Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
/*
 * Copyright (c) 2021, NXP
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/linker/sections.h>
#include <zephyr/linker/linker-defs.h>
#include <fsl_clock.h>
#include <fsl_gpc.h>
#include <fsl_pmu.h>
#include <fsl_dcdc.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/arch/arm/aarch32/cortex_m/cmsis.h>
#ifdef CONFIG_NXP_IMX_RT_BOOT_HEADER
#include <fsl_flexspi_nor_boot.h>
#endif
#include <zephyr/dt-bindings/clock/imx_ccm_rev2.h>
#if  defined(CONFIG_SECOND_CORE_MCUX) && defined(CONFIG_CPU_CORTEX_M7)
#include <zephyr_image_info.h>
/* Memcpy macro to copy segments from secondary core image stored in flash
 * to RAM section that secondary core boots from.
 * n is the segment number, as defined in zephyr_image_info.h
 */
#define MEMCPY_SEGMENT(n, _)							\
	memcpy((uint32_t *)((SEGMENT_LMA_ADDRESS_ ## n) - ADJUSTED_LMA),	\
		(uint32_t *)(SEGMENT_LMA_ADDRESS_ ## n),			\
		(SEGMENT_SIZE_ ## n))
#endif
#if CONFIG_USB_DC_NXP_EHCI
#include "usb_phy.h"
#include "usb.h"
#endif

#define DUAL_CORE_MU_ENABLED \
	(CONFIG_SECOND_CORE_MCUX && CONFIG_IPM && CONFIG_IPM_IMX_REV2)

#if DUAL_CORE_MU_ENABLED
/* Dual core mode is enabled, and messaging unit is present */
#include <fsl_mu.h>
#define BOOT_FLAG 0x1U
#define MU_BASE (MU_Type *)DT_REG_ADDR(DT_INST(0, nxp_imx_mu_rev2))
#endif

#if CONFIG_USB_DC_NXP_EHCI /* USB PHY configuration */
#define BOARD_USB_PHY_D_CAL (0x07U)
#define BOARD_USB_PHY_TXCAL45DP (0x06U)
#define BOARD_USB_PHY_TXCAL45DM (0x06U)
#endif

#ifdef CONFIG_INIT_ARM_PLL
static const clock_arm_pll_config_t armPllConfig = {
#if defined(CONFIG_SOC_MIMXRT1176_CM4) || defined(CONFIG_SOC_MIMXRT1176_CM7)
	/* resulting frequency: 24 * (166/(2* 2)) = 984MHz */
	/* Post divider, 0 - DIV by 2, 1 - DIV by 4, 2 - DIV by 8, 3 - DIV by 1 */
	.postDivider = kCLOCK_PllPostDiv2,
	/* PLL Loop divider, Fout = Fin * ( loopDivider / ( 2 * postDivider ) ) */
	.loopDivider = 166,
#elif defined(CONFIG_SOC_MIMXRT1166_CM4) || defined(CONFIG_SOC_MIMXRT1166_CM7)
	/* resulting frequency: 24 * (200/(2 * 4)) = 600MHz */
	/* Post divider, 0 - DIV by 2, 1 - DIV by 4, 2 - DIV by 8, 3 - DIV by 1 */
	.postDivider = kCLOCK_PllPostDiv4,
	/* PLL Loop divider, Fout = Fin * ( loopDivider / ( 2 * postDivider ) ) */
	.loopDivider = 200,
#else
	#error "Unknown SOC, no pll configuration defined"
#endif
};
#endif

static const clock_sys_pll2_config_t sysPll2Config = {
	/* Denominator of spread spectrum */
	.mfd = 268435455,
	/* Spread spectrum parameter */
	.ss = NULL,
	/* Enable spread spectrum or not */
	.ssEnable = false,
};

#ifdef CONFIG_INIT_ENET_PLL
static const clock_sys_pll1_config_t sysPll1Config = {
	.pllDiv2En = true,
};
#endif

#ifdef CONFIG_INIT_VIDEO_PLL
static const clock_video_pll_config_t videoPllConfig = {
	/* PLL Loop divider, valid range for DIV_SELECT divider value: 27 ~ 54. */
	.loopDivider = 41,
	/* Divider after PLL, should only be 1, 2, 4, 8, 16, 32 */
	.postDivider = 0,
	/*
	 * 30 bit numerator of fractional loop divider,
	 * Fout = Fin * ( loopDivider + numerator / denominator )
	 */
	.numerator = 1,
	/*
	 * 30 bit denominator of fractional loop divider,
	 * Fout = Fin * ( loopDivider + numerator / denominator )
	 */
	.denominator = 960000,
	/* Spread spectrum parameter */
	.ss = NULL,
	/* Enable spread spectrum or not */
	.ssEnable = false,
};
#endif

#if CONFIG_USB_DC_NXP_EHCI
	usb_phy_config_struct_t usbPhyConfig = {
		BOARD_USB_PHY_D_CAL,
		BOARD_USB_PHY_TXCAL45DP,
		BOARD_USB_PHY_TXCAL45DM,
	};
#endif

#ifdef CONFIG_NXP_IMX_RT_BOOT_HEADER
const __imx_boot_data_section BOOT_DATA_T boot_data = {
	.start = CONFIG_FLASH_BASE_ADDRESS,
	.size = KB(CONFIG_FLASH_SIZE),
	.plugin = PLUGIN_FLAG,
	.placeholder = 0xFFFFFFFF,
};

extern char __start[];
const __imx_boot_ivt_section ivt image_vector_table = {
	.hdr = IVT_HEADER,
	.entry = (uint32_t) __start,
	.reserved1 = IVT_RSVD,
#ifdef CONFIG_DEVICE_CONFIGURATION_DATA
	.dcd = (uint32_t) dcd_data,
#else
	.dcd = (uint32_t) NULL,
#endif
	.boot_data = (uint32_t) &boot_data,
	.self = (uint32_t) &image_vector_table,
	.csf = (uint32_t)CSF_ADDRESS,
	.reserved2 = IVT_RSVD,
};
#endif

/**
 * @brief Initialize the system clock
 */
static ALWAYS_INLINE void clock_init(void)
{
	clock_root_config_t rootCfg = {0};

#if CONFIG_ADJUST_DCDC
	DCDC_SetVDD1P0BuckModeTargetVoltage(DCDC, kDCDC_1P0BuckTarget1P15V);
#endif

/* RT1160 does not have Forward Body Biasing on the CM7 core */
#if defined(CONFIG_SOC_MIMXRT1176_CM4) || defined(CONFIG_SOC_MIMXRT1176_CM7)
	/* Check if FBB need to be enabled in OverDrive(OD) mode */
	if (((OCOTP->FUSEN[7].FUSE & 0x10U) >> 4U) != 1) {
		PMU_EnableBodyBias(ANADIG_PMU, kPMU_FBB_CM7, true);
	} else {
		PMU_EnableBodyBias(ANADIG_PMU, kPMU_FBB_CM7, false);
	}
#endif

#if CONFIG_BYPASS_LDO_LPSR
	PMU_StaticEnableLpsrAnaLdoBypassMode(ANADIG_LDO_SNVS, true);
	PMU_StaticEnableLpsrDigLdoBypassMode(ANADIG_LDO_SNVS, true);
#endif

#if CONFIG_ADJUST_LDO
	pmu_static_lpsr_ana_ldo_config_t lpsrAnaConfig;
	pmu_static_lpsr_dig_config_t lpsrDigConfig;

	if ((ANADIG_LDO_SNVS->PMU_LDO_LPSR_ANA &
		ANADIG_LDO_SNVS_PMU_LDO_LPSR_ANA_BYPASS_MODE_EN_MASK) == 0UL) {
		PMU_StaticGetLpsrAnaLdoDefaultConfig(&lpsrAnaConfig);
		PMU_StaticLpsrAnaLdoInit(ANADIG_LDO_SNVS, &lpsrAnaConfig);
	}

	if ((ANADIG_LDO_SNVS->PMU_LDO_LPSR_DIG &
		ANADIG_LDO_SNVS_PMU_LDO_LPSR_DIG_BYPASS_MODE_MASK) == 0UL) {
		PMU_StaticGetLpsrDigLdoDefaultConfig(&lpsrDigConfig);
		lpsrDigConfig.targetVoltage = kPMU_LpsrDigTargetStableVoltage1P117V;
		PMU_StaticLpsrDigLdoInit(ANADIG_LDO_SNVS, &lpsrDigConfig);
	}
#endif

	/* PLL LDO shall be enabled first before enable PLLs */

	/* Config CLK_1M */
	CLOCK_OSC_Set1MHzOutputBehavior(kCLOCK_1MHzOutEnableFreeRunning1Mhz);

	/* Init OSC RC 16M */
	ANADIG_OSC->OSC_16M_CTRL |= ANADIG_OSC_OSC_16M_CTRL_EN_IRC4M16M_MASK;

	/* Init OSC RC 400M */
	CLOCK_OSC_EnableOscRc400M();
	CLOCK_OSC_GateOscRc400M(true);

	/* Init OSC RC 48M */
	CLOCK_OSC_EnableOsc48M(true);
	CLOCK_OSC_EnableOsc48MDiv2(true);

	/* Config OSC 24M */
	ANADIG_OSC->OSC_24M_CTRL |= ANADIG_OSC_OSC_24M_CTRL_OSC_EN(1) |
				    ANADIG_OSC_OSC_24M_CTRL_BYPASS_EN(0) |
				    ANADIG_OSC_OSC_24M_CTRL_BYPASS_CLK(0) |
				    ANADIG_OSC_OSC_24M_CTRL_LP_EN(1) |
				    ANADIG_OSC_OSC_24M_CTRL_OSC_24M_GATE(0);

	/* Wait for 24M OSC to be stable. */
	while (ANADIG_OSC_OSC_24M_CTRL_OSC_24M_STABLE_MASK !=
		(ANADIG_OSC->OSC_24M_CTRL & ANADIG_OSC_OSC_24M_CTRL_OSC_24M_STABLE_MASK)) {
	}

	rootCfg.div = 1;

#ifdef CONFIG_CPU_CORTEX_M7
	/* Switch both core, M7 Systick and Bus_Lpsr to OscRC48MDiv2 first */
	rootCfg.mux = kCLOCK_M7_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_M7, &rootCfg);

	rootCfg.mux = kCLOCK_M7_SYSTICK_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_M7_Systick, &rootCfg);
#endif

#if CONFIG_CPU_CORTEX_M4
	rootCfg.mux = kCLOCK_M4_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_M4, &rootCfg);

	rootCfg.mux = kCLOCK_BUS_LPSR_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_Bus_Lpsr, &rootCfg);
#endif

	/*
	 * If DCD is used, please make sure the clock source of SEMC is not
	 * changed in the following PLL/PFD configuration code.
	 */

#ifdef CONFIG_INIT_ARM_PLL
	/* Init Arm Pll. */
	CLOCK_InitArmPll(&armPllConfig);
#endif

#ifdef CONFIG_INIT_ENET_PLL
	CLOCK_InitSysPll1(&sysPll1Config);
#else
	/* Bypass Sys Pll1. */
	CLOCK_SetPllBypass(kCLOCK_PllSys1, true);

	/* DeInit Sys Pll1. */
	CLOCK_DeinitSysPll1();
#endif

	/* Init Sys Pll2. */
	CLOCK_InitSysPll2(&sysPll2Config);

	/* Init System Pll2 pfd0. */
	CLOCK_InitPfd(kCLOCK_PllSys2, kCLOCK_Pfd0, 27);

	/* Init System Pll2 pfd1. */
	CLOCK_InitPfd(kCLOCK_PllSys2, kCLOCK_Pfd1, 16);

	/* Init System Pll2 pfd2. */
	CLOCK_InitPfd(kCLOCK_PllSys2, kCLOCK_Pfd2, 24);

	/* Init System Pll2 pfd3. */
#ifdef CONFIG_ETH_MCUX
	CLOCK_InitPfd(kCLOCK_PllSys2, kCLOCK_Pfd3, 24);
#else
	CLOCK_InitPfd(kCLOCK_PllSys2, kCLOCK_Pfd3, 32);
#endif

	/* Init Sys Pll3. */
	CLOCK_InitSysPll3();

	/* Init System Pll3 pfd0. */
	CLOCK_InitPfd(kCLOCK_PllSys3, kCLOCK_Pfd0, 13);

	/* Init System Pll3 pfd1. */
	CLOCK_InitPfd(kCLOCK_PllSys3, kCLOCK_Pfd1, 17);

	/* Init System Pll3 pfd2. */
	CLOCK_InitPfd(kCLOCK_PllSys3, kCLOCK_Pfd2, 32);

	/* Init System Pll3 pfd3. */
	CLOCK_InitPfd(kCLOCK_PllSys3, kCLOCK_Pfd3, 22);

#ifdef CONFIG_INIT_VIDEO_PLL
	/* Init Video Pll. */
	CLOCK_InitVideoPll(&videoPllConfig);
#endif

	/* Module clock root configurations. */
	/* Configure M7 using ARM_PLL_CLK */
#if defined(CONFIG_SOC_MIMXRT1176_CM7) || defined(CONFIG_SOC_MIMXRT1166_CM7)
	rootCfg.mux = kCLOCK_M7_ClockRoot_MuxArmPllOut;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_M7, &rootCfg);
#endif

#if defined(CONFIG_SOC_MIMXRT1166_CM4)
	/* Configure M4 using SYS_PLL3_CLK */
	rootCfg.mux = kCLOCK_M4_ClockRoot_MuxSysPll3Out;
	rootCfg.div = 2;
	CLOCK_SetRootClock(kCLOCK_Root_M4, &rootCfg);
#elif defined(CONFIG_SOC_MIMXRT1176_CM4)
	/* Configure M4 using SYS_PLL3_CLK_PFD3_CLK */
	rootCfg.mux = kCLOCK_M4_ClockRoot_MuxSysPll3Pfd3;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_M4, &rootCfg);
#endif

	/* Configure BUS using SYS_PLL3_CLK */
#ifdef CONFIG_ETH_MCUX
	/* Configure root bus clock at 198M */
	rootCfg.mux = kCLOCK_BUS_ClockRoot_MuxSysPll2Pfd3;
	rootCfg.div = 2;
	CLOCK_SetRootClock(kCLOCK_Root_Bus, &rootCfg);
#elif defined(CONFIG_SOC_MIMXRT1176_CM7) || defined(CONFIG_SOC_MIMXRT1166_CM7)
	/* Keep root bus clock at default 240M */
	rootCfg.mux = kCLOCK_BUS_ClockRoot_MuxSysPll3Out;
	rootCfg.div = 2;
	CLOCK_SetRootClock(kCLOCK_Root_Bus, &rootCfg);
#endif

	/* Configure BUS_LPSR using SYS_PLL3_CLK */
#if defined(CONFIG_SOC_MIMXRT1176_CM4)
	rootCfg.mux = kCLOCK_BUS_LPSR_ClockRoot_MuxSysPll3Out;
	rootCfg.div = 3;
	CLOCK_SetRootClock(kCLOCK_Root_Bus_Lpsr, &rootCfg);
#elif defined(CONFIG_SOC_MIMXRT1166_CM4)
	rootCfg.mux = kCLOCK_BUS_LPSR_ClockRoot_MuxSysPll3Out;
	rootCfg.div = 4;
	CLOCK_SetRootClock(kCLOCK_Root_Bus_Lpsr, &rootCfg);
#endif

	/* Configure CSSYS using OSC_RC_48M_DIV2 */
	rootCfg.mux = kCLOCK_CSSYS_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_Cssys, &rootCfg);

	/* Configure CSTRACE using SYS_PLL2_CLK */
	rootCfg.mux = kCLOCK_CSTRACE_ClockRoot_MuxSysPll2Out;
	rootCfg.div = 4;
	CLOCK_SetRootClock(kCLOCK_Root_Cstrace, &rootCfg);

	/* Configure M4_SYSTICK using OSC_RC_48M_DIV2 */
#if defined(CONFIG_SOC_MIMXRT1176_CM4) || defined(CONFIG_SOC_MIMXRT1166_CM4)
	rootCfg.mux = kCLOCK_M4_SYSTICK_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_M4_Systick, &rootCfg);
#endif

	/* Configure M7_SYSTICK using OSC_RC_48M_DIV2 */
#if defined(CONFIG_SOC_MIMXRT1176_CM7) || defined(CONFIG_SOC_MIMXRT1166_CM7)
	rootCfg.mux = kCLOCK_M7_SYSTICK_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 240;
	CLOCK_SetRootClock(kCLOCK_Root_M7_Systick, &rootCfg);
#endif

#ifdef CONFIG_UART_MCUX_LPUART
	/* Configure Lpuart1 using SysPll2*/
	rootCfg.mux = kCLOCK_LPUART1_ClockRoot_MuxSysPll2Out;
	rootCfg.div = 22;
	CLOCK_SetRootClock(kCLOCK_Root_Lpuart1, &rootCfg);

	/* Configure Lpuart2 using SysPll2*/
	rootCfg.mux = kCLOCK_LPUART2_ClockRoot_MuxSysPll2Out;
	rootCfg.div = 22;
	CLOCK_SetRootClock(kCLOCK_Root_Lpuart2, &rootCfg);
#endif

#ifdef CONFIG_I2C_MCUX_LPI2C
	/* Configure Lpi2c1 using Osc48MDiv2 */
	rootCfg.mux = kCLOCK_LPI2C1_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_Lpi2c1, &rootCfg);

	/* Configure Lpi2c5 using Osc48MDiv2 */
	rootCfg.mux = kCLOCK_LPI2C5_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_Lpi2c5, &rootCfg);
#endif


#ifdef CONFIG_ETH_MCUX
#if DT_NODE_HAS_STATUS(DT_NODELABEL(enet), okay)
	/* 50 MHz ENET clock */
	rootCfg.mux = kCLOCK_ENET1_ClockRoot_MuxSysPll1Div2;
	rootCfg.div = 10;
	CLOCK_SetRootClock(kCLOCK_Root_Enet1, &rootCfg);
	/* Set ENET_REF_CLK as an output driven by ENET1_CLK_ROOT */
	IOMUXC_GPR->GPR4 |= (IOMUXC_GPR_GPR4_ENET_REF_CLK_DIR(0x01U) |
		IOMUXC_GPR_GPR4_ENET_TX_CLK_SEL(0x1U));
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(enet1g), okay)
	/*
	 * 50 MHz clock for 10/100Mbit RMII PHY -
	 * operate ENET1G just like ENET peripheral
	 */
	rootCfg.mux = kCLOCK_ENET2_ClockRoot_MuxSysPll1Div2;
	rootCfg.div = 10;
	CLOCK_SetRootClock(kCLOCK_Root_Enet2, &rootCfg);
	/* Set ENET1G_REF_CLK as an output driven by ENET2_CLK_ROOT */
	IOMUXC_GPR->GPR5 |= (IOMUXC_GPR_GPR5_ENET1G_REF_CLK_DIR(0x01U) |
		IOMUXC_GPR_GPR5_ENET1G_TX_CLK_SEL(0x1U));
#endif
#endif

#ifdef CONFIG_PTP_CLOCK_MCUX
	/* 24MHz PTP clock */
	rootCfg.mux = kCLOCK_ENET_TIMER1_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_Enet_Timer1, &rootCfg);
#endif

#ifdef CONFIG_SPI_MCUX_LPSPI
	/* Configure lpspi using Osc48MDiv2 */
	rootCfg.mux = kCLOCK_LPSPI1_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_Lpspi1, &rootCfg);
#endif

#ifdef CONFIG_CAN_MCUX_FLEXCAN
#if DT_NODE_HAS_STATUS(DT_NODELABEL(flexcan1), okay)
	/* Configure CAN1 using Osc48MDiv2 */
	rootCfg.mux = kCLOCK_CAN1_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_Can1, &rootCfg);
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(flexcan3), okay)
	/* Configure CAN1 using Osc48MDiv2 */
	rootCfg.mux = kCLOCK_CAN3_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_Can3, &rootCfg);
#endif
#endif

#ifdef CONFIG_MCUX_ACMP
#if DT_NODE_HAS_STATUS(DT_NODELABEL(acmp1), okay)
	/* Configure ACMP1 using Osc48MDiv2*/
	rootCfg.mux = kCLOCK_ACMP_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_Acmp, &rootCfg);
#endif
#endif

#ifdef CONFIG_DISPLAY_MCUX_ELCDIF
	rootCfg.mux = kCLOCK_LCDIF_ClockRoot_MuxSysPll2Out;
	/*
	 * PLL2 is fixed at 528MHz. Use desired panel clock clock to
	 * calculate LCDIF clock.
	 */
	rootCfg.div = ((SYS_PLL2_FREQ /
			DT_PROP(DT_CHILD(DT_NODELABEL(lcdif), display_timings),
			clock_frequency)) + 1);
	CLOCK_SetRootClock(kCLOCK_Root_Lcdif, &rootCfg);
#endif

#ifdef CONFIG_COUNTER_MCUX_GPT
	rootCfg.mux = kCLOCK_GPT1_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_Gpt1, &rootCfg);
#endif

#if DT_NODE_HAS_STATUS(DT_NODELABEL(usb1), okay) && CONFIG_USB_DC_NXP_EHCI
	CLOCK_EnableUsbhs0PhyPllClock(kCLOCK_Usb480M,
		DT_PROP_BY_PHANDLE(DT_NODELABEL(usb1), clocks, clock_frequency));
	CLOCK_EnableUsbhs0Clock(kCLOCK_Usb480M,
		DT_PROP_BY_PHANDLE(DT_NODELABEL(usb1), clocks, clock_frequency));
	USB_EhciPhyInit(kUSB_ControllerEhci0, CPU_XTAL_CLK_HZ, &usbPhyConfig);
#endif

#if DT_NODE_HAS_STATUS(DT_NODELABEL(usb2), okay) && CONFIG_USB_DC_NXP_EHCI
	CLOCK_EnableUsbhs1PhyPllClock(kCLOCK_Usb480M,
		DT_PROP_BY_PHANDLE(DT_NODELABEL(usb2), clocks, clock_frequency));
	CLOCK_EnableUsbhs1Clock(kCLOCK_Usb480M,
		DT_PROP_BY_PHANDLE(DT_NODELABEL(usb2), clocks, clock_frequency));
	USB_EhciPhyInit(kUSB_ControllerEhci1, CPU_XTAL_CLK_HZ, &usbPhyConfig);
#endif

#if CONFIG_IMX_USDHC
#if DT_NODE_HAS_STATUS(DT_NODELABEL(usdhc1), okay)
	/* Configure USDHC1 using  SysPll2Pfd2*/
	rootCfg.mux = kCLOCK_USDHC1_ClockRoot_MuxSysPll2Pfd2;
	rootCfg.div = 2;
	CLOCK_SetRootClock(kCLOCK_Root_Usdhc1, &rootCfg);
	CLOCK_EnableClock(kCLOCK_Usdhc1);
#endif

#if DT_NODE_HAS_STATUS(DT_NODELABEL(usdhc2), okay)
	/* Configure USDHC2 using  SysPll2Pfd2*/
	rootCfg.mux = kCLOCK_USDHC2_ClockRoot_MuxSysPll2Pfd2;
	rootCfg.div = 2;
	CLOCK_SetRootClock(kCLOCK_Root_Usdhc2, &rootCfg);
	CLOCK_EnableClock(kCLOCK_Usdhc2);
#endif
#endif

#if !(defined(CONFIG_CODE_FLEXSPI) || defined(CONFIG_CODE_FLEXSPI2)) && \
	defined(CONFIG_MEMC_MCUX_FLEXSPI) && \
	DT_NODE_HAS_STATUS(DT_NODELABEL(flexspi), okay)
	/* Configure FLEXSPI1 using OSC_RC_48M_DIV2 */
	rootCfg.mux = kCLOCK_FLEXSPI1_ClockRoot_MuxOscRc48MDiv2;
	rootCfg.div = 1;
	CLOCK_SetRootClock(kCLOCK_Root_Flexspi1, &rootCfg);
#endif

	/* Keep core clock ungated during WFI */
	CCM->GPR_PRIVATE1_SET = 0x1;
	/* Keep the system clock running so SYSTICK can wake up the system from
	 * wfi.
	 */
	GPC_CM_SetNextCpuMode(GPC_CPU_MODE_CTRL_0, kGPC_RunMode);
	GPC_CM_SetNextCpuMode(GPC_CPU_MODE_CTRL_1, kGPC_RunMode);
	GPC_CM_EnableCpuSleepHold(GPC_CPU_MODE_CTRL_0, false);
	GPC_CM_EnableCpuSleepHold(GPC_CPU_MODE_CTRL_1, false);

#if !defined(CONFIG_PM)
	/* Enable the AHB clock while the CM7 is sleeping to allow debug access
	 * to TCM
	 */
	IOMUXC_GPR->GPR16 |= IOMUXC_GPR_GPR16_CM7_FORCE_HCLK_EN_MASK;
#endif
}

#if CONFIG_I2S_MCUX_SAI
void imxrt_audio_codec_pll_init(uint32_t clock_name, uint32_t clk_src,
					uint32_t clk_pre_div, uint32_t clk_src_div)
{
	ARG_UNUSED(clk_pre_div);

	switch (clock_name) {
	case IMX_CCM_SAI1_CLK:
		CLOCK_SetRootClockMux(kCLOCK_Root_Sai1, clk_src);
		CLOCK_SetRootClockDiv(kCLOCK_Root_Sai1, clk_src_div);
		break;
	case IMX_CCM_SAI2_CLK:
		CLOCK_SetRootClockMux(kCLOCK_Root_Sai2, clk_src);
		CLOCK_SetRootClockDiv(kCLOCK_Root_Sai2, clk_src_div);
		break;
	case IMX_CCM_SAI3_CLK:
		CLOCK_SetRootClockMux(kCLOCK_Root_Sai3, clk_src);
		CLOCK_SetRootClockDiv(kCLOCK_Root_Sai3, clk_src_div);
		break;
	case IMX_CCM_SAI4_CLK:
		CLOCK_SetRootClockMux(kCLOCK_Root_Sai4, clk_src);
		CLOCK_SetRootClockDiv(kCLOCK_Root_Sai4, clk_src_div);
		break;
	default:
		return;
	}
}
#endif

#if CONFIG_MIPI_DSI
void imxrt_pre_init_display_interface(void)
{
	/* elcdif output to MIPI DSI */
	CLOCK_EnableClock(kCLOCK_Video_Mux);
	VIDEO_MUX->VID_MUX_CTRL.CLR = VIDEO_MUX_VID_MUX_CTRL_MIPI_DSI_SEL_MASK;

	/* Power on and isolation off. */
	PGMC_BPC4->BPC_POWER_CTRL |= (PGMC_BPC_BPC_POWER_CTRL_PSW_ON_SOFT_MASK |
				PGMC_BPC_BPC_POWER_CTRL_ISO_OFF_SOFT_MASK);

	/* Assert MIPI reset. */
	IOMUXC_GPR->GPR62 &= ~(IOMUXC_GPR_GPR62_MIPI_DSI_PCLK_SOFT_RESET_N_MASK |
			IOMUXC_GPR_GPR62_MIPI_DSI_ESC_SOFT_RESET_N_MASK |
			IOMUXC_GPR_GPR62_MIPI_DSI_BYTE_SOFT_RESET_N_MASK |
			IOMUXC_GPR_GPR62_MIPI_DSI_DPI_SOFT_RESET_N_MASK);

	/* setup clock */
	const clock_root_config_t mipiEscClockConfig = {
		.clockOff = false,
		.mux = 4,
		.div = 11,
	};

	CLOCK_SetRootClock(kCLOCK_Root_Mipi_Esc, &mipiEscClockConfig);

	/* TX esc clock */
	const clock_group_config_t mipiEscClockGroupConfig = {
		.clockOff = false,
		.resetDiv = 2,
		.div0 = 2,
	};

	CLOCK_SetGroupConfig(kCLOCK_Group_MipiDsi, &mipiEscClockGroupConfig);

	const clock_root_config_t mipiDphyRefClockConfig = {
		.clockOff = false,
		.mux = 1,
		.div = 1,
	};

	CLOCK_SetRootClock(kCLOCK_Root_Mipi_Ref, &mipiDphyRefClockConfig);

	/* Deassert PCLK and ESC reset. */
	IOMUXC_GPR->GPR62 |= (IOMUXC_GPR_GPR62_MIPI_DSI_PCLK_SOFT_RESET_N_MASK |
			IOMUXC_GPR_GPR62_MIPI_DSI_ESC_SOFT_RESET_N_MASK);
}

void imxrt_post_init_display_interface(void)
{
	/* deassert BYTE and DBI reset */
	IOMUXC_GPR->GPR62 |= (IOMUXC_GPR_GPR62_MIPI_DSI_BYTE_SOFT_RESET_N_MASK |
			IOMUXC_GPR_GPR62_MIPI_DSI_DPI_SOFT_RESET_N_MASK);
}

#endif

/**
 *
 * @brief Perform basic hardware initialization
 *
 * Initialize the interrupt controller device drivers.
 * Also initialize the timer device driver, if required.
 * If dual core operation is enabled, the second core image will be loaded to RAM
 *
 * @return 0
 */

static int imxrt_init(void)
{

	unsigned int oldLevel; /* old interrupt lock level */

	/* disable interrupts */
	oldLevel = irq_lock();


#if  defined(CONFIG_SECOND_CORE_MCUX) && defined(CONFIG_CPU_CORTEX_M7)
	/**
	 * Copy CM4 core from flash to memory. Note that depending on where the
	 * user decided to store CM4 code, this is likely going to read from the
	 * flexspi while using XIP. Provided we DO NOT WRITE TO THE FLEXSPI,
	 * this operation is safe.
	 *
	 * Note that this copy MUST occur before enabling the M7 caching to
	 * ensure the data is written directly to RAM (since the M4 core will use it)
	 */
	LISTIFY(SEGMENT_NUM, MEMCPY_SEGMENT, (;));
	/* Set the boot address for the second core */
	uint32_t boot_address = (uint32_t)(DT_REG_ADDR(DT_CHOSEN(zephyr_cpu1_region)));
	/* Set VTOR for the CM4 core */
	IOMUXC_LPSR_GPR->GPR0 = IOMUXC_LPSR_GPR_GPR0_CM4_INIT_VTOR_LOW(boot_address >> 3u);
	IOMUXC_LPSR_GPR->GPR1 = IOMUXC_LPSR_GPR_GPR1_CM4_INIT_VTOR_HIGH(boot_address >> 16u);
#endif

#if DUAL_CORE_MU_ENABLED && CONFIG_CPU_CORTEX_M4
	/* Set boot flag in messaging unit to indicate boot to primary core */
	MU_SetFlags(MU_BASE, BOOT_FLAG);
#endif


#if defined(CONFIG_SOC_MIMXRT1176_CM7) || defined(CONFIG_SOC_MIMXRT1166_CM7)
#ifndef CONFIG_IMXRT1XXX_CODE_CACHE
	/* SystemInit enables code cache, disable it here */
	SCB_DisableICache();
#else
	/* z_arm_init_arch_hw_at_boot() disables code cache if CONFIG_ARCH_CACHE is enabled,
	 * enable it here.
	 */
	SCB_EnableICache();
#endif

	if (IS_ENABLED(CONFIG_IMXRT1XXX_DATA_CACHE)) {
		if ((SCB->CCR & SCB_CCR_DC_Msk) == 0) {
			SCB_EnableDCache();
		}
	} else {
		SCB_DisableDCache();
	}
#endif

	/* Initialize system clock */
	clock_init();

	/*
	 * install default handler that simply resets the CPU
	 * if configured in the kernel, NOP otherwise
	 */
	NMI_INIT();

	/* restore interrupt state */
	irq_unlock(oldLevel);
	return 0;
}

#ifdef CONFIG_PLATFORM_SPECIFIC_INIT
void z_arm_platform_init(void)
{
#if (DT_DEP_ORD(DT_NODELABEL(ocram)) != DT_DEP_ORD(DT_CHOSEN(zephyr_sram))) && \
	CONFIG_OCRAM_NOCACHE
	/* Copy data from flash to OCRAM */
	memcpy(&__ocram_data_start, &__ocram_data_load_start,
		(&__ocram_data_end - &__ocram_data_start));
	/* Zero BSS region */
	memset(&__ocram_bss_start, 0, (&__ocram_bss_end - &__ocram_bss_start));
#endif
	SystemInit();
}
#endif

SYS_INIT(imxrt_init, PRE_KERNEL_1, 0);

#if  defined(CONFIG_SECOND_CORE_MCUX) && defined(CONFIG_CPU_CORTEX_M7)
/**
 * @brief Kickoff secondary core.
 *
 * Kick the secondary core out of reset and wait for it to indicate boot. The
 * core image was already copied to RAM (and the boot address was set) in
 * imxrt_init()
 *
 * @return 0
 */
static int second_core_boot(void)
{
	/* Kick CM4 core out of reset */
	SRC->CTRL_M4CORE = SRC_CTRL_M4CORE_SW_RESET_MASK;
	SRC->SCR |= SRC_SCR_BT_RELEASE_M4_MASK;
#if DUAL_CORE_MU_ENABLED
	/* Wait for the secondary core to start up and set boot flag in
	 * imxrt_init
	 */
	while (MU_GetFlags(MU_BASE) != BOOT_FLAG) {
		/* Wait for secondary core to set flag */
	}
#endif
	return 0;
}

SYS_INIT(second_core_boot, PRE_KERNEL_2, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#endif