Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | /* * Copyright (c) 2016 Cadence Design Systems, Inc. * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Xtensa specific kernel interface header * This header contains the Xtensa specific kernel interface. It is included * by the generic kernel interface header (include/arch/cpu.h) */ #ifndef ZEPHYR_INCLUDE_ARCH_XTENSA_ARCH_H_ #define ZEPHYR_INCLUDE_ARCH_XTENSA_ARCH_H_ #include <zephyr/irq.h> #include <zephyr/devicetree.h> #if !defined(_ASMLANGUAGE) && !defined(__ASSEMBLER__) #include <zephyr/types.h> #include <zephyr/toolchain.h> #include <zephyr/arch/common/sys_bitops.h> #include <zephyr/arch/common/sys_io.h> #include <zephyr/arch/common/ffs.h> #include <zephyr/sw_isr_table.h> #include <zephyr/arch/xtensa/thread.h> #include <zephyr/arch/xtensa/irq.h> #include <xtensa/config/core.h> #include <zephyr/arch/common/addr_types.h> #include <zephyr/arch/xtensa/gdbstub.h> #include <zephyr/debug/sparse.h> #include <zephyr/arch/xtensa/xtensa_mmu.h> #ifdef CONFIG_KERNEL_COHERENCE #define ARCH_STACK_PTR_ALIGN XCHAL_DCACHE_LINESIZE #else #define ARCH_STACK_PTR_ALIGN 16 #endif /* Xtensa GPRs are often designated by two different names */ #define sys_define_gpr_with_alias(name1, name2) union { uint32_t name1, name2; } #include <zephyr/arch/xtensa/exc.h> #ifdef __cplusplus extern "C" { #endif extern void xtensa_arch_except(int reason_p); #define ARCH_EXCEPT(reason_p) do { \ xtensa_arch_except(reason_p); \ CODE_UNREACHABLE; \ } while (false) /* internal routine documented in C file, needed by IRQ_CONNECT() macro */ extern void z_irq_priority_set(uint32_t irq, uint32_t prio, uint32_t flags); #define ARCH_IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p) \ { \ Z_ISR_DECLARE(irq_p, flags_p, isr_p, isr_param_p); \ } #define XTENSA_ERR_NORET extern uint32_t sys_clock_cycle_get_32(void); static inline uint32_t arch_k_cycle_get_32(void) { return sys_clock_cycle_get_32(); } extern uint64_t sys_clock_cycle_get_64(void); static inline uint64_t arch_k_cycle_get_64(void) { return sys_clock_cycle_get_64(); } static ALWAYS_INLINE void arch_nop(void) { __asm__ volatile("nop"); } static ALWAYS_INLINE void xtensa_vecbase_lock(void) { int vecbase; __asm__ volatile("rsr.vecbase %0" : "=r" (vecbase)); /* In some targets the bit 0 of VECBASE works as lock bit. * When this bit set, VECBASE can't be changed until it is cleared by * reset. When the target does not have it, it is hardwired to 0. **/ __asm__ volatile("wsr.vecbase %0; rsync" : : "r" (vecbase | 1)); } #if defined(CONFIG_XTENSA_RPO_CACHE) #if defined(CONFIG_ARCH_HAS_COHERENCE) static inline bool arch_mem_coherent(void *ptr) { size_t addr = (size_t) ptr; return (addr >> 29) == CONFIG_XTENSA_UNCACHED_REGION; } #endif static inline bool arch_xtensa_is_ptr_cached(void *ptr) { size_t addr = (size_t) ptr; return (addr >> 29) == CONFIG_XTENSA_CACHED_REGION; } static inline bool arch_xtensa_is_ptr_uncached(void *ptr) { size_t addr = (size_t) ptr; return (addr >> 29) == CONFIG_XTENSA_UNCACHED_REGION; } static ALWAYS_INLINE uint32_t z_xtrpoflip(uint32_t addr, uint32_t rto, uint32_t rfrom) { /* The math here is all compile-time: when the two regions * differ by a power of two, we can convert between them by * setting or clearing just one bit. Otherwise it needs two * operations. */ uint32_t rxor = (rto ^ rfrom) << 29; rto <<= 29; if (Z_IS_POW2(rxor)) { if ((rxor & rto) == 0) { return addr & ~rxor; } else { return addr | rxor; } } else { return (addr & ~(7U << 29)) | rto; } } /** * @brief Return cached pointer to a RAM address * * The Xtensa coherence architecture maps addressable RAM twice, in * two different 512MB regions whose L1 cache settings can be * controlled independently. So for any given pointer, it is possible * to convert it to and from a cached version. * * This function takes a pointer to any addressable object (either in * cacheable memory or not) and returns a pointer that can be used to * refer to the same memory through the L1 data cache. Data read * through the resulting pointer will reflect locally cached values on * the current CPU if they exist, and writes will go first into the * cache and be written back later. * * @see arch_xtensa_uncached_ptr() * * @param ptr A pointer to a valid C object * @return A pointer to the same object via the L1 dcache */ static inline void __sparse_cache *arch_xtensa_cached_ptr(void *ptr) { return (__sparse_force void __sparse_cache *)z_xtrpoflip((uint32_t) ptr, CONFIG_XTENSA_CACHED_REGION, CONFIG_XTENSA_UNCACHED_REGION); } /** * @brief Return uncached pointer to a RAM address * * The Xtensa coherence architecture maps addressable RAM twice, in * two different 512MB regions whose L1 cache settings can be * controlled independently. So for any given pointer, it is possible * to convert it to and from a cached version. * * This function takes a pointer to any addressable object (either in * cacheable memory or not) and returns a pointer that can be used to * refer to the same memory while bypassing the L1 data cache. Data * in the L1 cache will not be inspected nor modified by the access. * * @see arch_xtensa_cached_ptr() * * @param ptr A pointer to a valid C object * @return A pointer to the same object bypassing the L1 dcache */ static inline void *arch_xtensa_uncached_ptr(void __sparse_cache *ptr) { return (void *)z_xtrpoflip((__sparse_force uint32_t)ptr, CONFIG_XTENSA_UNCACHED_REGION, CONFIG_XTENSA_CACHED_REGION); } /* Utility to generate an unrolled and optimal[1] code sequence to set * the RPO TLB registers (contra the HAL cacheattr macros, which * generate larger code and can't be called from C), based on the * KERNEL_COHERENCE configuration in use. Selects RPO attribute "2" * for regions (including MMIO registers in region zero) which want to * bypass L1, "4" for the cached region which wants writeback, and * "15" (invalid) elsewhere. * * Note that on cores that have the "translation" option set, we need * to put an identity mapping in the high bits. Also per spec * changing the current code region (by definition cached) requires * that WITLB be followed by an ISYNC and that both instructions live * in the same cache line (two 3-byte instructions fit in an 8-byte * aligned region, so that's guaranteed not to cross a cache line * boundary). * * [1] With the sole exception of gcc's infuriating insistence on * emitting a precomputed literal for addr + addrincr instead of * computing it with a single ADD instruction from values it already * has in registers. Explicitly assigning the variables to registers * via an attribute works, but then emits needless MOV instructions * instead. I tell myself it's just 32 bytes of .text, but... Sigh. */ #define _REGION_ATTR(r) \ ((r) == 0 ? 2 : \ ((r) == CONFIG_XTENSA_CACHED_REGION ? 4 : \ ((r) == CONFIG_XTENSA_UNCACHED_REGION ? 2 : 15))) #define _SET_ONE_TLB(region) do { \ uint32_t attr = _REGION_ATTR(region); \ if (XCHAL_HAVE_XLT_CACHEATTR) { \ attr |= addr; /* RPO with translation */ \ } \ if (region != CONFIG_XTENSA_CACHED_REGION) { \ __asm__ volatile("wdtlb %0, %1; witlb %0, %1" \ :: "r"(attr), "r"(addr)); \ } else { \ __asm__ volatile("wdtlb %0, %1" \ :: "r"(attr), "r"(addr)); \ __asm__ volatile("j 1f; .align 8; 1:"); \ __asm__ volatile("witlb %0, %1; isync" \ :: "r"(attr), "r"(addr)); \ } \ addr += addrincr; \ } while (0) #define ARCH_XTENSA_SET_RPO_TLB() do { \ register uint32_t addr = 0, addrincr = 0x20000000; \ FOR_EACH(_SET_ONE_TLB, (;), 0, 1, 2, 3, 4, 5, 6, 7); \ } while (0) #endif #ifdef __cplusplus } #endif #endif /* !defined(_ASMLANGUAGE) && !defined(__ASSEMBLER__) */ #endif /* ZEPHYR_INCLUDE_ARCH_XTENSA_ARCH_H_ */ |