart_esp32_poll_in(const struct device *dev, unsigned char *p_char)
{
	struct uart_esp32_data *data = dev->data;
	int inout_rd_len = 1;

	if (uart_hal_get_rxfifo_len(&data->hal) == 0) {
		return -1;
	}

	uart_hal_read_rxfifo(&data->hal, p_char, &inout_rd_len);

	return 0;
}

static void uart_esp32_poll_out(const struct device *dev, unsigned char c)
{
	struct uart_esp32_data *data = dev->data;
	uint32_t written;

	/* Wait for space in FIFO */
	while (uart_hal_get_txfifo_len(&data->hal) == 0) {
		; /* Wait */
	}

	/* Send a character */
	uart_hal_write_txfifo(&data->hal, &c, 1, &written);
}

static int uart_esp32_err_check(const struct device *dev)
{
	struct uart_esp32_data *data = dev->data;
	uint32_t mask = uart_hal_get_intsts_mask(&data->hal);
	uint32_t err = mask & (UART_INTR_PARITY_ERR | UART_INTR_FRAM_ERR);

	return err;
}

#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_esp32_config_get(const struct device *dev, struct uart_config *cfg)
{
	struct uart_esp32_data *data = dev->data;
	uart_parity_t parity;
	uart_stop_bits_t stop_bit;
	uart_word_length_t data_bit;
	uart_hw_flowcontrol_t hw_flow;

	uart_hal_get_baudrate(&data->hal, &cfg->baudrate);

	uart_hal_get_parity(&data->hal, &parity);
	switch (parity) {
	case UART_PARITY_DISABLE:
		cfg->parity = UART_CFG_PARITY_NONE;
		break;
	case UART_PARITY_EVEN:
		cfg->parity = UART_CFG_PARITY_EVEN;
		break;
	case UART_PARITY_ODD:
		cfg->parity = UART_CFG_PARITY_ODD;
		break;
	default:
		return -ENOTSUP;
	}

	uart_hal_get_stop_bits(&data->hal, &stop_bit);
	switch (stop_bit) {
	case UART_STOP_BITS_1:
		cfg->stop_bits = UART_CFG_STOP_BITS_1;
		break;
	case UART_STOP_BITS_1_5:
		cfg->stop_bits = UART_CFG_STOP_BITS_1_5;
		break;
	case UART_STOP_BITS_2:
		cfg->stop_bits = UART_CFG_STOP_BITS_2;
		break;
	default:
		return -ENOTSUP;
	}

	uart_hal_get_data_bit_num(&data->hal, &data_bit);
	switch (data_bit) {
	case UART_DATA_5_BITS:
		cfg->data_bits = UART_CFG_DATA_BITS_5;
		break;
	case UART_DATA_6_BITS:
		cfg->data_bits = UART_CFG_DATA_BITS_6;
		break;
	case UART_DATA_7_BITS:
		cfg->data_bits = UART_CFG_DATA_BITS_7;
		break;
	case UART_DATA_8_BITS:
		cfg->data_bits = UART_CFG_DATA_BITS_8;
		break;
	default:
		return -ENOTSUP;
	}

	uart_hal_get_hw_flow_ctrl(&data->hal, &hw_flow);
	switch (hw_flow) {
	case UART_HW_FLOWCTRL_DISABLE:
		cfg->flow_ctrl = UART_CFG_FLOW_CTRL_NONE;
		break;
	case UART_HW_FLOWCTRL_CTS_RTS:
		cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RTS_CTS;
		break;
	default:
		return -ENOTSUP;
	}

	if (uart_hal_is_mode_rs485_half_duplex(&data->hal)) {
		cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RS485;
	}

	return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */

static int uart_esp32_configure(const struct device *dev, const struct uart_config *cfg)
{
	const struct uart_esp32_config *config = dev->config;
	struct uart_esp32_data *data = dev->data;
	int ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);

	if (ret < 0) {
		return ret;
	}

	if (!device_is_ready(config->clock_dev)) {
		return -ENODEV;
	}

	clock_control_on(config->clock_dev, config->clock_subsys);

	uart_hal_set_sclk(&data->hal, UART_SCLK_APB);
	uart_hal_set_rxfifo_full_thr(&data->hal, UART_RX_FIFO_THRESH);
	uart_hal_set_txfifo_empty_thr(&data->hal, UART_TX_FIFO_THRESH);
	uart_hal_rxfifo_rst(&data->hal);

	switch (cfg->parity) {
	case UART_CFG_PARITY_NONE:
		uart_hal_set_parity(&data->hal, UART_PARITY_DISABLE);
		break;
	case UART_CFG_PARITY_EVEN:
		uart_hal_set_parity(&data->hal, UART_PARITY_EVEN);
		break;
	case UART_CFG_PARITY_ODD:
		uart_hal_set_parity(&data->hal, UART_PARITY_ODD);
		break;
	default:
		return -ENOTSUP;
	}

	switch (cfg->stop_bits) {
	case UART_CFG_STOP_BITS_1:
		uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_1);
		break;
	case UART_CFG_STOP_BITS_1_5:
		uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_1_5);
		break;
	case UART_CFG_STOP_BITS_2:
		uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_2);
		break;
	default:
		return -ENOTSUP;
	}

	switch (cfg->data_bits) {
	case UART_CFG_DATA_BITS_5:
		uart_hal_set_data_bit_num(&data->hal, UART_DATA_5_BITS);
		break;
	case UART_CFG_DATA_BITS_6:
		uart_hal_set_data_bit_num(&data->hal, UART_DATA_6_BITS);
		break;
	case UART_CFG_DATA_BITS_7:
		uart_hal_set_data_bit_num(&data->hal, UART_DATA_7_BITS);
		break;
	case UART_CFG_DATA_BITS_8:
		uart_hal_set_data_bit_num(&data->hal, UART_DATA_8_BITS);
		break;
	default:
		return -ENOTSUP;
	}

	uart_hal_set_mode(&data->hal, UART_MODE_UART);

	switch (cfg->flow_ctrl) {
	case UART_CFG_FLOW_CTRL_NONE:
		uart_hal_set_hw_flow_ctrl(&data->hal, UART_HW_FLOWCTRL_DISABLE, 0);
		break;
	case UART_CFG_FLOW_CTRL_RTS_CTS:
		uart_hal_set_hw_flow_ctrl(&data->hal, UART_HW_FLOWCTRL_CTS_RTS, 10);
		break;
	case UART_CFG_FLOW_CTRL_RS485:
		uart_hal_set_mode(&data->hal, UART_MODE_RS485_HALF_DUPLEX);
		break;
	default:
		return -ENOTSUP;
	}

	uart_hal_set_baudrate(&data->hal, cfg->baudrate);

	uart_hal_set_rx_timeout(&data->hal, 0x16);

	return 0;
}

#ifdef CONFIG_UART_INTERRUPT_DRIVEN

static int uart_esp32_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len)
{
	struct uart_esp32_data *data = dev->data;
	uint32_t written = 0;

	if (len < 0) {
		return 0;
	}

	uart_hal_write_txfifo(&data->hal, tx_data, len, &written);
	return written;
}

static int uart_esp32_fifo_read(const struct device *dev, uint8_t *rx_data, const int len)
{
	struct uart_esp32_data *data = dev->data;
	const int num_rx = uart_hal_get_rxfifo_len(&data->hal);
	int read = MIN(len, num_rx);

	if (!read) {
		return 0;
	}

	uart_hal_read_rxfifo(&data->hal, rx_data, &read);
	return read;
}

static void uart_esp32_irq_tx_enable(const struct device *dev)
{
	struct uart_esp32_data *data = dev->data;

	uart_hal_clr_intsts_mask(&data->hal, UART_INTR_TXFIFO_EMPTY);
	uart_hal_ena_intr_mask(&data->hal, UART_INTR_TXFIFO_EMPTY);
}

static void uart_esp32_irq_tx_disable(const struct device *dev)
{
	struct uart_esp32_data *data = dev->data;

	uart_hal_disable_intr_mask(&data->hal, UART_INTR_TXFIFO_EMPTY);
}

static int uart_esp32_irq_tx_ready(const struct device *dev)
{
	struct uart_esp32_data *data = dev->data;

	return (uart_hal_get_txfifo_len(&data->hal) > 0 &&
		uart_hal_get_intr_ena_status(&data->hal) & UART_INTR_TXFIFO_EMPTY);
}

static void uart_esp32_irq_rx_disable(const struct device *dev)
{
	struct uart_esp32_data *data = dev->data;

	uart_hal_disable_intr_mask(&data->hal, UART_INTR_RXFIFO_FULL);
	uart_hal_disable_intr_mask(&data->hal, UART_INTR_RXFIFO_TOUT);
}

static int uart_esp32_irq_tx_complete(const struct device *dev)
{
	struct uart_esp32_data *data = dev->data;

	return uart_hal_is_tx_idle(&data->hal);
}

static int uart_esp32_irq_rx_ready(const struct device *dev)
{
	struct uart_esp32_data *data = dev->data;

	return (uart_hal_get_rxfifo_len(&data->hal) > 0);
}

static void uart_esp32_irq_err_enable(const struct device *dev)
{
	struct uart_esp32_data *data = dev->data;

	/* enable framing, parity */
	uart_hal_ena_intr_mask(&data->hal, UART_INTR_FRAM_ERR);
	uart_hal_ena_intr_mask(&data->hal, UART_INTR_PARITY_ERR);
}

static void uart_esp32_irq_err_disable(const struct device *dev)
{
	struct uart_esp32_data *data = dev->data;

	uart_hal_disable_intr_mask(&data->hal, UART_INTR_FRAM_ERR);
	uart_hal_disable_intr_mask(&data->hal, UART_INTR_PARITY_ERR);
}

static int uart_esp32_irq_is_pending(const struct device *dev)
{
	return uart_esp32_irq_rx_ready(dev) || uart_esp32_irq_tx_ready(dev);
}

static int uart_esp32_irq_update(const struct device *dev)
{
	struct uart_esp32_data *data = dev->data;

	uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_FULL);
	uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_TOUT);
	uart_hal_clr_intsts_mask(&data->hal, UART_INTR_TXFIFO_EMPTY);

	return 1;
}

static void uart_esp32_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb,
					void *cb_data)
{
	struct uart_esp32_data *data = dev->data;

	data->irq_cb = cb;
	data->irq_cb_data = cb_data;
}

#endif /* CONFIG_UART_INTERRUPT_DRIVEN */

#ifdef CONFIG_UART_ASYNC_API

static inline void uart_esp32_async_timer_start(struct k_work_delayable *work, size_t timeout)
{
	if ((timeout != SYS_FOREVER_US) && (timeout != 0)) {
		LOG_DBG("Async timer started for %d us", timeout);
		k_work_reschedule(work, K_USEC(timeout));
	}
}

#endif
#if CONFIG_UART_ASYNC_API || CONFIG_UART_INTERRUPT_DRIVEN

static void uart_esp32_irq_rx_enable(const struct device *dev)
{
	struct uart_esp32_data *data = dev->data;

	uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_FULL);
	uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_TOUT);
	uart_hal_ena_intr_mask(&data->hal, UART_INTR_RXFIFO_FULL);
	uart_hal_ena_intr_mask(&data->hal, UART_INTR_RXFIFO_TOUT);
}

static void uart_esp32_isr(void *arg)
{
	const struct device *dev = (const struct device *)arg;
	struct uart_esp32_data *data = dev->data;
	uint32_t uart_intr_status = uart_hal_get_intsts_mask(&data->hal);
	const struct uart_esp32_config *config = dev->config;
	if (uart_intr_status == 0) {
		return;
	}
	uart_hal_clr_intsts_mask(&data->hal, uart_intr_status);

#if CONFIG_UART_INTERRUPT_DRIVEN
	/* Verify if the callback has been registered */
	if (data->irq_cb) {
		data->irq_cb(dev, data->irq_cb_data);
	}
#endif

#if CONFIG_UART_ASYNC_API
	if (uart_intr_status & UART_INTR_RXFIFO_FULL) {
		data->async.rx_counter++;
		uart_esp32_async_timer_start(&data->async.rx_timeout_work, data->async.rx_timeout);
	}
#endif
}

#endif

#if CONFIG_UART_ASYNC_API
static void IRAM_ATTR uart_esp32_dma_rx_done(const struct device *dma_dev, void *user_data,
					     uint32_t channel, int status)
{
	const struct device *uart_dev = user_data;
	const struct uart_esp32_config *config = uart_dev->config;
	struct uart_esp32_data *data = uart_dev->data;
	struct uart_event evt = {0};
	struct dma_status dma_status = {0};
	unsigned int key = irq_lock();

	/* If the receive buffer is not complete we reload the DMA at current buffer position and
	 * let the timeout callback handle the notifications
	 */
	if (data->async.rx_counter != data->async.rx_len) {
		dma_reload(config->dma_dev, config->rx_dma_channel, 0,
			   (uint32_t)data->async.rx_buf + data->async.rx_counter,
			   data->async.rx_len - data->async.rx_counter);
		dma_start(config->dma_dev, config->rx_dma_channel);
		data->uhci_dev->pkt_thres.thrs = data->async.rx_len - data->async.rx_counter;
		irq_unlock(key);
		return;
	}

	/*Notify RX_RDY*/
	evt.type = UART_RX_RDY;
	evt.data.rx.buf = data->async.rx_buf;
	evt.data.rx.len = data->async.rx_counter - data->async.rx_offset;
	evt.data.rx.offset = data->async.rx_offset;

	if (data->async.cb && evt.data.rx.len) {
		data->async.cb(data->uart_dev, &evt, data->async.user_data);
	}

	data->async.rx_offset = 0;
	data->async.rx_counter = 0;

	/*Release current buffer*/
	evt.type = UART_RX_BUF_RELEASED;
	evt.data.rx_buf.buf = data->async.rx_buf;
	if (data->async.cb) {
		data->async.cb(uart_dev, &evt, data->async.user_data);
	}

	/*Load next buffer and request another*/
	data->async.rx_buf = data->async.rx_next_buf;
	data->async.rx_len = data->async.rx_next_len;
	data->async.rx_next_buf = NULL;
	data->async.rx_next_len = 0U;
	evt.type = UART_RX_BUF_REQUEST;
	if (data->async.cb) {
		data->async.cb(uart_dev, &evt, data->async.user_data);
	}

	/*Notify RX_DISABLED when there is no buffer*/
	if (!data->async.rx_buf) {
		evt.type = UART_RX_DISABLED;
		if (data->async.cb) {
			data->async.cb(uart_dev, &evt, data->async.user_data);
		}
	} else {
		/*Reload DMA with new buffer*/
		dma_reload(config->dma_dev, config->rx_dma_channel, 0, (uint32_t)data->async.rx_buf,
			   data->async.rx_len);
		dma_start(config->dma_dev, config->rx_dma_channel);
		data->uhci_dev->pkt_thres.thrs = data->async.rx_len;
	}

	irq_unlock(key);
}

static void IRAM_ATTR uart_esp32_dma_tx_done(const struct device *dma_dev, void *user_data,
					     uint32_t channel, int status)
{
	const struct device *uart_dev = user_data;
	const struct uart_esp32_config *config = uart_dev->config;
	struct uart_esp32_data *data = uart_dev->data;
	struct uart_event evt = {0};
	unsigned int key = irq_lock();

	k_work_cancel_delayable(&data->async.tx_timeout_work);

	evt.type = UART_TX_DONE;
	evt.data.tx.buf = data->async.tx_buf;
	evt.data.tx.len = data->async.tx_len;
	if (data->async.cb) {
		data->async.cb(uart_dev, &evt, data->async.user_data);
	}

	/* Reset TX Buffer */
	data->async.tx_buf = NULL;
	data->async.tx_len = 0U;
	irq_unlock(key);
}

static int uart_esp32_async_tx_abort(const struct device *dev)
{
	const struct uart_esp32_config *config = dev->config;
	struct uart_esp32_data *data = dev->data;
	struct uart_event evt = {0};
	int err = 0;
	unsigned int key = irq_lock();

	k_work_cancel_delayable(&data->async.tx_timeout_work);

	err = dma_stop(config->dma_dev, config->tx_dma_channel);
	if (err) {
		LOG_ERR("Error stoping Tx DMA (%d)", err);
		goto unlock;
	}

	evt.type = UART_TX_ABORTED;
	evt.data.tx.buf = data->async.tx_buf;
	evt.data.tx.len = data->async.tx_len;

	if (data->async.cb) {
		data->async.cb(dev, &evt, data->async.user_data);
	}

unlock:
	irq_unlock(key);
	return err;
}

static void uart_esp32_async_tx_timeout(struct k_work *work)
{
	struct k_work_delayable *dwork = k_work_delayable_from_work(work);
	struct uart_esp32_async_data *async =
		CONTAINER_OF(dwork, struct uart_esp32_async_data, tx_timeout_work);
	struct uart_esp32_data *data = CONTAINER_OF(async, struct uart_esp32_data, async);

	uart_esp32_async_tx_abort(data->uart_dev);
}

static void uart_esp32_async_rx_timeout(struct k_work *work)
{
	struct k_work_delayable *dwork = k_work_delayable_from_work(work);
	struct uart_esp32_async_data *async =
		CONTAINER_OF(dwork, struct uart_esp32_async_data, rx_timeout_work);
	struct uart_esp32_data *data = CONTAINER_OF(async, struct uart_esp32_data, async);
	const struct uart_esp32_config *config = data->uart_dev->config;
	struct uart_event evt = {0};
	int err = 0;
	unsigned int key = irq_lock();

	evt.type = UART_RX_RDY;
	evt.data.rx.buf = data->async.rx_buf;
	evt.data.rx.len = data->async.rx_counter - data->async.rx_offset;
	evt.data.rx.offset = data->async.rx_offset;

	if (data->async.cb && evt.data.rx.len) {
		data->async.cb(data->uart_dev, &evt, data->async.user_data);
	}

	data->async.rx_offset = data->async.rx_counter;
	k_work_cancel_delayable(&data->async.rx_timeout_work);
	irq_unlock(key);
}

static int uart_esp32_async_callback_set(const struct device *dev, uart_callback_t callback,
					 void *user_data)
{
	struct uart_esp32_data *data = dev->data;

	if (!callback) {
		return -EINVAL;
	}

	data->async.cb = callback;
	data->async.user_data = user_data;

	return 0;
}

static int uart_esp32_async_tx(const struct device *dev, const uint8_t *buf, size_t len,
			       int32_t timeout)
{
	const struct uart_esp32_config *config = dev->config;
	struct uart_esp32_data *data = dev->data;
	struct dma_config dma_cfg = {0};
	struct dma_block_config dma_blk = {0};
	struct dma_status dma_status = {0};
	int err = 0;
	unsigned int key = irq_lock();

	if (config->tx_dma_channel == 0xFF) {
		LOG_ERR("Tx DMA channel is not configured");
		err = -ENOTSUP;
		goto unlock;
	}

	err = dma_get_status(config->dma_dev, config->tx_dma_channel, &dma_status);
	if (err) {
		LOG_ERR("Unable to get Tx status (%d)", err);
		goto unlock;
	}

	if (dma_status.busy) {
		LOG_ERR("Tx DMA Channel is busy");
		err = -EBUSY;
		goto unlock;
	}

	data->async.tx_buf = buf;
	data->async.tx_len = len;

	dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
	dma_cfg.dma_callback = uart_esp32_dma_tx_done;
	dma_cfg.user_data = (void *)dev;
	dma_cfg.dma_slot = GDMA_TRIG_PERIPH_UHCI0;
	dma_cfg.block_count = 1;
	dma_cfg.head_block = &dma_blk;
	dma_blk.block_size = len;
	dma_blk.source_address = (uint32_t)buf;

	err = dma_config(config->dma_dev, config->tx_dma_channel, &dma_cfg);
	if (err) {
		LOG_ERR("Error configuring Tx DMA (%d)", err);
		goto unlock;
	}

	uart_esp32_async_timer_start(&data->async.tx_timeout_work, timeout);

	err = dma_start(config->dma_dev, config->tx_dma_channel);
	if (err) {
		LOG_ERR("Error starting Tx DMA (%d)", err);
		goto unlock;
	}

unlock:
	irq_unlock(key);
	return err;
}

static int uart_esp32_async_rx_enable(const struct device *dev, uint8_t *buf, size_t len,
				      int32_t timeout)
{
	const struct uart_esp32_config *config = dev->config;
	struct uart_esp32_data *data = dev->data;
	struct dma_config dma_cfg = {0};
	struct dma_block_config dma_blk = {0};
	struct dma_status dma_status = {0};
	int err = 0;
	struct uart_event evt = {0};

	if (config->rx_dma_channel == 0xFF) {
		LOG_ERR("Rx DMA channel is not configured");
		return -ENOTSUP;
	}

	err = dma_get_status(config->dma_dev, config->rx_dma_channel, &dma_status);
	if (err) {
		LOG_ERR("Unable to get Rx status (%d)", err);
		return err;
	}

	if (dma_status.busy) {
		LOG_ERR("Rx DMA Channel is busy");
		return -EBUSY;
	}

	unsigned int key = irq_lock();

	data->async.rx_buf = buf;
	data->async.rx_len = len;
	data->async.rx_timeout = timeout;

	dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
	dma_cfg.dma_callback = uart_esp32_dma_rx_done;
	dma_cfg.user_data = (void *)dev;
	dma_cfg.dma_slot = GDMA_TRIG_PERIPH_UHCI0;
	dma_cfg.block_count = 1;
	dma_cfg.head_block = &dma_blk;
	dma_blk.block_size = len;
	dma_blk.dest_address = (uint32_t)data->async.rx_buf;

	err = dma_config(config->dma_dev, config->rx_dma_channel, &dma_cfg);
	if (err) {
		LOG_ERR("Error configuring Rx DMA (%d)", err);
		goto unlock;
	}

	/*
	 * Enable interrupt on first receive byte so we can start async timer
	 */
	uart_hal_set_rxfifo_full_thr(&data->hal, 1);
	uart_esp32_irq_rx_enable(dev);

	err = dma_start(config->dma_dev, config->rx_dma_channel);
	if (err) {
		LOG_ERR("Error starting Rx DMA (%d)", err);
		goto unlock;
	}

	data->uhci_dev->pkt_thres.thrs = len;

	/**
	 * Request next buffer
	 */
	evt.type = UART_RX_BUF_REQUEST;
	if (data->async.cb) {
		data->async.cb(dev, &evt, data->async.user_data);
	}

unlock:
	irq_unlock(key);
	return err;
}

static int uart_esp32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len)
{
	const struct uart_esp32_config *config = dev->config;
	struct uart_esp32_data *data = dev->data;

	data->async.rx_next_buf = buf;
	data->async.rx_next_len = len;

	return 0;
}

static int uart_esp32_async_rx_disable(const struct device *dev)
{
	const struct uart_esp32_config *config = dev->config;
	struct uart_esp32_data *data = dev->data;
	unsigned int key = irq_lock();
	int err = 0;
	struct uart_event evt = {0};

	k_work_cancel_delayable(&data->async.rx_timeout_work);

	if (!data->async.rx_len) {
		err = -EINVAL;
		goto unlock;
	}

	err = dma_stop(config->dma_dev, config->rx_dma_channel);
	if (err) {
		LOG_ERR("Error stoping Rx DMA (%d)", err);
		goto unlock;
	}

	/*If any bytes have been received notify RX_RDY*/
	evt.type = UART_RX_RDY;
	evt.data.rx.buf = data->async.rx_buf;
	evt.data.rx.len = data->async.rx_counter - data->async.rx_offset;
	evt.data.rx.offset = data->async.rx_offset;

	if (data->async.cb && evt.data.rx.len) {
		data->async.cb(data->uart_dev, &evt, data->async.user_data);
	}

	data->async.rx_offset = 0;
	data->async.rx_counter = 0;

	/* Release current buffer*/
	evt.type = UART_RX_BUF_RELEASED;
	evt.data.rx_buf.buf = data->async.rx_buf;

	if (data->async.cb) {
		data->async.cb(dev, &evt, data->async.user_data);
	}

	data->async.rx_len = 0;
	data->async.rx_buf = NULL;

	/*Release next buffer*/
	if (data->async.rx_next_len) {
		evt.type = UART_RX_BUF_RELEASED;
		evt.data.rx_buf.buf = data->async.rx_buf;
		if (data->async.cb) {
			data->async.cb(dev, &evt, data->async.user_data);
		}

		data->async.rx_next_len = 0;
		data->async.rx_next_buf = NULL;
	}

	/*Notify UART_RX_DISABLED*/
	evt.type = UART_RX_DISABLED;
	if (data->async.cb) {
		data->async.cb(dev, &evt, data->async.user_data);
	}

unlock:
	irq_unlock(key);
	return err;
}

#endif /* CONFIG_UART_ASYNC_API */

static int uart_esp32_init(const struct device *dev)
{
	const struct uart_esp32_config *config = dev->config;
	struct uart_esp32_data *data = dev->data;
	int ret = uart_esp32_configure(dev, &data->uart_config);

#if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API
	data->irq_line = esp_intr_alloc(config->irq_source, 0, (ISR_HANDLER)uart_esp32_isr,
					(void *)dev, NULL);
#endif
#if CONFIG_UART_ASYNC_API
	if (config->dma_dev) {
		if (!device_is_ready(config->dma_dev)) {
			LOG_ERR("DMA device is not ready");
			return -ENODEV;
		}

		clock_control_on(config->clock_dev, (clock_control_subsys_t)ESP32_UHCI0_MODULE);
		uhci_ll_init(data->uhci_dev);
		uhci_ll_set_eof_mode(data->uhci_dev, UHCI_RX_IDLE_EOF | UHCI_RX_LEN_EOF);
		uhci_ll_attach_uart_port(data->uhci_dev, config->uart_id);
		data->uart_dev = dev;

		k_work_init_delayable(&data->async.tx_timeout_work, uart_esp32_async_tx_timeout);
		k_work_init_delayable(&data->async.rx_timeout_work, uart_esp32_async_rx_timeout);
	}
#endif
	return ret;
}

static const DRAM_ATTR struct uart_driver_api uart_esp32_api = {
	.poll_in = uart_esp32_poll_in,
	.poll_out = uart_esp32_poll_out,
	.err_check = uart_esp32_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
	.configure = uart_esp32_configure,
	.config_get = uart_esp32_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	.fifo_fill = uart_esp32_fifo_fill,
	.fifo_read = uart_esp32_fifo_read,
	.irq_tx_enable = uart_esp32_irq_tx_enable,
	.irq_tx_disable = uart_esp32_irq_tx_disable,
	.irq_tx_ready = uart_esp32_irq_tx_ready,
	.irq_rx_enable = uart_esp32_irq_rx_enable,
	.irq_rx_disable = uart_esp32_irq_rx_disable,
	.irq_tx_complete = uart_esp32_irq_tx_complete,
	.irq_rx_ready = uart_esp32_irq_rx_ready,
	.irq_err_enable = uart_esp32_irq_err_enable,
	.irq_err_disable = uart_esp32_irq_err_disable,
	.irq_is_pending = uart_esp32_irq_is_pending,
	.irq_update = uart_esp32_irq_update,
	.irq_callback_set = uart_esp32_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#if CONFIG_UART_ASYNC_API
	.callback_set = uart_esp32_async_callback_set,
	.tx = uart_esp32_async_tx,
	.tx_abort = uart_esp32_async_tx_abort,
	.rx_enable = uart_esp32_async_rx_enable,
	.rx_buf_rsp = uart_esp32_async_rx_buf_rsp,
	.rx_disable = uart_esp32_async_rx_disable,
#endif /*CONFIG_UART_ASYNC_API*/
};

#if CONFIG_UART_ASYNC_API
#define ESP_UART_DMA_INIT(n)                                                                       \
	.dma_dev = ESP32_DT_INST_DMA_CTLR(n, tx),                                                  \
	.tx_dma_channel = ESP32_DT_INST_DMA_CELL(n, tx, channel),                                  \
	.rx_dma_channel = ESP32_DT_INST_DMA_CELL(n, rx, channel),                                  \
	.uart_id = (DEVICE_DT_GET(DT_NODELABEL(uart0)) != DEVICE_DT_INST_GET(n)),

#define ESP_UART_UHCI_INIT(n)                                                                      \
	.uhci_dev = COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), (&UHCI0), (NULL))

#else
#define ESP_UART_DMA_INIT(n)
#define ESP_UART_UHCI_INIT(n)
#endif

#define ESP32_UART_INIT(idx)                                                                       \
                                                                                                   \
	PINCTRL_DT_INST_DEFINE(idx);                                                               \
                                                                                                   \
	static const DRAM_ATTR struct uart_esp32_config uart_esp32_cfg_port_##idx = {              \
		.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)),                              \
		.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx),                                       \
		.clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(idx, offset),          \
		.irq_source = DT_INST_IRQN(idx),                                                   \
		ESP_UART_DMA_INIT(idx)};                                                           \
                                                                                                   \
	static struct uart_esp32_data uart_esp32_data_##idx = {                                    \
		.uart_config = {.baudrate = DT_INST_PROP(idx, current_speed),                      \
				.parity = UART_CFG_PARITY_NONE,                                    \
				.stop_bits = UART_CFG_STOP_BITS_1,                                 \
				.data_bits = UART_CFG_DATA_BITS_8,                                 \
				.flow_ctrl = MAX(COND_CODE_1(DT_INST_PROP(idx, hw_rs485_hd_mode),  \
							     (UART_CFG_FLOW_CTRL_RS485),           \
							     (UART_CFG_FLOW_CTRL_NONE)),           \
						 COND_CODE_1(DT_INST_PROP(idx, hw_flow_control),   \
							     (UART_CFG_FLOW_CTRL_RTS_CTS),         \
							     (UART_CFG_FLOW_CTRL_NONE)))},         \
		.hal =                                                                             \
			{                                                                          \
				.dev = (uart_dev_t *)DT_INST_REG_ADDR(idx),                        \
			},                                                                         \
		ESP_UART_UHCI_INIT(idx)};                                                          \
                                                                                                   \
	DEVICE_DT_INST_DEFINE(idx, &uart_esp32_init, NULL, &uart_esp32_data_##idx,                 \
			      &uart_esp32_cfg_port_##idx, PRE_KERNEL_1,                            \
			      CONFIG_SERIAL_INIT_PRIORITY, &uart_esp32_api);

DT_INST_FOREACH_STATUS_OKAY(ESP32_UART_INIT);