/* conn.c - Bluetooth connection handling */
/*
* Copyright (c) 2015-2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/check.h>
#include <zephyr/sys/iterable_sections.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/util_macro.h>
#include <zephyr/sys/slist.h>
#include <zephyr/debug/stack.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/direction.h>
#include <zephyr/bluetooth/conn.h>
#include <zephyr/drivers/bluetooth/hci_driver.h>
#include <zephyr/bluetooth/att.h>
#include "common/assert.h"
#include "addr_internal.h"
#include "hci_core.h"
#include "id.h"
#include "adv.h"
#include "conn_internal.h"
#include "l2cap_internal.h"
#include "keys.h"
#include "smp.h"
#include "ssp.h"
#include "att_internal.h"
#include "iso_internal.h"
#include "direction_internal.h"
#define LOG_LEVEL CONFIG_BT_CONN_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(bt_conn);
struct tx_meta {
struct bt_conn_tx *tx;
/* This flag indicates if the current buffer has already been partially
* sent to the controller (ie, the next fragments should be sent as
* continuations).
*/
bool is_cont;
/* Indicates whether the ISO PDU contains a timestamp */
bool iso_has_ts;
};
BUILD_ASSERT(sizeof(struct tx_meta) == CONFIG_BT_CONN_TX_USER_DATA_SIZE,
"User data size is wrong!");
#define tx_data(buf) ((struct tx_meta *)net_buf_user_data(buf))
K_FIFO_DEFINE(free_tx);
static void tx_free(struct bt_conn_tx *tx);
static void conn_tx_destroy(struct bt_conn *conn, struct bt_conn_tx *tx)
{
__ASSERT_NO_MSG(tx);
bt_conn_tx_cb_t cb = tx->cb;
void *user_data = tx->user_data;
/* Free up TX metadata before calling callback in case the callback
* tries to allocate metadata
*/
tx_free(tx);
cb(conn, user_data, -ESHUTDOWN);
}
#if defined(CONFIG_BT_CONN_TX)
static void tx_complete_work(struct k_work *work);
#endif /* CONFIG_BT_CONN_TX */
/* Group Connected BT_CONN only in this */
#if defined(CONFIG_BT_CONN)
/* Peripheral timeout to initialize Connection Parameter Update procedure */
#define CONN_UPDATE_TIMEOUT K_MSEC(CONFIG_BT_CONN_PARAM_UPDATE_TIMEOUT)
static void deferred_work(struct k_work *work);
static void notify_connected(struct bt_conn *conn);
static struct bt_conn acl_conns[CONFIG_BT_MAX_CONN];
NET_BUF_POOL_DEFINE(acl_tx_pool, CONFIG_BT_L2CAP_TX_BUF_COUNT,
BT_L2CAP_BUF_SIZE(CONFIG_BT_L2CAP_TX_MTU),
CONFIG_BT_CONN_TX_USER_DATA_SIZE, NULL);
#if CONFIG_BT_L2CAP_TX_FRAG_COUNT > 0
/* Dedicated pool for fragment buffers in case queued up TX buffers don't
* fit the controllers buffer size. We can't use the acl_tx_pool for the
* fragmentation, since it's possible that pool is empty and all buffers
* are queued up in the TX queue. In such a situation, trying to allocate
* another buffer from the acl_tx_pool would result in a deadlock.
*/
NET_BUF_POOL_FIXED_DEFINE(frag_pool, CONFIG_BT_L2CAP_TX_FRAG_COUNT,
BT_BUF_ACL_SIZE(CONFIG_BT_BUF_ACL_TX_SIZE),
CONFIG_BT_CONN_TX_USER_DATA_SIZE, NULL);
#endif /* CONFIG_BT_L2CAP_TX_FRAG_COUNT > 0 */
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
const struct bt_conn_auth_cb *bt_auth;
sys_slist_t bt_auth_info_cbs = SYS_SLIST_STATIC_INIT(&bt_auth_info_cbs);
#endif /* CONFIG_BT_SMP || CONFIG_BT_BREDR */
static struct bt_conn_cb *callback_list;
static struct bt_conn_tx conn_tx[CONFIG_BT_CONN_TX_MAX];
#if defined(CONFIG_BT_BREDR)
static int bt_hci_connect_br_cancel(struct bt_conn *conn);
static struct bt_conn sco_conns[CONFIG_BT_MAX_SCO_CONN];
#endif /* CONFIG_BT_BREDR */
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_ISO)
extern struct bt_conn iso_conns[CONFIG_BT_ISO_MAX_CHAN];
/* Callback TX buffers for ISO */
static struct bt_conn_tx iso_tx[CONFIG_BT_ISO_TX_BUF_COUNT];
int bt_conn_iso_init(void)
{
for (size_t i = 0; i < ARRAY_SIZE(iso_tx); i++) {
k_fifo_put(&free_tx, &iso_tx[i]);
}
return 0;
}
#endif /* CONFIG_BT_ISO */
struct k_sem *bt_conn_get_pkts(struct bt_conn *conn)
{
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR || !bt_dev.le.acl_mtu) {
return &bt_dev.br.pkts;
}
#endif /* CONFIG_BT_BREDR */
#if defined(CONFIG_BT_ISO)
/* Use ISO pkts semaphore if LE Read Buffer Size command returned
* dedicated ISO buffers.
*/
if (conn->type == BT_CONN_TYPE_ISO) {
if (bt_dev.le.iso_mtu && bt_dev.le.iso_limit != 0) {
return &bt_dev.le.iso_pkts;
}
return NULL;
}
#endif /* CONFIG_BT_ISO */
#if defined(CONFIG_BT_CONN)
if (bt_dev.le.acl_mtu) {
return &bt_dev.le.acl_pkts;
}
#endif /* CONFIG_BT_CONN */
return NULL;
}
static inline const char *state2str(bt_conn_state_t state)
{
switch (state) {
case BT_CONN_DISCONNECTED:
return "disconnected";
case BT_CONN_DISCONNECT_COMPLETE:
return "disconnect-complete";
case BT_CONN_CONNECTING_SCAN:
return "connecting-scan";
case BT_CONN_CONNECTING_DIR_ADV:
return "connecting-dir-adv";
case BT_CONN_CONNECTING_ADV:
return "connecting-adv";
case BT_CONN_CONNECTING_AUTO:
return "connecting-auto";
case BT_CONN_CONNECTING:
return "connecting";
case BT_CONN_CONNECTED:
return "connected";
case BT_CONN_DISCONNECTING:
return "disconnecting";
default:
return "(unknown)";
}
}
static void tx_free(struct bt_conn_tx *tx)
{
tx->cb = NULL;
tx->user_data = NULL;
tx->pending_no_cb = 0U;
k_fifo_put(&free_tx, tx);
}
static void tx_notify(struct bt_conn *conn)
{
LOG_DBG("conn %p", conn);
while (1) {
struct bt_conn_tx *tx = NULL;
unsigned int key;
bt_conn_tx_cb_t cb;
void *user_data;
key = irq_lock();
if (!sys_slist_is_empty(&conn->tx_complete)) {
tx = CONTAINER_OF(sys_slist_get_not_empty(&conn->tx_complete),
struct bt_conn_tx, node);
}
irq_unlock(key);
if (!tx) {
return;
}
LOG_DBG("tx %p cb %p user_data %p", tx, tx->cb, tx->user_data);
/* Copy over the params */
cb = tx->cb;
user_data = tx->user_data;
/* Free up TX notify since there may be user waiting */
tx_free(tx);
/* Run the callback, at this point it should be safe to
* allocate new buffers since the TX should have been
* unblocked by tx_free.
*/
cb(conn, user_data, 0);
}
}
struct bt_conn *bt_conn_new(struct bt_conn *conns, size_t size)
{
struct bt_conn *conn = NULL;
int i;
for (i = 0; i < size; i++) {
if (atomic_cas(&conns[i].ref, 0, 1)) {
conn = &conns[i];
break;
}
}
if (!conn) {
return NULL;
}
(void)memset(conn, 0, offsetof(struct bt_conn, ref));
#if defined(CONFIG_BT_CONN)
k_work_init_delayable(&conn->deferred_work, deferred_work);
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_CONN_TX)
k_work_init(&conn->tx_complete_work, tx_complete_work);
#endif /* CONFIG_BT_CONN_TX */
return conn;
}
void bt_conn_reset_rx_state(struct bt_conn *conn)
{
if (!conn->rx) {
return;
}
net_buf_unref(conn->rx);
conn->rx = NULL;
}
static void bt_acl_recv(struct bt_conn *conn, struct net_buf *buf,
uint8_t flags)
{
uint16_t acl_total_len;
/* Check packet boundary flags */
switch (flags) {
case BT_ACL_START:
if (conn->rx) {
LOG_ERR("Unexpected first L2CAP frame");
bt_conn_reset_rx_state(conn);
}
LOG_DBG("First, len %u final %u", buf->len,
(buf->len < sizeof(uint16_t)) ? 0 : sys_get_le16(buf->data));
conn->rx = buf;
break;
case BT_ACL_CONT:
if (!conn->rx) {
LOG_ERR("Unexpected L2CAP continuation");
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
if (!buf->len) {
LOG_DBG("Empty ACL_CONT");
net_buf_unref(buf);
return;
}
if (buf->len > net_buf_tailroom(conn->rx)) {
LOG_ERR("Not enough buffer space for L2CAP data");
/* Frame is not complete but we still pass it to L2CAP
* so that it may handle error on protocol level
* eg disconnect channel.
*/
bt_l2cap_recv(conn, conn->rx, false);
conn->rx = NULL;
net_buf_unref(buf);
return;
}
net_buf_add_mem(conn->rx, buf->data, buf->len);
net_buf_unref(buf);
break;
default:
/* BT_ACL_START_NO_FLUSH and BT_ACL_COMPLETE are not allowed on
* LE-U from Controller to Host.
* Only BT_ACL_POINT_TO_POINT is supported.
*/
LOG_ERR("Unexpected ACL flags (0x%02x)", flags);
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
if (conn->rx->len < sizeof(uint16_t)) {
/* Still not enough data received to retrieve the L2CAP header
* length field.
*/
return;
}
acl_total_len = sys_get_le16(conn->rx->data) + sizeof(struct bt_l2cap_hdr);
if (conn->rx->len < acl_total_len) {
/* L2CAP frame not complete. */
return;
}
if (conn->rx->len > acl_total_len) {
LOG_ERR("ACL len mismatch (%u > %u)", conn->rx->len, acl_total_len);
bt_conn_reset_rx_state(conn);
return;
}
/* L2CAP frame complete. */
buf = conn->rx;
conn->rx = NULL;
LOG_DBG("Successfully parsed %u byte L2CAP packet", buf->len);
bt_l2cap_recv(conn, buf, true);
}
void bt_conn_recv(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
{
/* Make sure we notify any pending TX callbacks before processing
* new data for this connection.
*/
tx_notify(conn);
LOG_DBG("handle %u len %u flags %02x", conn->handle, buf->len, flags);
if ((IS_ENABLED(CONFIG_BT_ISO_UNICAST) ||
IS_ENABLED(CONFIG_BT_ISO_SYNC_RECEIVER)) &&
conn->type == BT_CONN_TYPE_ISO) {
bt_iso_recv(conn, buf, flags);
return;
} else if (IS_ENABLED(CONFIG_BT_CONN)) {
bt_acl_recv(conn, buf, flags);
} else {
__ASSERT(false, "Invalid connection type %u", conn->type);
}
}
static struct bt_conn_tx *conn_tx_alloc(void)
{
/* The TX context always get freed in the system workqueue,
* so if we're in the same workqueue but there are no immediate
* contexts available, there's no chance we'll get one by waiting.
*/
if (k_current_get() == &k_sys_work_q.thread) {
return k_fifo_get(&free_tx, K_NO_WAIT);
}
if (IS_ENABLED(CONFIG_BT_CONN_LOG_LEVEL_DBG)) {
struct bt_conn_tx *tx = k_fifo_get(&free_tx, K_NO_WAIT);
if (tx) {
return tx;
}
LOG_WRN("Unable to get an immediate free conn_tx");
}
return k_fifo_get(&free_tx, K_FOREVER);
}
int bt_conn_send_iso_cb(struct bt_conn *conn, struct net_buf *buf,
bt_conn_tx_cb_t cb, bool has_ts)
{
int err = bt_conn_send_cb(conn, buf, cb, NULL);
if (err) {
return err;
}
/* Necessary for setting the TS_Flag bit when we pop the buffer from the
* send queue.
* Size check for the user_data is already done in `bt_conn_send_cb`.
*/
tx_data(buf)->iso_has_ts = has_ts;
return 0;
}
int bt_conn_send_cb(struct bt_conn *conn, struct net_buf *buf,
bt_conn_tx_cb_t cb, void *user_data)
{
struct bt_conn_tx *tx;
LOG_DBG("conn handle %u buf len %u cb %p user_data %p", conn->handle, buf->len, cb,
user_data);
if (buf->user_data_size < CONFIG_BT_CONN_TX_USER_DATA_SIZE) {
LOG_ERR("not enough room in user_data %d < %d",
buf->user_data_size,
CONFIG_BT_CONN_TX_USER_DATA_SIZE);
return -EINVAL;
}
if (conn->state != BT_CONN_CONNECTED) {
LOG_ERR("not connected!");
return -ENOTCONN;
}
if (cb) {
tx = conn_tx_alloc();
if (!tx) {
LOG_DBG("Unable to allocate TX context");
return -ENOBUFS;
}
/* Verify that we're still connected after blocking */
if (conn->state != BT_CONN_CONNECTED) {
LOG_WRN("Disconnected while allocating context");
tx_free(tx);
return -ENOTCONN;
}
tx->cb = cb;
tx->user_data = user_data;
tx->pending_no_cb = 0U;
tx_data(buf)->tx = tx;
} else {
tx_data(buf)->tx = NULL;
}
tx_data(buf)->is_cont = false;
net_buf_put(&conn->tx_queue, buf);
return 0;
}
enum {
FRAG_START,
FRAG_CONT,
FRAG_SINGLE,
FRAG_END
};
static int send_acl(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
{
struct bt_hci_acl_hdr *hdr;
switch (flags) {
case FRAG_START:
case FRAG_SINGLE:
flags = BT_ACL_START_NO_FLUSH;
break;
case FRAG_CONT:
case FRAG_END:
flags = BT_ACL_CONT;
break;
default:
return -EINVAL;
}
hdr = net_buf_push(buf, sizeof(*hdr));
hdr->handle = sys_cpu_to_le16(bt_acl_handle_pack(conn->handle, flags));
hdr->len = sys_cpu_to_le16(buf->len - sizeof(*hdr));
bt_buf_set_type(buf, BT_BUF_ACL_OUT);
return bt_send(buf);
}
static int send_iso(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
{
struct bt_hci_iso_hdr *hdr;
bool ts;
switch (flags) {
case FRAG_START:
flags = BT_ISO_START;
break;
case FRAG_CONT:
flags = BT_ISO_CONT;
break;
case FRAG_SINGLE:
flags = BT_ISO_SINGLE;
break;
case FRAG_END:
flags = BT_ISO_END;
break;
default:
return -EINVAL;
}
hdr = net_buf_push(buf, sizeof(*hdr));
ts = tx_data(buf)->iso_has_ts &&
(flags == BT_ISO_START || flags == BT_ISO_SINGLE);
hdr->handle = sys_cpu_to_le16(bt_iso_handle_pack(conn->handle, flags, ts));
hdr->len = sys_cpu_to_le16(buf->len - sizeof(*hdr));
bt_buf_set_type(buf, BT_BUF_ISO_OUT);
return bt_send(buf);
}
static inline uint16_t conn_mtu(struct bt_conn *conn)
{
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR ||
(conn->type != BT_CONN_TYPE_ISO && !bt_dev.le.acl_mtu)) {
return bt_dev.br.mtu;
}
#endif /* CONFIG_BT_BREDR */
#if defined(CONFIG_BT_ISO)
if (conn->type == BT_CONN_TYPE_ISO) {
return bt_dev.le.iso_mtu;
}
#endif /* CONFIG_BT_ISO */
#if defined(CONFIG_BT_CONN)
return bt_dev.le.acl_mtu;
#else
return 0;
#endif /* CONFIG_BT_CONN */
}
static int do_send_frag(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
{
struct bt_conn_tx *tx = tx_data(buf)->tx;
uint32_t *pending_no_cb;
unsigned int key;
int err = 0;
/* Check for disconnection while waiting for pkts_sem */
if (conn->state != BT_CONN_CONNECTED) {
err = -ENOTCONN;
goto fail;
}
LOG_DBG("conn %p buf %p len %u flags 0x%02x", conn, buf, buf->len,
flags);
/* Add to pending, it must be done before bt_buf_set_type */
key = irq_lock();
if (tx) {
sys_slist_append(&conn->tx_pending, &tx->node);
} else {
struct bt_conn_tx *tail_tx;
tail_tx = (void *)sys_slist_peek_tail(&conn->tx_pending);
if (tail_tx) {
pending_no_cb = &tail_tx->pending_no_cb;
} else {
pending_no_cb = &conn->pending_no_cb;
}
(*pending_no_cb)++;
}
irq_unlock(key);
if (IS_ENABLED(CONFIG_BT_ISO) && conn->type == BT_CONN_TYPE_ISO) {
err = send_iso(conn, buf, flags);
} else if (IS_ENABLED(CONFIG_BT_CONN)) {
err = send_acl(conn, buf, flags);
} else {
__ASSERT(false, "Invalid connection type %u", conn->type);
}
if (err) {
LOG_ERR("Unable to send to driver (err %d)", err);
key = irq_lock();
/* Roll back the pending TX info */
if (tx) {
sys_slist_find_and_remove(&conn->tx_pending, &tx->node);
} else {
__ASSERT_NO_MSG(*pending_no_cb > 0);
(*pending_no_cb)--;
}
irq_unlock(key);
/* We don't want to end up in a situation where send_acl/iso
* returns the same error code as when we don't get a buffer in
* time.
*/
err = -EIO;
goto fail;
}
return 0;
fail:
/* If we get here, something has seriously gone wrong:
* We also need to destroy the `parent` buf.
*/
k_sem_give(bt_conn_get_pkts(conn));
if (tx) {
/* `buf` might not get destroyed, and its `tx` pointer will still be reachable.
* Make sure that we don't try to use the destroyed context later.
*/
tx_data(buf)->tx = NULL;
conn_tx_destroy(conn, tx);
}
return err;
}
static size_t iso_hdr_len(struct net_buf *buf, struct bt_conn *conn)
{
#if defined(CONFIG_BT_ISO)
if (conn->type == BT_CONN_TYPE_ISO) {
if (tx_data(buf)->iso_has_ts) {
return BT_HCI_ISO_TS_DATA_HDR_SIZE;
} else {
return BT_HCI_ISO_DATA_HDR_SIZE;
}
}
#endif
return 0;
}
static int send_frag(struct bt_conn *conn,
struct net_buf *buf, struct net_buf *frag,
uint8_t flags)
{
/* Check if the controller can accept ACL packets */
if (k_sem_take(bt_conn_get_pkts(conn), K_NO_WAIT)) {
LOG_DBG("no controller bufs");
return -ENOBUFS;
}
/* Add the data to the buffer */
if (frag) {
size_t iso_hdr = flags == FRAG_START ? iso_hdr_len(buf, conn) : 0;
uint16_t frag_len = MIN(conn_mtu(conn) + iso_hdr,
net_buf_tailroom(frag));
net_buf_add_mem(frag, buf->data, frag_len);
net_buf_pull(buf, frag_len);
} else {
/* De-queue the buffer now that we know we can send it.
* Only applies if the buffer to be sent is the original buffer,
* and not one of its fragments.
* This buffer was fetched from the FIFO using a peek operation.
*/
buf = net_buf_get(&conn->tx_queue, K_NO_WAIT);
frag = buf;
}
return do_send_frag(conn, frag, flags);
}
static struct net_buf *create_frag(struct bt_conn *conn, struct net_buf *buf)
{
struct net_buf *frag;
switch (conn->type) {
#if defined(CONFIG_BT_ISO)
case BT_CONN_TYPE_ISO:
frag = bt_iso_create_frag(0);
break;
#endif
default:
#if defined(CONFIG_BT_CONN)
frag = bt_conn_create_frag(0);
#else
return NULL;
#endif /* CONFIG_BT_CONN */
}
if (conn->state != BT_CONN_CONNECTED) {
net_buf_unref(frag);
return NULL;
}
/* Fragments never have a TX completion callback */
tx_data(frag)->tx = NULL;
tx_data(frag)->is_cont = false;
return frag;
}
static bool fits_single_ctlr_buf(struct net_buf *buf, struct bt_conn *conn)
{
return buf->len - iso_hdr_len(buf, conn) <= conn_mtu(conn);
}
static int send_buf(struct bt_conn *conn, struct net_buf *buf)
{
struct net_buf *frag;
uint8_t flags;
int err;
LOG_DBG("conn %p buf %p len %u", conn, buf, buf->len);
/* Send directly if the packet fits the ACL MTU */
if (fits_single_ctlr_buf(buf, conn) && !tx_data(buf)->is_cont) {
LOG_DBG("send single");
return send_frag(conn, buf, NULL, FRAG_SINGLE);
}
LOG_DBG("start fragmenting");
/*
* Send the fragments. For the last one simply use the original
* buffer (which works since we've used net_buf_pull on it).
*/
flags = FRAG_START;
if (tx_data(buf)->is_cont) {
flags = FRAG_CONT;
}
while (buf->len > conn_mtu(conn)) {
frag = create_frag(conn, buf);
if (!frag) {
return -ENOMEM;
}
err = send_frag(conn, buf, frag, flags);
if (err) {
LOG_DBG("%p failed, mark as existing frag", buf);
tx_data(buf)->is_cont = flags != FRAG_START;
net_buf_unref(frag);
return err;
}
flags = FRAG_CONT;
}
LOG_DBG("last frag");
tx_data(buf)->is_cont = true;
return send_frag(conn, buf, NULL, FRAG_END);
}
static struct k_poll_signal conn_change =
K_POLL_SIGNAL_INITIALIZER(conn_change);
static void conn_cleanup(struct bt_conn *conn)
{
struct net_buf *buf;
/* Give back any allocated buffers */
while ((buf = net_buf_get(&conn->tx_queue, K_NO_WAIT))) {
struct bt_conn_tx *tx = tx_data(buf)->tx;
tx_data(buf)->tx = NULL;
/* destroy the buffer */
net_buf_unref(buf);
/* destroy the tx context (and any associated meta-data) */
if (tx) {
conn_tx_destroy(conn, tx);
}
}
__ASSERT(sys_slist_is_empty(&conn->tx_pending), "Pending TX packets");
__ASSERT_NO_MSG(conn->pending_no_cb == 0);
bt_conn_reset_rx_state(conn);
k_work_reschedule(&conn->deferred_work, K_NO_WAIT);
}
static void conn_destroy(struct bt_conn *conn, void *data)
{
if (conn->state == BT_CONN_CONNECTED ||
conn->state == BT_CONN_DISCONNECTING) {
bt_conn_set_state(conn, BT_CONN_DISCONNECT_COMPLETE);
}
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
}
void bt_conn_cleanup_all(void)
{
bt_conn_foreach(BT_CONN_TYPE_ALL, conn_destroy, NULL);
}
static int conn_prepare_events(struct bt_conn *conn,
struct k_poll_event *events)
{
if (!atomic_get(&conn->ref)) {
return -ENOTCONN;
}
if (conn->state == BT_CONN_DISCONNECTED &&
atomic_test_and_clear_bit(conn->flags, BT_CONN_CLEANUP)) {
conn_cleanup(conn);
return -ENOTCONN;
}
if (conn->state != BT_CONN_CONNECTED) {
return -ENOTCONN;
}
LOG_DBG("Adding conn %p to poll list", conn);
/* ISO Synchronized Receiver only builds do not transmit and hence
* may not have any tx buffers allocated in a Controller.
*/
struct k_sem *conn_pkts = bt_conn_get_pkts(conn);
if (!conn_pkts) {
return -ENOTCONN;
}
bool buffers_available = k_sem_count_get(conn_pkts) > 0;
bool packets_waiting = !k_fifo_is_empty(&conn->tx_queue);
if (packets_waiting && !buffers_available) {
/* Only resume sending when the controller has buffer space
* available for this connection.
*/
LOG_DBG("wait on ctlr buffers");
k_poll_event_init(&events[0],
K_POLL_TYPE_SEM_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
conn_pkts);
} else {
/* Wait until there is more data to send. */
LOG_DBG("wait on host fifo");
k_poll_event_init(&events[0],
K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&conn->tx_queue);
}
events[0].tag = BT_EVENT_CONN_TX_QUEUE;
return 0;
}
int bt_conn_prepare_events(struct k_poll_event events[])
{
int i, ev_count = 0;
struct bt_conn *conn;
LOG_DBG("");
k_poll_signal_init(&conn_change);
k_poll_event_init(&events[ev_count++], K_POLL_TYPE_SIGNAL,
K_POLL_MODE_NOTIFY_ONLY, &conn_change);
#if defined(CONFIG_BT_CONN)
for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
conn = &acl_conns[i];
if (!conn_prepare_events(conn, &events[ev_count])) {
ev_count++;
}
}
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_ISO)
for (i = 0; i < ARRAY_SIZE(iso_conns); i++) {
conn = &iso_conns[i];
if (!conn_prepare_events(conn, &events[ev_count])) {
ev_count++;
}
}
#endif
return ev_count;
}
void bt_conn_process_tx(struct bt_conn *conn)
{
struct net_buf *buf;
int err;
LOG_DBG("conn %p", conn);
if (conn->state == BT_CONN_DISCONNECTED &&
atomic_test_and_clear_bit(conn->flags, BT_CONN_CLEANUP)) {
LOG_DBG("handle %u disconnected - cleaning up", conn->handle);
conn_cleanup(conn);
return;
}
/* Get next ACL packet for connection. The buffer will only get dequeued
* if there is a free controller buffer to put it in.
*
* Important: no operations should be done on `buf` until it is properly
* dequeued from the FIFO, using the `net_buf_get()` API.
*/
buf = k_fifo_peek_head(&conn->tx_queue);
BT_ASSERT(buf);
/* Since we used `peek`, the queue still owns the reference to the
* buffer, so we need to take an explicit additional reference here.
*/
buf = net_buf_ref(buf);
err = send_buf(conn, buf);
net_buf_unref(buf);
if (err == -EIO) {
struct bt_conn_tx *tx = tx_data(buf)->tx;
tx_data(buf)->tx = NULL;
/* destroy the buffer */
net_buf_unref(buf);
/* destroy the tx context (and any associated meta-data) */
if (tx) {
conn_tx_destroy(conn, tx);
}
}
}
static void process_unack_tx(struct bt_conn *conn)
{
/* Return any unacknowledged packets */
while (1) {
struct bt_conn_tx *tx;
sys_snode_t *node;
unsigned int key;
key = irq_lock();
if (conn->pending_no_cb) {
conn->pending_no_cb--;
irq_unlock(key);
k_sem_give(bt_conn_get_pkts(conn));
continue;
}
node = sys_slist_get(&conn->tx_pending);
irq_unlock(key);
if (!node) {
break;
}
tx = CONTAINER_OF(node, struct bt_conn_tx, node);
key = irq_lock();
conn->pending_no_cb = tx->pending_no_cb;
tx->pending_no_cb = 0U;
irq_unlock(key);
conn_tx_destroy(conn, tx);
k_sem_give(bt_conn_get_pkts(conn));
}
}
struct bt_conn *conn_lookup_handle(struct bt_conn *conns, size_t size,
uint16_t handle)
{
int i;
for (i = 0; i < size; i++) {
struct bt_conn *conn = bt_conn_ref(&conns[i]);
if (!conn) {
continue;
}
/* We only care about connections with a valid handle */
if (!bt_conn_is_handle_valid(conn)) {
bt_conn_unref(conn);
continue;
}
if (conn->handle != handle) {
bt_conn_unref(conn);
continue;
}
return conn;
}
return NULL;
}
void bt_conn_set_state(struct bt_conn *conn, bt_conn_state_t state)
{
bt_conn_state_t old_state;
LOG_DBG("%s -> %s", state2str(conn->state), state2str(state));
if (conn->state == state) {
LOG_WRN("no transition %s", state2str(state));
return;
}
old_state = conn->state;
conn->state = state;
/* Actions needed for exiting the old state */
switch (old_state) {
case BT_CONN_DISCONNECTED:
/* Take a reference for the first state transition after
* bt_conn_add_le() and keep it until reaching DISCONNECTED
* again.
*/
if (conn->type != BT_CONN_TYPE_ISO) {
bt_conn_ref(conn);
}
break;
case BT_CONN_CONNECTING:
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->type == BT_CONN_TYPE_LE) {
k_work_cancel_delayable(&conn->deferred_work);
}
break;
default:
break;
}
/* Actions needed for entering the new state */
switch (conn->state) {
case BT_CONN_CONNECTED:
if (conn->type == BT_CONN_TYPE_SCO) {
/* TODO: Notify sco connected */
break;
}
k_fifo_init(&conn->tx_queue);
k_poll_signal_raise(&conn_change, 0);
if (IS_ENABLED(CONFIG_BT_ISO) &&
conn->type == BT_CONN_TYPE_ISO) {
bt_iso_connected(conn);
break;
}
#if defined(CONFIG_BT_CONN)
sys_slist_init(&conn->channels);
if (IS_ENABLED(CONFIG_BT_PERIPHERAL) &&
conn->role == BT_CONN_ROLE_PERIPHERAL) {
#if defined(CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS)
conn->le.conn_param_retry_countdown =
CONFIG_BT_CONN_PARAM_RETRY_COUNT;
#endif /* CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS */
k_work_schedule(&conn->deferred_work,
CONN_UPDATE_TIMEOUT);
}
#endif /* CONFIG_BT_CONN */
break;
case BT_CONN_DISCONNECTED:
#if defined(CONFIG_BT_CONN)
if (conn->type == BT_CONN_TYPE_SCO) {
/* TODO: Notify sco disconnected */
bt_conn_unref(conn);
break;
}
/* Notify disconnection and queue a dummy buffer to wake
* up and stop the tx thread for states where it was
* running.
*/
switch (old_state) {
case BT_CONN_DISCONNECT_COMPLETE:
tx_notify(conn);
/* Cancel Connection Update if it is pending */
if ((conn->type == BT_CONN_TYPE_LE) &&
(k_work_delayable_busy_get(&conn->deferred_work) &
(K_WORK_QUEUED | K_WORK_DELAYED))) {
k_work_cancel_delayable(&conn->deferred_work);
}
atomic_set_bit(conn->flags, BT_CONN_CLEANUP);
k_poll_signal_raise(&conn_change, 0);
/* The last ref will be dropped during cleanup */
break;
case BT_CONN_CONNECTING:
/* LE Create Connection command failed. This might be
* directly from the API, don't notify application in
* this case.
*/
if (conn->err) {
notify_connected(conn);
}
bt_conn_unref(conn);
break;
case BT_CONN_CONNECTING_SCAN:
/* this indicate LE Create Connection with peer address
* has been stopped. This could either be triggered by
* the application through bt_conn_disconnect or by
* timeout set by bt_conn_le_create_param.timeout.
*/
if (conn->err) {
notify_connected(conn);
}
bt_conn_unref(conn);
break;
case BT_CONN_CONNECTING_DIR_ADV:
/* this indicate Directed advertising stopped */
if (conn->err) {
notify_connected(conn);
}
bt_conn_unref(conn);
break;
case BT_CONN_CONNECTING_AUTO:
/* this indicates LE Create Connection with filter
* policy has been stopped. This can only be triggered
* by the application, so don't notify.
*/
bt_conn_unref(conn);
break;
case BT_CONN_CONNECTING_ADV:
/* This can only happen when application stops the
* advertiser, conn->err is never set in this case.
*/
bt_conn_unref(conn);
break;
case BT_CONN_CONNECTED:
case BT_CONN_DISCONNECTING:
case BT_CONN_DISCONNECTED:
/* Cannot happen. */
LOG_WRN("Invalid (%u) old state", state);
break;
}
break;
case BT_CONN_CONNECTING_AUTO:
break;
case BT_CONN_CONNECTING_ADV:
break;
case BT_CONN_CONNECTING_SCAN:
break;
case BT_CONN_CONNECTING_DIR_ADV:
break;
case BT_CONN_CONNECTING:
if (conn->type == BT_CONN_TYPE_SCO) {
break;
}
/*
* Timer is needed only for LE. For other link types controller
* will handle connection timeout.
*/
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->type == BT_CONN_TYPE_LE &&
bt_dev.create_param.timeout != 0) {
k_work_schedule(&conn->deferred_work,
K_MSEC(10 * bt_dev.create_param.timeout));
}
break;
case BT_CONN_DISCONNECTING:
break;
#endif /* CONFIG_BT_CONN */
case BT_CONN_DISCONNECT_COMPLETE:
process_unack_tx(conn);
break;
default:
LOG_WRN("no valid (%u) state was set", state);
break;
}
}
struct bt_conn *bt_conn_lookup_handle(uint16_t handle)
{
struct bt_conn *conn;
#if defined(CONFIG_BT_CONN)
conn = conn_lookup_handle(acl_conns, ARRAY_SIZE(acl_conns), handle);
if (conn) {
return conn;
}
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_ISO)
conn = conn_lookup_handle(iso_conns, ARRAY_SIZE(iso_conns), handle);
if (conn) {
return conn;
}
#endif
#if defined(CONFIG_BT_BREDR)
conn = conn_lookup_handle(sco_conns, ARRAY_SIZE(sco_conns), handle);
if (conn) {
return conn;
}
#endif
return NULL;
}
void bt_conn_foreach(int type, void (*func)(struct bt_conn *conn, void *data),
void *data)
{
int i;
#if defined(CONFIG_BT_CONN)
for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
if (!conn) {
continue;
}
if (!(conn->type & type)) {
bt_conn_unref(conn);
continue;
}
func(conn, data);
bt_conn_unref(conn);
}
#if defined(CONFIG_BT_BREDR)
if (type & BT_CONN_TYPE_SCO) {
for (i = 0; i < ARRAY_SIZE(sco_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&sco_conns[i]);
if (!conn) {
continue;
}
func(conn, data);
bt_conn_unref(conn);
}
}
#endif /* defined(CONFIG_BT_BREDR) */
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_ISO)
if (type & BT_CONN_TYPE_ISO) {
for (i = 0; i < ARRAY_SIZE(iso_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&iso_conns[i]);
if (!conn) {
continue;
}
func(conn, data);
bt_conn_unref(conn);
}
}
#endif /* defined(CONFIG_BT_ISO) */
}
struct bt_conn *bt_conn_ref(struct bt_conn *conn)
{
atomic_val_t old;
__ASSERT_NO_MSG(conn);
/* Reference counter must be checked to avoid incrementing ref from
* zero, then we should return NULL instead.
* Loop on clear-and-set in case someone has modified the reference
* count since the read, and start over again when that happens.
*/
do {
old = atomic_get(&conn->ref);
if (!old) {
return NULL;
}
} while (!atomic_cas(&conn->ref, old, old + 1));
LOG_DBG("handle %u ref %ld -> %ld", conn->handle, old, old + 1);
return conn;
}
void bt_conn_unref(struct bt_conn *conn)
{
atomic_val_t old;
old = atomic_dec(&conn->ref);
LOG_DBG("handle %u ref %ld -> %ld", conn->handle, old, atomic_get(&conn->ref));
__ASSERT(old > 0, "Conn reference counter is 0");
if (IS_ENABLED(CONFIG_BT_PERIPHERAL) && conn->type == BT_CONN_TYPE_LE &&
conn->role == BT_CONN_ROLE_PERIPHERAL && atomic_get(&conn->ref) == 0) {
bt_le_adv_resume();
}
}
uint8_t bt_conn_index(const struct bt_conn *conn)
{
ptrdiff_t index = 0;
switch (conn->type) {
#if defined(CONFIG_BT_ISO)
case BT_CONN_TYPE_ISO:
index = conn - iso_conns;
__ASSERT(index >= 0 && index < ARRAY_SIZE(iso_conns),
"Invalid bt_conn pointer");
break;
#endif
#if defined(CONFIG_BT_BREDR)
case BT_CONN_TYPE_SCO:
index = conn - sco_conns;
__ASSERT(index >= 0 && index < ARRAY_SIZE(sco_conns),
"Invalid bt_conn pointer");
break;
#endif
default:
#if defined(CONFIG_BT_CONN)
index = conn - acl_conns;
__ASSERT(index >= 0 && index < ARRAY_SIZE(acl_conns),
"Invalid bt_conn pointer");
#else
__ASSERT(false, "Invalid connection type %u", conn->type);
#endif /* CONFIG_BT_CONN */
break;
}
return (uint8_t)index;
}
#if defined(CONFIG_NET_BUF_LOG)
struct net_buf *bt_conn_create_pdu_timeout_debug(struct net_buf_pool *pool,
size_t reserve,
k_timeout_t timeout,
const char *func, int line)
#else
struct net_buf *bt_conn_create_pdu_timeout(struct net_buf_pool *pool,
size_t reserve, k_timeout_t timeout)
#endif
{
struct net_buf *buf;
/*
* PDU must not be allocated from ISR as we block with 'K_FOREVER'
* during the allocation
*/
__ASSERT_NO_MSG(!k_is_in_isr());
if (!pool) {
#if defined(CONFIG_BT_CONN)
pool = &acl_tx_pool;
#else
return NULL;
#endif /* CONFIG_BT_CONN */
}
if (IS_ENABLED(CONFIG_BT_CONN_LOG_LEVEL_DBG)) {
#if defined(CONFIG_NET_BUF_LOG)
buf = net_buf_alloc_fixed_debug(pool, K_NO_WAIT, func, line);
#else
buf = net_buf_alloc(pool, K_NO_WAIT);
#endif
if (!buf) {
LOG_WRN("Unable to allocate buffer with K_NO_WAIT");
#if defined(CONFIG_NET_BUF_LOG)
buf = net_buf_alloc_fixed_debug(pool, timeout, func,
line);
#else
buf = net_buf_alloc(pool, timeout);
#endif
}
} else {
#if defined(CONFIG_NET_BUF_LOG)
buf = net_buf_alloc_fixed_debug(pool, timeout, func,
line);
#else
buf = net_buf_alloc(pool, timeout);
#endif
}
if (!buf) {
LOG_WRN("Unable to allocate buffer within timeout");
return NULL;
}
reserve += sizeof(struct bt_hci_acl_hdr) + BT_BUF_RESERVE;
net_buf_reserve(buf, reserve);
return buf;
}
#if defined(CONFIG_BT_CONN_TX)
static void tx_complete_work(struct k_work *work)
{
struct bt_conn *conn = CONTAINER_OF(work, struct bt_conn,
tx_complete_work);
LOG_DBG("conn %p", conn);
tx_notify(conn);
}
#endif /* CONFIG_BT_CONN_TX */
/* Group Connected BT_CONN only in this */
#if defined(CONFIG_BT_CONN)
void bt_conn_connected(struct bt_conn *conn)
{
bt_l2cap_connected(conn);
notify_connected(conn);
}
static int conn_disconnect(struct bt_conn *conn, uint8_t reason)
{
int err;
err = bt_hci_disconnect(conn->handle, reason);
if (err) {
return err;
}
if (conn->state == BT_CONN_CONNECTED) {
bt_conn_set_state(conn, BT_CONN_DISCONNECTING);
}
return 0;
}
int bt_conn_disconnect(struct bt_conn *conn, uint8_t reason)
{
/* Disconnection is initiated by us, so auto connection shall
* be disabled. Otherwise the passive scan would be enabled
* and we could send LE Create Connection as soon as the remote
* starts advertising.
*/
#if !defined(CONFIG_BT_FILTER_ACCEPT_LIST)
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->type == BT_CONN_TYPE_LE) {
bt_le_set_auto_conn(&conn->le.dst, NULL);
}
#endif /* !defined(CONFIG_BT_FILTER_ACCEPT_LIST) */
switch (conn->state) {
case BT_CONN_CONNECTING_SCAN:
conn->err = reason;
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
bt_le_scan_update(false);
}
return 0;
case BT_CONN_CONNECTING:
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR) {
return bt_hci_connect_br_cancel(conn);
}
#endif /* CONFIG_BT_BREDR */
if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
k_work_cancel_delayable(&conn->deferred_work);
return bt_le_create_conn_cancel();
}
return 0;
case BT_CONN_CONNECTED:
return conn_disconnect(conn, reason);
case BT_CONN_DISCONNECTING:
return 0;
case BT_CONN_DISCONNECTED:
default:
return -ENOTCONN;
}
}
static void notify_connected(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->connected) {
cb->connected(conn, conn->err);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->connected) {
cb->connected(conn, conn->err);
}
}
}
static void notify_disconnected(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->disconnected) {
cb->disconnected(conn, conn->err);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->disconnected) {
cb->disconnected(conn, conn->err);
}
}
}
#if defined(CONFIG_BT_REMOTE_INFO)
void notify_remote_info(struct bt_conn *conn)
{
struct bt_conn_remote_info remote_info;
struct bt_conn_cb *cb;
int err;
err = bt_conn_get_remote_info(conn, &remote_info);
if (err) {
LOG_DBG("Notify remote info failed %d", err);
return;
}
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->remote_info_available) {
cb->remote_info_available(conn, &remote_info);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->remote_info_available) {
cb->remote_info_available(conn, &remote_info);
}
}
}
#endif /* defined(CONFIG_BT_REMOTE_INFO) */
void notify_le_param_updated(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
/* If new connection parameters meet requirement of pending
* parameters don't send peripheral conn param request anymore on timeout
*/
if (atomic_test_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_SET) &&
conn->le.interval >= conn->le.interval_min &&
conn->le.interval <= conn->le.interval_max &&
conn->le.latency == conn->le.pending_latency &&
conn->le.timeout == conn->le.pending_timeout) {
atomic_clear_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_SET);
}
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->le_param_updated) {
cb->le_param_updated(conn, conn->le.interval,
conn->le.latency,
conn->le.timeout);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_param_updated) {
cb->le_param_updated(conn, conn->le.interval,
conn->le.latency,
conn->le.timeout);
}
}
}
#if defined(CONFIG_BT_USER_DATA_LEN_UPDATE)
void notify_le_data_len_updated(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->le_data_len_updated) {
cb->le_data_len_updated(conn, &conn->le.data_len);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_data_len_updated) {
cb->le_data_len_updated(conn, &conn->le.data_len);
}
}
}
#endif
#if defined(CONFIG_BT_USER_PHY_UPDATE)
void notify_le_phy_updated(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->le_phy_updated) {
cb->le_phy_updated(conn, &conn->le.phy);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_phy_updated) {
cb->le_phy_updated(conn, &conn->le.phy);
}
}
}
#endif
bool le_param_req(struct bt_conn *conn, struct bt_le_conn_param *param)
{
struct bt_conn_cb *cb;
if (!bt_le_conn_params_valid(param)) {
return false;
}
for (cb = callback_list; cb; cb = cb->_next) {
if (!cb->le_param_req) {
continue;
}
if (!cb->le_param_req(conn, param)) {
return false;
}
/* The callback may modify the parameters so we need to
* double-check that it returned valid parameters.
*/
if (!bt_le_conn_params_valid(param)) {
return false;
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (!cb->le_param_req) {
continue;
}
if (!cb->le_param_req(conn, param)) {
return false;
}
/* The callback may modify the parameters so we need to
* double-check that it returned valid parameters.
*/
if (!bt_le_conn_params_valid(param)) {
return false;
}
}
/* Default to accepting if there's no app callback */
return true;
}
static int send_conn_le_param_update(struct bt_conn *conn,
const struct bt_le_conn_param *param)
{
LOG_DBG("conn %p features 0x%02x params (%d-%d %d %d)", conn, conn->le.features[0],
param->interval_min, param->interval_max, param->latency, param->timeout);
/* Proceed only if connection parameters contains valid values*/
if (!bt_le_conn_params_valid(param)) {
return -EINVAL;
}
/* Use LE connection parameter request if both local and remote support
* it; or if local role is central then use LE connection update.
*/
if ((BT_FEAT_LE_CONN_PARAM_REQ_PROC(bt_dev.le.features) &&
BT_FEAT_LE_CONN_PARAM_REQ_PROC(conn->le.features) &&
!atomic_test_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_L2CAP)) ||
(conn->role == BT_HCI_ROLE_CENTRAL)) {
int rc;
rc = bt_conn_le_conn_update(conn, param);
/* store those in case of fallback to L2CAP */
if (rc == 0) {
conn->le.interval_min = param->interval_min;
conn->le.interval_max = param->interval_max;
conn->le.pending_latency = param->latency;
conn->le.pending_timeout = param->timeout;
}
return rc;
}
/* If remote central does not support LL Connection Parameters Request
* Procedure
*/
return bt_l2cap_update_conn_param(conn, param);
}
#if defined(CONFIG_BT_ISO_UNICAST)
static struct bt_conn *conn_lookup_iso(struct bt_conn *conn)
{
int i;
for (i = 0; i < ARRAY_SIZE(iso_conns); i++) {
struct bt_conn *iso = bt_conn_ref(&iso_conns[i]);
if (iso == NULL) {
continue;
}
if (iso->iso.acl == conn) {
return iso;
}
bt_conn_unref(iso);
}
return NULL;
}
#endif /* CONFIG_BT_ISO */
static void deferred_work(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct bt_conn *conn = CONTAINER_OF(dwork, struct bt_conn, deferred_work);
const struct bt_le_conn_param *param;
LOG_DBG("conn %p", conn);
if (conn->state == BT_CONN_DISCONNECTED) {
#if defined(CONFIG_BT_ISO_UNICAST)
struct bt_conn *iso;
if (conn->type == BT_CONN_TYPE_ISO) {
/* bt_iso_disconnected is responsible for unref'ing the
* connection pointer, as it is conditional on whether
* the connection is a central or peripheral.
*/
bt_iso_disconnected(conn);
return;
}
/* Mark all ISO channels associated
* with ACL conn as not connected, and
* remove ACL reference
*/
iso = conn_lookup_iso(conn);
while (iso != NULL) {
struct bt_iso_chan *chan = iso->iso.chan;
if (chan != NULL) {
bt_iso_chan_set_state(chan,
BT_ISO_STATE_DISCONNECTING);
}
bt_iso_cleanup_acl(iso);
bt_conn_unref(iso);
iso = conn_lookup_iso(conn);
}
#endif
bt_l2cap_disconnected(conn);
notify_disconnected(conn);
/* Release the reference we took for the very first
* state transition.
*/
bt_conn_unref(conn);
return;
}
if (conn->type != BT_CONN_TYPE_LE) {
return;
}
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->role == BT_CONN_ROLE_CENTRAL) {
/* we don't call bt_conn_disconnect as it would also clear
* auto connect flag if it was set, instead just cancel
* connection directly
*/
bt_le_create_conn_cancel();
return;
}
/* if application set own params use those, otherwise use defaults. */
if (atomic_test_and_clear_bit(conn->flags,
BT_CONN_PERIPHERAL_PARAM_SET)) {
int err;
param = BT_LE_CONN_PARAM(conn->le.interval_min,
conn->le.interval_max,
conn->le.pending_latency,
conn->le.pending_timeout);
err = send_conn_le_param_update(conn, param);
if (!err) {
atomic_clear_bit(conn->flags,
BT_CONN_PERIPHERAL_PARAM_AUTO_UPDATE);
} else {
LOG_WRN("Send LE param update failed (err %d)", err);
}
} else if (IS_ENABLED(CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS)) {
#if defined(CONFIG_BT_GAP_PERIPHERAL_PREF_PARAMS)
int err;
param = BT_LE_CONN_PARAM(
CONFIG_BT_PERIPHERAL_PREF_MIN_INT,
CONFIG_BT_PERIPHERAL_PREF_MAX_INT,
CONFIG_BT_PERIPHERAL_PREF_LATENCY,
CONFIG_BT_PERIPHERAL_PREF_TIMEOUT);
err = send_conn_le_param_update(conn, param);
if (!err) {
atomic_set_bit(conn->flags,
BT_CONN_PERIPHERAL_PARAM_AUTO_UPDATE);
} else {
LOG_WRN("Send auto LE param update failed (err %d)",
err);
}
#endif
}
atomic_set_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_UPDATE);
}
static struct bt_conn *acl_conn_new(void)
{
return bt_conn_new(acl_conns, ARRAY_SIZE(acl_conns));
}
#if defined(CONFIG_BT_BREDR)
void bt_sco_cleanup(struct bt_conn *sco_conn)
{
bt_conn_unref(sco_conn->sco.acl);
sco_conn->sco.acl = NULL;
bt_conn_unref(sco_conn);
}
static struct bt_conn *sco_conn_new(void)
{
return bt_conn_new(sco_conns, ARRAY_SIZE(sco_conns));
}
struct bt_conn *bt_conn_create_br(const bt_addr_t *peer,
const struct bt_br_conn_param *param)
{
struct bt_hci_cp_connect *cp;
struct bt_conn *conn;
struct net_buf *buf;
conn = bt_conn_lookup_addr_br(peer);
if (conn) {
switch (conn->state) {
case BT_CONN_CONNECTING:
case BT_CONN_CONNECTED:
return conn;
default:
bt_conn_unref(conn);
return NULL;
}
}
conn = bt_conn_add_br(peer);
if (!conn) {
return NULL;
}
buf = bt_hci_cmd_create(BT_HCI_OP_CONNECT, sizeof(*cp));
if (!buf) {
bt_conn_unref(conn);
return NULL;
}
cp = net_buf_add(buf, sizeof(*cp));
(void)memset(cp, 0, sizeof(*cp));
memcpy(&cp->bdaddr, peer, sizeof(cp->bdaddr));
cp->packet_type = sys_cpu_to_le16(0xcc18); /* DM1 DH1 DM3 DH5 DM5 DH5 */
cp->pscan_rep_mode = 0x02; /* R2 */
cp->allow_role_switch = param->allow_role_switch ? 0x01 : 0x00;
cp->clock_offset = 0x0000; /* TODO used cached clock offset */
if (bt_hci_cmd_send_sync(BT_HCI_OP_CONNECT, buf, NULL) < 0) {
bt_conn_unref(conn);
return NULL;
}
bt_conn_set_state(conn, BT_CONN_CONNECTING);
conn->role = BT_CONN_ROLE_CENTRAL;
return conn;
}
struct bt_conn *bt_conn_create_sco(const bt_addr_t *peer)
{
struct bt_hci_cp_setup_sync_conn *cp;
struct bt_conn *sco_conn;
struct net_buf *buf;
int link_type;
sco_conn = bt_conn_lookup_addr_sco(peer);
if (sco_conn) {
switch (sco_conn->state) {
case BT_CONN_CONNECTING:
case BT_CONN_CONNECTED:
return sco_conn;
default:
bt_conn_unref(sco_conn);
return NULL;
}
}
if (BT_FEAT_LMP_ESCO_CAPABLE(bt_dev.features)) {
link_type = BT_HCI_ESCO;
} else {
link_type = BT_HCI_SCO;
}
sco_conn = bt_conn_add_sco(peer, link_type);
if (!sco_conn) {
return NULL;
}
buf = bt_hci_cmd_create(BT_HCI_OP_SETUP_SYNC_CONN, sizeof(*cp));
if (!buf) {
bt_sco_cleanup(sco_conn);
return NULL;
}
cp = net_buf_add(buf, sizeof(*cp));
(void)memset(cp, 0, sizeof(*cp));
LOG_ERR("handle : %x", sco_conn->sco.acl->handle);
cp->handle = sco_conn->sco.acl->handle;
cp->pkt_type = sco_conn->sco.pkt_type;
cp->tx_bandwidth = 0x00001f40;
cp->rx_bandwidth = 0x00001f40;
cp->max_latency = 0x0007;
cp->retrans_effort = 0x01;
cp->content_format = BT_VOICE_CVSD_16BIT;
if (bt_hci_cmd_send_sync(BT_HCI_OP_SETUP_SYNC_CONN, buf,
NULL) < 0) {
bt_sco_cleanup(sco_conn);
return NULL;
}
bt_conn_set_state(sco_conn, BT_CONN_CONNECTING);
return sco_conn;
}
struct bt_conn *bt_conn_lookup_addr_sco(const bt_addr_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(sco_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&sco_conns[i]);
if (!conn) {
continue;
}
if (conn->type != BT_CONN_TYPE_SCO) {
bt_conn_unref(conn);
continue;
}
if (!bt_addr_eq(peer, &conn->sco.acl->br.dst)) {
bt_conn_unref(conn);
continue;
}
return conn;
}
return NULL;
}
struct bt_conn *bt_conn_lookup_addr_br(const bt_addr_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
if (!conn) {
continue;
}
if (conn->type != BT_CONN_TYPE_BR) {
bt_conn_unref(conn);
continue;
}
if (!bt_addr_eq(peer, &conn->br.dst)) {
bt_conn_unref(conn);
continue;
}
return conn;
}
return NULL;
}
struct bt_conn *bt_conn_add_sco(const bt_addr_t *peer, int link_type)
{
struct bt_conn *sco_conn = sco_conn_new();
if (!sco_conn) {
return NULL;
}
sco_conn->sco.acl = bt_conn_lookup_addr_br(peer);
if (!sco_conn->sco.acl) {
bt_conn_unref(sco_conn);
return NULL;
}
sco_conn->type = BT_CONN_TYPE_SCO;
if (link_type == BT_HCI_SCO) {
if (BT_FEAT_LMP_ESCO_CAPABLE(bt_dev.features)) {
sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
ESCO_PKT_MASK);
} else {
sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
SCO_PKT_MASK);
}
} else if (link_type == BT_HCI_ESCO) {
sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
~EDR_ESCO_PKT_MASK);
}
return sco_conn;
}
struct bt_conn *bt_conn_add_br(const bt_addr_t *peer)
{
struct bt_conn *conn = acl_conn_new();
if (!conn) {
return NULL;
}
bt_addr_copy(&conn->br.dst, peer);
conn->type = BT_CONN_TYPE_BR;
return conn;
}
static int bt_hci_connect_br_cancel(struct bt_conn *conn)
{
struct bt_hci_cp_connect_cancel *cp;
struct bt_hci_rp_connect_cancel *rp;
struct net_buf *buf, *rsp;
int err;
buf = bt_hci_cmd_create(BT_HCI_OP_CONNECT_CANCEL, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
memcpy(&cp->bdaddr, &conn->br.dst, sizeof(cp->bdaddr));
err = bt_hci_cmd_send_sync(BT_HCI_OP_CONNECT_CANCEL, buf, &rsp);
if (err) {
return err;
}
rp = (void *)rsp->data;
err = rp->status ? -EIO : 0;
net_buf_unref(rsp);
return err;
}
#endif /* CONFIG_BT_BREDR */
#if defined(CONFIG_BT_SMP)
bool bt_conn_ltk_present(const struct bt_conn *conn)
{
const struct bt_keys *keys = conn->le.keys;
if (!keys) {
keys = bt_keys_find_addr(conn->id, &conn->le.dst);
}
if (keys) {
if (conn->role == BT_HCI_ROLE_CENTRAL) {
return keys->keys & (BT_KEYS_LTK_P256 | BT_KEYS_PERIPH_LTK);
} else {
return keys->keys & (BT_KEYS_LTK_P256 | BT_KEYS_LTK);
}
}
return false;
}
void bt_conn_identity_resolved(struct bt_conn *conn)
{
const bt_addr_le_t *rpa;
struct bt_conn_cb *cb;
if (conn->role == BT_HCI_ROLE_CENTRAL) {
rpa = &conn->le.resp_addr;
} else {
rpa = &conn->le.init_addr;
}
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->identity_resolved) {
cb->identity_resolved(conn, rpa, &conn->le.dst);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->identity_resolved) {
cb->identity_resolved(conn, rpa, &conn->le.dst);
}
}
}
int bt_conn_le_start_encryption(struct bt_conn *conn, uint8_t rand[8],
uint8_t ediv[2], const uint8_t *ltk, size_t len)
{
struct bt_hci_cp_le_start_encryption *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_START_ENCRYPTION, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
memcpy(&cp->rand, rand, sizeof(cp->rand));
memcpy(&cp->ediv, ediv, sizeof(cp->ediv));
memcpy(cp->ltk, ltk, len);
if (len < sizeof(cp->ltk)) {
(void)memset(cp->ltk + len, 0, sizeof(cp->ltk) - len);
}
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_START_ENCRYPTION, buf, NULL);
}
#endif /* CONFIG_BT_SMP */
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
uint8_t bt_conn_enc_key_size(const struct bt_conn *conn)
{
if (!conn->encrypt) {
return 0;
}
if (IS_ENABLED(CONFIG_BT_BREDR) &&
conn->type == BT_CONN_TYPE_BR) {
struct bt_hci_cp_read_encryption_key_size *cp;
struct bt_hci_rp_read_encryption_key_size *rp;
struct net_buf *buf;
struct net_buf *rsp;
uint8_t key_size;
buf = bt_hci_cmd_create(BT_HCI_OP_READ_ENCRYPTION_KEY_SIZE,
sizeof(*cp));
if (!buf) {
return 0;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
if (bt_hci_cmd_send_sync(BT_HCI_OP_READ_ENCRYPTION_KEY_SIZE,
buf, &rsp)) {
return 0;
}
rp = (void *)rsp->data;
key_size = rp->status ? 0 : rp->key_size;
net_buf_unref(rsp);
return key_size;
}
if (IS_ENABLED(CONFIG_BT_SMP)) {
return conn->le.keys ? conn->le.keys->enc_size : 0;
}
return 0;
}
static void reset_pairing(struct bt_conn *conn)
{
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR) {
atomic_clear_bit(conn->flags, BT_CONN_BR_PAIRING);
atomic_clear_bit(conn->flags, BT_CONN_BR_PAIRING_INITIATOR);
atomic_clear_bit(conn->flags, BT_CONN_BR_LEGACY_SECURE);
}
#endif /* CONFIG_BT_BREDR */
/* Reset required security level to current operational */
conn->required_sec_level = conn->sec_level;
}
void bt_conn_security_changed(struct bt_conn *conn, uint8_t hci_err,
enum bt_security_err err)
{
struct bt_conn_cb *cb;
reset_pairing(conn);
bt_l2cap_security_changed(conn, hci_err);
if (IS_ENABLED(CONFIG_BT_ISO_CENTRAL)) {
bt_iso_security_changed(conn, hci_err);
}
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->security_changed) {
cb->security_changed(conn, conn->sec_level, err);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->security_changed) {
cb->security_changed(conn, conn->sec_level, err);
}
}
#if defined(CONFIG_BT_KEYS_OVERWRITE_OLDEST)
if (!err && conn->sec_level >= BT_SECURITY_L2) {
if (conn->type == BT_CONN_TYPE_LE) {
bt_keys_update_usage(conn->id, bt_conn_get_dst(conn));
}
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR) {
bt_keys_link_key_update_usage(&conn->br.dst);
}
#endif /* CONFIG_BT_BREDR */
}
#endif
}
static int start_security(struct bt_conn *conn)
{
if (IS_ENABLED(CONFIG_BT_BREDR) && conn->type == BT_CONN_TYPE_BR) {
return bt_ssp_start_security(conn);
}
if (IS_ENABLED(CONFIG_BT_SMP)) {
return bt_smp_start_security(conn);
}
return -EINVAL;
}
int bt_conn_set_security(struct bt_conn *conn, bt_security_t sec)
{
int err;
if (conn->state != BT_CONN_CONNECTED) {
return -ENOTCONN;
}
if (IS_ENABLED(CONFIG_BT_SMP_SC_ONLY)) {
sec = BT_SECURITY_L4;
}
if (IS_ENABLED(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY)) {
sec = BT_SECURITY_L3;
}
/* nothing to do */
if (conn->sec_level >= sec || conn->required_sec_level >= sec) {
return 0;
}
atomic_set_bit_to(conn->flags, BT_CONN_FORCE_PAIR,
sec & BT_SECURITY_FORCE_PAIR);
conn->required_sec_level = sec & ~BT_SECURITY_FORCE_PAIR;
err = start_security(conn);
/* reset required security level in case of error */
if (err) {
conn->required_sec_level = conn->sec_level;
}
return err;
}
bt_security_t bt_conn_get_security(const struct bt_conn *conn)
{
return conn->sec_level;
}
#else
bt_security_t bt_conn_get_security(const struct bt_conn *conn)
{
return BT_SECURITY_L1;
}
#endif /* CONFIG_BT_SMP */
void bt_conn_cb_register(struct bt_conn_cb *cb)
{
cb->_next = callback_list;
callback_list = cb;
}
bool bt_conn_exists_le(uint8_t id, const bt_addr_le_t *peer)
{
struct bt_conn *conn = bt_conn_lookup_addr_le(id, peer);
if (conn) {
/* Connection object already exists.
* If the connection state is not "disconnected",then the
* connection was created but has not yet been disconnected.
* If the connection state is "disconnected" then the connection
* still has valid references. The last reference of the stack
* is released after the disconnected callback.
*/
LOG_WRN("Found valid connection in %s state", state2str(conn->state));
bt_conn_unref(conn);
return true;
}
return false;
}
struct bt_conn *bt_conn_add_le(uint8_t id, const bt_addr_le_t *peer)
{
struct bt_conn *conn = acl_conn_new();
if (!conn) {
return NULL;
}
conn->id = id;
bt_addr_le_copy(&conn->le.dst, peer);
#if defined(CONFIG_BT_SMP)
conn->sec_level = BT_SECURITY_L1;
conn->required_sec_level = BT_SECURITY_L1;
#endif /* CONFIG_BT_SMP */
conn->type = BT_CONN_TYPE_LE;
conn->le.interval_min = BT_GAP_INIT_CONN_INT_MIN;
conn->le.interval_max = BT_GAP_INIT_CONN_INT_MAX;
return conn;
}
bool bt_conn_is_peer_addr_le(const struct bt_conn *conn, uint8_t id,
const bt_addr_le_t *peer)
{
if (id != conn->id) {
return false;
}
/* Check against conn dst address as it may be the identity address */
if (bt_addr_le_eq(peer, &conn->le.dst)) {
return true;
}
/* Check against initial connection address */
if (conn->role == BT_HCI_ROLE_CENTRAL) {
return bt_addr_le_eq(peer, &conn->le.resp_addr);
}
return bt_addr_le_eq(peer, &conn->le.init_addr);
}
struct bt_conn *bt_conn_lookup_addr_le(uint8_t id, const bt_addr_le_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
if (!conn) {
continue;
}
if (conn->type != BT_CONN_TYPE_LE) {
bt_conn_unref(conn);
continue;
}
if (!bt_conn_is_peer_addr_le(conn, id, peer)) {
bt_conn_unref(conn);
continue;
}
return conn;
}
return NULL;
}
struct bt_conn *bt_conn_lookup_state_le(uint8_t id, const bt_addr_le_t *peer,
const bt_conn_state_t state)
{
int i;
for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
if (!conn) {
continue;
}
if (conn->type != BT_CONN_TYPE_LE) {
bt_conn_unref(conn);
continue;
}
if (peer && !bt_conn_is_peer_addr_le(conn, id, peer)) {
bt_conn_unref(conn);
continue;
}
if (!(conn->state == state && conn->id == id)) {
bt_conn_unref(conn);
continue;
}
return conn;
}
return NULL;
}
const bt_addr_le_t *bt_conn_get_dst(const struct bt_conn *conn)
{
return &conn->le.dst;
}
static enum bt_conn_state conn_internal_to_public_state(bt_conn_state_t state)
{
switch (state) {
case BT_CONN_DISCONNECTED:
case BT_CONN_DISCONNECT_COMPLETE:
return BT_CONN_STATE_DISCONNECTED;
case BT_CONN_CONNECTING_SCAN:
case BT_CONN_CONNECTING_AUTO:
case BT_CONN_CONNECTING_ADV:
case BT_CONN_CONNECTING_DIR_ADV:
case BT_CONN_CONNECTING:
return BT_CONN_STATE_CONNECTING;
case BT_CONN_CONNECTED:
return BT_CONN_STATE_CONNECTED;
case BT_CONN_DISCONNECTING:
return BT_CONN_STATE_DISCONNECTING;
default:
__ASSERT(false, "Invalid conn state %u", state);
return 0;
}
}
int bt_conn_get_info(const struct bt_conn *conn, struct bt_conn_info *info)
{
info->type = conn->type;
info->role = conn->role;
info->id = conn->id;
info->state = conn_internal_to_public_state(conn->state);
info->security.flags = 0;
info->security.level = bt_conn_get_security(conn);
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
info->security.enc_key_size = bt_conn_enc_key_size(conn);
#else
info->security.enc_key_size = 0;
#endif /* CONFIG_BT_SMP || CONFIG_BT_BREDR */
switch (conn->type) {
case BT_CONN_TYPE_LE:
info->le.dst = &conn->le.dst;
info->le.src = &bt_dev.id_addr[conn->id];
if (conn->role == BT_HCI_ROLE_CENTRAL) {
info->le.local = &conn->le.init_addr;
info->le.remote = &conn->le.resp_addr;
} else {
info->le.local = &conn->le.resp_addr;
info->le.remote = &conn->le.init_addr;
}
info->le.interval = conn->le.interval;
info->le.latency = conn->le.latency;
info->le.timeout = conn->le.timeout;
#if defined(CONFIG_BT_USER_PHY_UPDATE)
info->le.phy = &conn->le.phy;
#endif
#if defined(CONFIG_BT_USER_DATA_LEN_UPDATE)
info->le.data_len = &conn->le.data_len;
#endif
if (conn->le.keys && (conn->le.keys->flags & BT_KEYS_SC)) {
info->security.flags |= BT_SECURITY_FLAG_SC;
}
if (conn->le.keys && (conn->le.keys->flags & BT_KEYS_OOB)) {
info->security.flags |= BT_SECURITY_FLAG_OOB;
}
return 0;
#if defined(CONFIG_BT_BREDR)
case BT_CONN_TYPE_BR:
info->br.dst = &conn->br.dst;
return 0;
#endif
#if defined(CONFIG_BT_ISO)
case BT_CONN_TYPE_ISO:
if (IS_ENABLED(CONFIG_BT_ISO_UNICAST) &&
conn->iso.info.type == BT_ISO_CHAN_TYPE_CONNECTED && conn->iso.acl != NULL) {
info->le.dst = &conn->iso.acl->le.dst;
info->le.src = &bt_dev.id_addr[conn->iso.acl->id];
} else {
info->le.src = BT_ADDR_LE_NONE;
info->le.dst = BT_ADDR_LE_NONE;
}
return 0;
#endif
}
return -EINVAL;
}
int bt_conn_get_remote_info(struct bt_conn *conn,
struct bt_conn_remote_info *remote_info)
{
if (!atomic_test_bit(conn->flags, BT_CONN_AUTO_FEATURE_EXCH) ||
(IS_ENABLED(CONFIG_BT_REMOTE_VERSION) &&
!atomic_test_bit(conn->flags, BT_CONN_AUTO_VERSION_INFO))) {
return -EBUSY;
}
remote_info->type = conn->type;
#if defined(CONFIG_BT_REMOTE_VERSION)
/* The conn->rv values will be just zeroes if the operation failed */
remote_info->version = conn->rv.version;
remote_info->manufacturer = conn->rv.manufacturer;
remote_info->subversion = conn->rv.subversion;
#else
remote_info->version = 0;
remote_info->manufacturer = 0;
remote_info->subversion = 0;
#endif
switch (conn->type) {
case BT_CONN_TYPE_LE:
remote_info->le.features = conn->le.features;
return 0;
#if defined(CONFIG_BT_BREDR)
case BT_CONN_TYPE_BR:
/* TODO: Make sure the HCI commands to read br features and
* extended features has finished. */
return -ENOTSUP;
#endif
default:
return -EINVAL;
}
}
/* Read Transmit Power Level HCI command */
static int bt_conn_get_tx_power_level(struct bt_conn *conn, uint8_t type,
int8_t *tx_power_level)
{
int err;
struct bt_hci_rp_read_tx_power_level *rp;
struct net_buf *rsp;
struct bt_hci_cp_read_tx_power_level *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_READ_TX_POWER_LEVEL, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->type = type;
cp->handle = sys_cpu_to_le16(conn->handle);
err = bt_hci_cmd_send_sync(BT_HCI_OP_READ_TX_POWER_LEVEL, buf, &rsp);
if (err) {
return err;
}
rp = (void *) rsp->data;
*tx_power_level = rp->tx_power_level;
net_buf_unref(rsp);
return 0;
}
int bt_conn_le_get_tx_power_level(struct bt_conn *conn,
struct bt_conn_le_tx_power *tx_power_level)
{
int err;
if (tx_power_level->phy != 0) {
/* Extend the implementation when LE Enhanced Read Transmit
* Power Level HCI command is available for use.
*/
return -ENOTSUP;
}
err = bt_conn_get_tx_power_level(conn, BT_TX_POWER_LEVEL_CURRENT,
&tx_power_level->current_level);
if (err) {
return err;
}
err = bt_conn_get_tx_power_level(conn, BT_TX_POWER_LEVEL_MAX,
&tx_power_level->max_level);
return err;
}
int bt_conn_le_param_update(struct bt_conn *conn,
const struct bt_le_conn_param *param)
{
LOG_DBG("conn %p features 0x%02x params (%d-%d %d %d)", conn, conn->le.features[0],
param->interval_min, param->interval_max, param->latency, param->timeout);
/* Check if there's a need to update conn params */
if (conn->le.interval >= param->interval_min &&
conn->le.interval <= param->interval_max &&
conn->le