Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/*
 * Copyright (c) 2019 Linaro Limited
 * Copyright (c) 2020 STMicroelectronics
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define LOG_DOMAIN flash_stm32wb
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);

#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <string.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/sys/__assert.h>

#include "flash_stm32.h"
#include "stm32_hsem.h"
#if defined(CONFIG_BT)
#include "shci.h"
#endif

#define STM32WBX_PAGE_SHIFT	12

/* offset and len must be aligned on 8 for write,
 * positive and not beyond end of flash
 */
bool flash_stm32_valid_range(const struct device *dev, off_t offset,
			     uint32_t len,
			     bool write)
{
	return (!write || (offset % 8 == 0 && len % 8 == 0U)) &&
	       flash_stm32_range_exists(dev, offset, len);
}

/*
 * Up to 255 4K pages
 */
static uint32_t get_page(off_t offset)
{
	return offset >> STM32WBX_PAGE_SHIFT;
}

static inline void flush_cache(FLASH_TypeDef *regs)
{
	if (regs->ACR & FLASH_ACR_DCEN) {
		regs->ACR &= ~FLASH_ACR_DCEN;
		/* Datasheet: DCRST: Data cache reset
		 * This bit can be written only when the data cache is disabled
		 */
		regs->ACR |= FLASH_ACR_DCRST;
		regs->ACR &= ~FLASH_ACR_DCRST;
		regs->ACR |= FLASH_ACR_DCEN;
	}

	if (regs->ACR & FLASH_ACR_ICEN) {
		regs->ACR &= ~FLASH_ACR_ICEN;
		/* Datasheet: ICRST: Instruction cache reset :
		 * This bit can be written only when the instruction cache
		 * is disabled
		 */
		regs->ACR |= FLASH_ACR_ICRST;
		regs->ACR &= ~FLASH_ACR_ICRST;
		regs->ACR |= FLASH_ACR_ICEN;
	}
}

static int write_dword(const struct device *dev, off_t offset, uint64_t val)
{
	volatile uint32_t *flash = (uint32_t *)(offset + CONFIG_FLASH_BASE_ADDRESS);
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	uint32_t tmp;
	int ret, rc;
	uint32_t cpu1_sem_status;
	uint32_t cpu2_sem_status = 0;
	uint32_t key;

	/* if the control register is locked, do not fail silently */
	if (regs->CR & FLASH_CR_LOCK) {
		return -EIO;
	}

	/* Check if this double word is erased and value isn't 0.
	 *
	 * It is allowed to write only zeros over an already written dword
	 * See 3.3.8 in reference manual.
	 */
	if ((flash[0] != 0xFFFFFFFFUL ||
	     flash[1] != 0xFFFFFFFFUL) && val != 0UL) {
		LOG_ERR("Word at offs %ld not erased", (long)offset);
		return -EIO;
	}

	ret = flash_stm32_check_status(dev);
	if (ret < 0) {
		return -EIO;
	}

	/* Implementation of STM32 AN5289, proposed in STM32WB Cube Application
	 * BLE_RfWithFlash
	 * https://github.com/STMicroelectronics/STM32CubeWB/tree/master/Projects/P-NUCLEO-WB55.Nucleo/Applications/BLE/BLE_RfWithFlash
	 */

	do {
		/**
		 * When the PESD bit mechanism is used by CPU2 to protect its
		 * timing, the PESD bit should be polled here.
		 * If the PESD is set, the CPU1 will be stalled when reading
		 * literals from an ISR that may occur after the flash
		 * processing has been requested but suspended due to the PESD
		 * bit.
		 *
		 * Note: This code is required only when the PESD mechanism is
		 * used to protect the CPU2 timing.
		 * However, keeping that code make it compatible with both
		 * mechanisms.
		 */
		while (LL_FLASH_IsActiveFlag_OperationSuspended()) {
			;
		}

		/* Enter critical section */
		key = irq_lock();

		/**
		 *  Depending on the application implementation, in case a
		 *  multitasking is possible with an OS, it should be checked
		 *  here if another task in the application disallowed flash
		 *  processing to protect some latency in critical code
		 *  execution.
		 *  When flash processing is ongoing, the CPU cannot access the
		 *  flash anymore.Trying to access the flash during that time
		 *  stalls the CPU.
		 *  The only way for CPU1 to disallow flash processing is to
		 *  take CFG_HW_BLOCK_FLASH_REQ_BY_CPU1_SEMID.
		 */
		cpu1_sem_status = LL_HSEM_GetStatus(HSEM,
			CFG_HW_BLOCK_FLASH_REQ_BY_CPU1_SEMID);
		if (cpu1_sem_status == 0) {
			/**
			 *  Check now if the CPU2 disallows flash processing to
			 *  protect its timing. If the semaphore is locked, the
			 *  CPU2 does not allow flash processing
			 *
			 *  Note: By default, the CPU2 uses the PESD mechanism
			 *  to protect its timing, therefore, it is useless to
			 *  get/release the semaphore.
			 *
			 *  However, keeping that code make it compatible with
			 *  both mechanisms.
			 *  The protection by semaphore is enabled on CPU2 side
			 *  with the command SHCI_C2_SetFlashActivityControl()
			 *
			 */
			cpu2_sem_status = LL_HSEM_1StepLock(HSEM,
				CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID);
			if (cpu2_sem_status == 0) {
				/**
				 * When CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID is
				 * taken, it is allowed to only write one
				 * single 64bits data.
				 * When several 64bits data need to be erased,
				 * the application shall first exit from the
				 * critical section and try again.
				 */
				/* Set the PG bit */
				regs->CR |= FLASH_CR_PG;

				/* Flush the register write */
				tmp = regs->CR;

				/* Perform the data write operation at desired
				 * memory address
				 */
				flash[0] = (uint32_t)val;
				flash[1] = (uint32_t)(val >> 32);

				/**
				 *  Release the semaphore to give the
				 *  opportunity to CPU2 to protect its timing
				 *  versus the next flash operation by taking
				 *  this semaphore.
				 *  Note that the CPU2 is polling on this
				 *  semaphore so CPU1 shall release it as fast
				 *  as possible.
				 *  This is why this code is protected by a
				 *  critical section.
				 */
				LL_HSEM_ReleaseLock(HSEM,
					CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID,
					0);
			}
		}

		/* Exit critical section */
		irq_unlock(key);

	} while (cpu2_sem_status || cpu1_sem_status);

	/* Wait until the BSY bit is cleared */
	rc = flash_stm32_wait_flash_idle(dev);

	/* Clear the PG bit */
	regs->CR &= (~FLASH_CR_PG);

	return rc;
}

static int erase_page(const struct device *dev, uint32_t page)
{
	uint32_t cpu1_sem_status;
	uint32_t cpu2_sem_status = 0;
	uint32_t key;

	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	int rc;

	/* if the control register is locked, do not fail silently */
	if (regs->CR & FLASH_CR_LOCK) {
		return -EIO;
	}

	/* Check that no Flash memory operation is ongoing */
	rc = flash_stm32_wait_flash_idle(dev);
	if (rc < 0) {
		return rc;
	}

	/*
	 * If an erase operation in Flash memory also concerns data in the data
	 * or instruction cache, the user has to ensure that these data
	 * are rewritten before they are accessed during code execution.
	 */
	flush_cache(regs);

	/* Implementation of STM32 AN5289, proposed in STM32WB Cube Application
	 * BLE_RfWithFlash
	 * https://github.com/STMicroelectronics/STM32CubeWB/tree/master/Projects/P-NUCLEO-WB55.Nucleo/Applications/BLE/BLE_RfWithFlash
	 */

	do {
		/**
		 * When the PESD bit mechanism is used by CPU2 to protect its
		 * timing, the PESD bit should be polled here.
		 * If the PESD is set, the CPU1 will be stalled when reading
		 * literals from an ISR that may occur after the flash
		 * processing has been requested but suspended due to the PESD
		 * bit.
		 *
		 * Note: This code is required only when the PESD mechanism is
		 * used to protect the CPU2 timing.
		 * However, keeping that code make it compatible with both
		 * mechanisms.
		 */
		while (LL_FLASH_IsActiveFlag_OperationSuspended()) {
			;
		}

		/* Enter critical section */
		key = irq_lock();

		/**
		 *  Depending on the application implementation, in case a
		 *  multitasking is possible with an OS, it should be checked
		 *  here if another task in the application disallowed flash
		 *  processing to protect some latency in critical code
		 *  execution.
		 *  When flash processing is ongoing, the CPU cannot access the
		 *  flash anymore.Trying to access the flash during that time
		 *  stalls the CPU.
		 *  The only way for CPU1 to disallow flash processing is to
		 *  take CFG_HW_BLOCK_FLASH_REQ_BY_CPU1_SEMID.
		 */
		cpu1_sem_status = LL_HSEM_GetStatus(HSEM,
			CFG_HW_BLOCK_FLASH_REQ_BY_CPU1_SEMID);
		if (cpu1_sem_status == 0) {
			/**
			 *  Check now if the CPU2 disallows flash processing to
			 *  protect its timing. If the semaphore is locked, the
			 *  CPU2 does not allow flash processing
			 *
			 *  Note: By default, the CPU2 uses the PESD mechanism
			 *  to protect its timing, therefore, it is useless to
			 *  get/release the semaphore.
			 *
			 *  However, keeping that code make it compatible with
			 *  both mechanisms.
			 *  The protection by semaphore is enabled on CPU2 side
			 *  with the command SHCI_C2_SetFlashActivityControl()
			 *
			 */
			cpu2_sem_status = LL_HSEM_1StepLock(HSEM,
				CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID);
			if (cpu2_sem_status == 0) {
				/**
				 * When CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID is
				 * taken, it is allowed to only erase one
				 * sector.
				 * When several sectors need to be erased,
				 * the application shall first exit from the
				 * critical section and try again.
				 */
				regs->CR |= FLASH_CR_PER;
				regs->CR &= ~FLASH_CR_PNB_Msk;
				regs->CR |= page << FLASH_CR_PNB_Pos;

				regs->CR |= FLASH_CR_STRT;

				/**
				 *  Release the semaphore to give the
				 *  opportunity to CPU2 to protect its timing
				 *  versus the next flash operation by taking
				 *  this semaphore.
				 *  Note that the CPU2 is polling on this
				 *  semaphore so CPU1 shall release it as fast
				 *  as possible.
				 *  This is why this code is protected by a
				 *  critical section.
				 */
				LL_HSEM_ReleaseLock(HSEM,
					CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID,
					0);
			}
		}

		/* Exit critical section */
		irq_unlock(key);

	} while (cpu2_sem_status || cpu1_sem_status);


	/* Wait for the BSY bit */
	rc = flash_stm32_wait_flash_idle(dev);

	regs->CR &= ~FLASH_CR_PER;

	return rc;
}

int flash_stm32_block_erase_loop(const struct device *dev,
				 unsigned int offset,
				 unsigned int len)
{
	int i, rc = 0;

#if defined(CONFIG_BT)
	/**
	 *  Notify the CPU2 that some flash erase activity may be executed
	 *  On reception of this command, the CPU2 enables the BLE timing
	 *  protection versus flash erase processing.
	 *  The Erase flash activity will be executed only when the BLE RF is
	 *  idle for at least 25ms.
	 *  The CPU2 will prevent all flash activity (write or erase) in all
	 *  cases when the BL RF Idle is shorter than 25ms.
	 */
	SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_ON);
#endif /* CONFIG_BT */

	i = get_page(offset);
	for (; i <= get_page(offset + len - 1) ; ++i) {
		rc = erase_page(dev, i);
		if (rc < 0) {
			break;
		}
	}

#if defined(CONFIG_BT)
	/**
	 *  Notify the CPU2 there will be no request anymore to erase the flash
	 *  On reception of this command, the CPU2 disables the BLE timing
	 *  protection versus flash erase processing
	 */
	SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_OFF);
#endif /* CONFIG_BT */

	return rc;
}

int flash_stm32_write_range(const struct device *dev, unsigned int offset,
			    const void *data, unsigned int len)
{
	int i, rc = 0;

	for (i = 0; i < len; i += 8, offset += 8U) {
		rc = write_dword(dev, offset,
				UNALIGNED_GET((const uint64_t *) data + (i >> 3)));
		if (rc < 0) {
			return rc;
		}
	}

	return rc;
}

void flash_stm32_page_layout(const struct device *dev,
			     const struct flash_pages_layout **layout,
			     size_t *layout_size)
{
	static struct flash_pages_layout stm32wb_flash_layout = {
		.pages_count = 0,
		.pages_size = 0,
	};

	ARG_UNUSED(dev);

	if (stm32wb_flash_layout.pages_count == 0) {
		stm32wb_flash_layout.pages_count = FLASH_SIZE / FLASH_PAGE_SIZE;
		stm32wb_flash_layout.pages_size = FLASH_PAGE_SIZE;
	}

	*layout = &stm32wb_flash_layout;
	*layout_size = 1;
}

int flash_stm32_check_status(const struct device *dev)
{
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	uint32_t error = 0;

	/* Save Flash errors */
	error = (regs->SR & FLASH_FLAG_SR_ERRORS);
	error |= (regs->ECCR & FLASH_FLAG_ECCC);

	/* Clear systematic Option and Engineering bits validity error */
	if (error & FLASH_FLAG_OPTVERR) {
		regs->SR |= FLASH_FLAG_SR_ERRORS;
		return 0;
	}

	if (error) {
		return -EIO;
	}

	return 0;
}