/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Verify zephyr dma memory to memory transfer
* @details
* - Test Steps
* -# Set dma channel configuration including source/dest addr, burstlen
* -# Set direction memory-to-memory
* -# Start transfer
* - Expected Results
* -# Data is transferred correctly from src to dest
*/
#include <zephyr/kernel.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/ztest.h>
#define RX_BUFF_SIZE (48)
#ifdef CONFIG_NOCACHE_MEMORY
static __aligned(32) char tx_data[RX_BUFF_SIZE] __used
__attribute__((__section__(CONFIG_DMA_LOOP_TRANSFER_SRAM_SECTION)));
static const char TX_DATA[] = "It is harder to be kind than to be wise........";
static __aligned(32) char rx_data[RX_BUFF_SIZE] __used
__attribute__((__section__(CONFIG_DMA_LOOP_TRANSFER_SRAM_SECTION".dma")));
#else
static const char tx_data[] = "It is harder to be kind than to be wise........";
static char rx_data[RX_BUFF_SIZE] = { 0 };
#endif
static void test_done(const struct device *dma_dev, void *arg,
uint32_t id, int status)
{
if (status >= 0) {
TC_PRINT("DMA transfer done\n");
} else {
TC_PRINT("DMA transfer met an error\n");
}
}
static int test_task(const struct device *dma, uint32_t chan_id, uint32_t blen)
{
struct dma_config dma_cfg = { 0 };
struct dma_block_config dma_block_cfg = { 0 };
if (!device_is_ready(dma)) {
TC_PRINT("dma controller device is not ready\n");
return TC_FAIL;
}
#ifdef CONFIG_NOCACHE_MEMORY
memcpy(tx_data, TX_DATA, sizeof(TX_DATA));
#endif
dma_cfg.channel_direction = MEMORY_TO_MEMORY;
dma_cfg.source_data_size = 1U;
dma_cfg.dest_data_size = 1U;
dma_cfg.source_burst_length = blen;
dma_cfg.dest_burst_length = blen;
dma_cfg.dma_callback = test_done;
dma_cfg.complete_callback_en = 0U;
dma_cfg.error_callback_en = 1U;
dma_cfg.block_count = 1U;
dma_cfg.head_block = &dma_block_cfg;
#ifdef CONFIG_DMA_MCUX_TEST_SLOT_START
dma_cfg.dma_slot = CONFIG_DMA_MCUX_TEST_SLOT_START;
#endif
TC_PRINT("Preparing DMA Controller: Name=%s, Chan_ID=%u, BURST_LEN=%u\n",
dma->name, chan_id, blen >> 3);
TC_PRINT("Starting the transfer\n");
(void)memset(rx_data, 0, sizeof(rx_data));
dma_block_cfg.block_size = sizeof(tx_data);
#ifdef CONFIG_DMA_64BIT
dma_block_cfg.source_address = (uint64_t)tx_data;
dma_block_cfg.dest_address = (uint64_t)rx_data;
#else
dma_block_cfg.source_address = (uint32_t)tx_data;
dma_block_cfg.dest_address = (uint32_t)rx_data;
#endif
if (dma_config(dma, chan_id, &dma_cfg)) {
TC_PRINT("ERROR: transfer\n");
return TC_FAIL;
}
if (dma_start(dma, chan_id)) {
TC_PRINT("ERROR: transfer\n");
return TC_FAIL;
}
k_sleep(K_MSEC(2000));
TC_PRINT("%s\n", rx_data);
if (strcmp(tx_data, rx_data) != 0) {
return TC_FAIL;
}
return TC_PASS;
}
#define DMA_NAME(i, _) test_dma##i
#define DMA_LIST LISTIFY(CONFIG_DMA_LOOP_TRANSFER_NUMBER_OF_DMAS, DMA_NAME, (,))
#define TEST_TASK(dma_name) \
ZTEST(dma_m2m, test_##dma_name##_m2m_chan0_burst8) \
{ \
const struct device *dma = DEVICE_DT_GET(DT_NODELABEL(dma_name)); \
zassert_true((test_task(dma, CONFIG_DMA_TRANSFER_CHANNEL_NR_0, 8) == TC_PASS)); \
} \
\
ZTEST(dma_m2m, test_##dma_name##_m2m_chan1_burst8) \
{ \
const struct device *dma = DEVICE_DT_GET(DT_NODELABEL(dma_name)); \
zassert_true((test_task(dma, CONFIG_DMA_TRANSFER_CHANNEL_NR_1, 8) == TC_PASS)); \
} \
\
ZTEST(dma_m2m, test_##dma_name##_m2m_chan0_burst16) \
{ \
const struct device *dma = DEVICE_DT_GET(DT_NODELABEL(dma_name)); \
zassert_true((test_task(dma, CONFIG_DMA_TRANSFER_CHANNEL_NR_0, 16) == TC_PASS)); \
} \
\
ZTEST(dma_m2m, test_##dma_name##_m2m_chan1_burst16) \
{ \
const struct device *dma = DEVICE_DT_GET(DT_NODELABEL(dma_name)); \
zassert_true((test_task(dma, CONFIG_DMA_TRANSFER_CHANNEL_NR_1, 16) == TC_PASS)); \
}
FOR_EACH(TEST_TASK, (), DMA_LIST);