Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 | /* * Copyright (c) 2017-2022 Linaro Limited. * Copyright (c) 2017 RnDity Sp. z o.o. * * SPDX-License-Identifier: Apache-2.0 */ #include <soc.h> #include <stm32_ll_bus.h> #include <stm32_ll_pwr.h> #include <stm32_ll_rcc.h> #include <stm32_ll_system.h> #include <stm32_ll_utils.h> #include <zephyr/arch/cpu.h> #include <zephyr/drivers/clock_control.h> #include <zephyr/sys/util.h> #include <zephyr/sys/__assert.h> #include <zephyr/drivers/clock_control/stm32_clock_control.h> #include "clock_stm32_ll_common.h" #include "stm32_hsem.h" /* Macros to fill up prescaler values */ #define z_hsi_divider(v) LL_RCC_HSI_DIV_ ## v #define hsi_divider(v) z_hsi_divider(v) #define fn_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v #define ahb_prescaler(v) fn_ahb_prescaler(v) #define fn_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v #define apb1_prescaler(v) fn_apb1_prescaler(v) #if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler) #define fn_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v #define apb2_prescaler(v) fn_apb2_prescaler(v) #endif #define fn_mco1_prescaler(v) LL_RCC_MCO1_DIV_ ## v #define mco1_prescaler(v) fn_mco1_prescaler(v) #define fn_mco2_prescaler(v) LL_RCC_MCO2_DIV_ ## v #define mco2_prescaler(v) fn_mco2_prescaler(v) #if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb4_prescaler) #define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK4_FREQ #define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHB4Prescaler #elif DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler) #define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK3_FREQ #define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHB3Prescaler #else #define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK_FREQ #define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHBPrescaler #endif #if defined(RCC_PLLCFGR_PLLPEN) #define RCC_PLLP_ENABLE() SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPEN) #else #define RCC_PLLP_ENABLE() #endif /* RCC_PLLCFGR_PLLPEN */ #if defined(RCC_PLLCFGR_PLLQEN) #define RCC_PLLQ_ENABLE() SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN) #else #define RCC_PLLQ_ENABLE() #endif /* RCC_PLLCFGR_PLLQEN */ /** * @brief Return frequency for pll with 2 dividers and a multiplier */ __unused static uint32_t get_pll_div_frequency(uint32_t pllsrc_freq, int pllm_div, int plln_mul, int pllout_div) { __ASSERT_NO_MSG(pllm_div && pllout_div); return pllsrc_freq / pllm_div * plln_mul / pllout_div; } static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler) { return clock / prescaler; } __unused static uint32_t get_msi_frequency(void) { #if defined(STM32_MSI_ENABLED) #if !defined(LL_RCC_MSIRANGESEL_RUN) return __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); #else return __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGESEL_RUN, LL_RCC_MSI_GetRange()); #endif #endif return 0; } /** @brief Verifies clock is part of active clock configuration */ __unused static int enabled_clock(uint32_t src_clk) { int r = 0; switch (src_clk) { #if defined(STM32_SRC_SYSCLK) case STM32_SRC_SYSCLK: break; #endif /* STM32_SRC_SYSCLK */ #if defined(STM32_SRC_PCLK) case STM32_SRC_PCLK: break; #endif /* STM32_SRC_PCLK */ #if defined(STM32_SRC_HSE) case STM32_SRC_HSE: if (!IS_ENABLED(STM32_HSE_ENABLED)) { r = -ENOTSUP; } break; #endif /* STM32_SRC_HSE */ #if defined(STM32_SRC_HSI) case STM32_SRC_HSI: if (!IS_ENABLED(STM32_HSI_ENABLED)) { r = -ENOTSUP; } break; #endif /* STM32_SRC_HSI */ #if defined(STM32_SRC_LSE) case STM32_SRC_LSE: if (!IS_ENABLED(STM32_LSE_ENABLED)) { r = -ENOTSUP; } break; #endif /* STM32_SRC_LSE */ #if defined(STM32_SRC_LSI) case STM32_SRC_LSI: if (!IS_ENABLED(STM32_LSI_ENABLED)) { r = -ENOTSUP; } break; #endif /* STM32_SRC_LSI */ #if defined(STM32_SRC_HSI48) case STM32_SRC_HSI48: if (!IS_ENABLED(STM32_HSI48_ENABLED)) { r = -ENOTSUP; } break; #endif /* STM32_SRC_HSI48 */ #if defined(STM32_SRC_MSI) case STM32_SRC_MSI: if (!IS_ENABLED(STM32_MSI_ENABLED)) { r = -ENOTSUP; } break; #endif /* STM32_SRC_MSI */ #if defined(STM32_SRC_PLLCLK) case STM32_SRC_PLLCLK: if (!IS_ENABLED(STM32_PLL_ENABLED)) { r = -ENOTSUP; } break; #endif /* STM32_SRC_PLLCLK */ #if defined(STM32_SRC_PLL_P) case STM32_SRC_PLL_P: if (!IS_ENABLED(STM32_PLL_P_ENABLED)) { r = -ENOTSUP; } break; #endif /* STM32_SRC_PLL_P */ #if defined(STM32_SRC_PLL_Q) case STM32_SRC_PLL_Q: if (!IS_ENABLED(STM32_PLL_Q_ENABLED)) { r = -ENOTSUP; } break; #endif /* STM32_SRC_PLL_Q */ #if defined(STM32_SRC_PLL_R) case STM32_SRC_PLL_R: if (!IS_ENABLED(STM32_PLL_R_ENABLED)) { r = -ENOTSUP; } break; #endif /* STM32_SRC_PLL_R */ #if defined(STM32_SRC_PLLI2S_R) case STM32_SRC_PLLI2S_R: if (!IS_ENABLED(STM32_PLLI2S_R_ENABLED)) { r = -ENOTSUP; } break; #endif /* STM32_SRC_PLLI2S_R */ default: return -ENOTSUP; } return r; } static inline int stm32_clock_control_on(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); ARG_UNUSED(dev); if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) { /* Attemp to change a wrong periph clock bit */ return -ENOTSUP; } sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr); return 0; } static inline int stm32_clock_control_off(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); ARG_UNUSED(dev); if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) { /* Attemp to toggle a wrong periph clock bit */ return -ENOTSUP; } sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr); return 0; } static inline int stm32_clock_control_configure(const struct device *dev, clock_control_subsys_t sub_system, void *data) { #if defined(STM32_SRC_SYSCLK) /* At least one alt src clock available */ struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); int err; ARG_UNUSED(dev); ARG_UNUSED(data); err = enabled_clock(pclken->bus); if (err < 0) { /* Attempt to configure a src clock not available or not valid */ return err; } if (pclken->enr == NO_SEL) { /* Domain clock is fixed. Nothing to set. Exit */ return 0; } sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr), STM32_CLOCK_MASK_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr)); sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr), STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr)); return 0; #else /* No src clock available: Not supported */ return -ENOTSUP; #endif } static int stm32_clock_control_get_subsys_rate(const struct device *clock, clock_control_subsys_t sub_system, uint32_t *rate) { struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); /* * Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler) * SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC * since it will be updated after clock configuration and hence * more likely to contain actual clock speed */ uint32_t ahb_clock = SystemCoreClock; uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER); #if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler) uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER); #elif defined(STM32_CLOCK_BUS_APB2) /* APB2 bus exists, but w/o dedicated prescaler */ uint32_t apb2_clock = apb1_clock; #endif #if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler) uint32_t ahb3_clock = get_bus_clock(ahb_clock * STM32_CPU1_PRESCALER, STM32_AHB3_PRESCALER); #elif defined(STM32_CLOCK_BUS_AHB3) /* AHB3 bus exists, but w/o dedicated prescaler */ uint32_t ahb3_clock = ahb_clock; #endif #if defined(STM32_SRC_PCLK) if (pclken->bus == STM32_SRC_PCLK) { /* STM32_SRC_PCLK can't be used to request a subsys freq */ /* Use STM32_CLOCK_BUS_FOO instead. */ return -ENOTSUP; } #endif ARG_UNUSED(clock); switch (pclken->bus) { case STM32_CLOCK_BUS_AHB1: #if defined(STM32_CLOCK_BUS_AHB2) case STM32_CLOCK_BUS_AHB2: #endif #if defined(STM32_CLOCK_BUS_IOP) case STM32_CLOCK_BUS_IOP: #endif *rate = ahb_clock; break; #if defined(STM32_CLOCK_BUS_AHB3) case STM32_CLOCK_BUS_AHB3: *rate = ahb3_clock; break; #endif case STM32_CLOCK_BUS_APB1: #if defined(STM32_CLOCK_BUS_APB1_2) case STM32_CLOCK_BUS_APB1_2: #endif *rate = apb1_clock; break; #if defined(STM32_CLOCK_BUS_APB2) case STM32_CLOCK_BUS_APB2: *rate = apb2_clock; break; #endif #if defined(STM32_CLOCK_BUS_APB3) case STM32_CLOCK_BUS_APB3: /* STM32WL: AHB3 and APB3 share the same clock and prescaler. */ *rate = ahb3_clock; break; #endif #if defined(STM32_SRC_SYSCLK) case STM32_SRC_SYSCLK: *rate = SystemCoreClock * STM32_CORE_PRESCALER; break; #endif #if defined(STM32_SRC_PLLCLK) & defined(STM32_SYSCLK_SRC_PLL) case STM32_SRC_PLLCLK: if (get_pllout_frequency() == 0) { return -EIO; } *rate = get_pllout_frequency(); break; #endif #if defined(STM32_SRC_PLL_P) & STM32_PLL_P_ENABLED case STM32_SRC_PLL_P: *rate = get_pll_div_frequency(get_pllsrc_frequency(), STM32_PLL_M_DIVISOR, STM32_PLL_N_MULTIPLIER, STM32_PLL_P_DIVISOR); break; #endif #if defined(STM32_SRC_PLL_Q) & STM32_PLL_Q_ENABLED case STM32_SRC_PLL_Q: *rate = get_pll_div_frequency(get_pllsrc_frequency(), STM32_PLL_M_DIVISOR, STM32_PLL_N_MULTIPLIER, STM32_PLL_Q_DIVISOR); break; #endif #if defined(STM32_SRC_PLL_R) & STM32_PLL_R_ENABLED case STM32_SRC_PLL_R: *rate = get_pll_div_frequency(get_pllsrc_frequency(), STM32_PLL_M_DIVISOR, STM32_PLL_N_MULTIPLIER, STM32_PLL_R_DIVISOR); break; #endif #if defined(STM32_SRC_PLLI2S_R) & STM32_PLLI2S_ENABLED case STM32_SRC_PLLI2S_R: *rate = get_pll_div_frequency(get_pllsrc_frequency(), STM32_PLLI2S_M_DIVISOR, STM32_PLLI2S_N_MULTIPLIER, STM32_PLLI2S_R_DIVISOR); break; #endif /* STM32_SRC_PLLI2S_R */ /* PLLSAI1x not supported yet */ /* PLLSAI2x not supported yet */ #if defined(STM32_SRC_LSE) case STM32_SRC_LSE: *rate = STM32_LSE_FREQ; break; #endif #if defined(STM32_SRC_LSI) case STM32_SRC_LSI: *rate = STM32_LSI_FREQ; break; #endif #if defined(STM32_SRC_HSI) case STM32_SRC_HSI: *rate = STM32_HSI_FREQ; break; #endif #if defined(STM32_SRC_MSI) case STM32_SRC_MSI: *rate = get_msi_frequency(); break; #endif #if defined(STM32_SRC_HSE) case STM32_SRC_HSE: *rate = STM32_HSE_FREQ; break; #endif #if defined(STM32_HSI48_ENABLED) case STM32_SRC_HSI48: *rate = STM32_HSI48_FREQ; break; #endif /* STM32_HSI48_ENABLED */ default: return -ENOTSUP; } return 0; } static enum clock_control_status stm32_clock_control_get_status(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system; ARG_UNUSED(dev); if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == true) { /* Gated clocks */ if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr) == pclken->enr) { return CLOCK_CONTROL_STATUS_ON; } else { return CLOCK_CONTROL_STATUS_OFF; } } else { /* Domain clock sources */ if (enabled_clock(pclken->bus) == 0) { return CLOCK_CONTROL_STATUS_ON; } else { return CLOCK_CONTROL_STATUS_OFF; } } } static struct clock_control_driver_api stm32_clock_control_api = { .on = stm32_clock_control_on, .off = stm32_clock_control_off, .get_rate = stm32_clock_control_get_subsys_rate, .get_status = stm32_clock_control_get_status, .configure = stm32_clock_control_configure, }; /* * Unconditionally switch the system clock source to HSI. */ __unused static void stm32_clock_switch_to_hsi(void) { /* Enable HSI if not enabled */ if (LL_RCC_HSI_IsReady() != 1) { /* Enable HSI */ LL_RCC_HSI_Enable(); while (LL_RCC_HSI_IsReady() != 1) { /* Wait for HSI ready */ } } /* Set HSI as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) { } } /* * MCO configure doesn't active requested clock source, * so please make sure the clock source was enabled. */ static inline void stm32_clock_control_mco_init(void) { #ifndef CONFIG_CLOCK_STM32_MCO1_SRC_NOCLOCK #ifdef CONFIG_SOC_SERIES_STM32F1X LL_RCC_ConfigMCO(MCO1_SOURCE); #else LL_RCC_ConfigMCO(MCO1_SOURCE, mco1_prescaler(CONFIG_CLOCK_STM32_MCO1_DIV)); #endif #endif /* CONFIG_CLOCK_STM32_MCO1_SRC_NOCLOCK */ #ifndef CONFIG_CLOCK_STM32_MCO2_SRC_NOCLOCK LL_RCC_ConfigMCO(MCO2_SOURCE, mco2_prescaler(CONFIG_CLOCK_STM32_MCO2_DIV)); #endif /* CONFIG_CLOCK_STM32_MCO2_SRC_NOCLOCK */ } __unused static void set_up_plls(void) { #if defined(STM32_PLL_ENABLED) /* * Case of chain-loaded applications: * Switch to HSI and disable the PLL before configuration. * (Switching to HSI makes sure we have a SYSCLK source in * case we're currently running from the PLL we're about to * turn off and reconfigure.) * */ if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { stm32_clock_switch_to_hsi(); LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); } LL_RCC_PLL_Disable(); #endif #if defined(STM32_PLL2_ENABLED) /* * Disable PLL2 after switching to HSI for SysClk * and disabling PLL, but before enabling PLL again, * since PLL source can be PLL2. */ LL_RCC_PLL2_Disable(); config_pll2(); /* Enable PLL2 */ LL_RCC_PLL2_Enable(); while (LL_RCC_PLL2_IsReady() != 1U) { /* Wait for PLL2 ready */ } #endif /* STM32_PLL2_ENABLED */ #if defined(STM32_PLL_ENABLED) #if defined(STM32_SRC_PLL_P) & STM32_PLL_P_ENABLED MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLP, pllp(STM32_PLL_P_DIVISOR)); RCC_PLLP_ENABLE(); #endif #if defined(STM32_SRC_PLL_Q) & STM32_PLL_Q_ENABLED MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ, pllq(STM32_PLL_Q_DIVISOR)); RCC_PLLQ_ENABLE(); #endif config_pll_sysclock(); /* Enable PLL */ LL_RCC_PLL_Enable(); while (LL_RCC_PLL_IsReady() != 1U) { /* Wait for PLL ready */ } #endif /* STM32_PLL_ENABLED */ #if defined(STM32_PLLI2S_ENABLED) config_plli2s(); /* Enable PLL */ LL_RCC_PLLI2S_Enable(); while (LL_RCC_PLLI2S_IsReady() != 1U) { /* Wait for PLL ready */ } #endif /* STM32_PLLI2S_ENABLED */ } static void set_up_fixed_clock_sources(void) { if (IS_ENABLED(STM32_HSE_ENABLED)) { #if defined(STM32_HSE_BYPASS) /* Check if need to enable HSE bypass feature or not */ if (IS_ENABLED(STM32_HSE_BYPASS)) { LL_RCC_HSE_EnableBypass(); } else { LL_RCC_HSE_DisableBypass(); } #endif #if STM32_HSE_TCXO LL_RCC_HSE_EnableTcxo(); #endif #if STM32_HSE_DIV2 LL_RCC_HSE_EnableDiv2(); #endif /* Enable HSE */ LL_RCC_HSE_Enable(); while (LL_RCC_HSE_IsReady() != 1) { /* Wait for HSE ready */ } } if (IS_ENABLED(STM32_HSI_ENABLED)) { /* Enable HSI if not enabled */ if (LL_RCC_HSI_IsReady() != 1) { /* Enable HSI */ LL_RCC_HSI_Enable(); while (LL_RCC_HSI_IsReady() != 1) { /* Wait for HSI ready */ } } #if STM32_HSI_DIV_ENABLED LL_RCC_SetHSIDiv(hsi_divider(STM32_HSI_DIVISOR)); #endif } #if defined(STM32_MSI_ENABLED) if (IS_ENABLED(STM32_MSI_ENABLED)) { /* Set MSI Range */ #if defined(RCC_CR_MSIRGSEL) LL_RCC_MSI_EnableRangeSelection(); #endif /* RCC_CR_MSIRGSEL */ #if defined(CONFIG_SOC_SERIES_STM32L0X) || defined(CONFIG_SOC_SERIES_STM32L1X) LL_RCC_MSI_SetRange(STM32_MSI_RANGE << RCC_ICSCR_MSIRANGE_Pos); #else LL_RCC_MSI_SetRange(STM32_MSI_RANGE << RCC_CR_MSIRANGE_Pos); #endif /* CONFIG_SOC_SERIES_STM32L0X || CONFIG_SOC_SERIES_STM32L1X */ #if STM32_MSI_PLL_MODE /* Enable MSI hardware auto calibration */ LL_RCC_MSI_EnablePLLMode(); #endif LL_RCC_MSI_SetCalibTrimming(0); /* Enable MSI if not enabled */ if (LL_RCC_MSI_IsReady() != 1) { /* Enable MSI */ LL_RCC_MSI_Enable(); while (LL_RCC_MSI_IsReady() != 1) { /* Wait for MSI ready */ } } } #endif /* STM32_MSI_ENABLED */ if (IS_ENABLED(STM32_LSI_ENABLED)) { #if defined(CONFIG_SOC_SERIES_STM32WBX) LL_RCC_LSI1_Enable(); while (LL_RCC_LSI1_IsReady() != 1) { } #else LL_RCC_LSI_Enable(); while (LL_RCC_LSI_IsReady() != 1) { } #endif } if (IS_ENABLED(STM32_LSE_ENABLED)) { /* LSE belongs to the back-up domain, enable access.*/ z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPR_DBP) /* Set the DBP bit in the Power control register 1 (PWR_CR1) */ LL_PWR_EnableBkUpAccess(); while (!LL_PWR_IsEnabledBkUpAccess()) { /* Wait for Backup domain access */ } #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ #if STM32_LSE_DRIVING /* Configure driving capability */ LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos); #endif if (IS_ENABLED(STM32_LSE_BYPASS)) { /* Configure LSE bypass */ LL_RCC_LSE_EnableBypass(); } /* Enable LSE Oscillator (32.768 kHz) */ LL_RCC_LSE_Enable(); while (!LL_RCC_LSE_IsReady()) { /* Wait for LSE ready */ } #ifdef RCC_BDCR_LSESYSEN LL_RCC_LSE_EnablePropagation(); /* Wait till LSESYS is ready */ while (!LL_RCC_LSE_IsPropagationReady()) { } #endif /* RCC_BDCR_LSESYSEN */ #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPR_DBP) LL_PWR_DisableBkUpAccess(); #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); } #if defined(STM32_HSI48_ENABLED) /* For all series with HSI 48 clock support */ if (IS_ENABLED(STM32_HSI48_ENABLED)) { #if defined(CONFIG_SOC_SERIES_STM32L0X) /* * HSI48 requires VREFINT (see RM0376 section 7.2.4). * The SYSCFG is needed to control VREFINT, so clock it. */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_SYSCFG); LL_SYSCFG_VREFINT_EnableHSI48(); #endif /* CONFIG_SOC_SERIES_STM32L0X */ /* * STM32WB: Lock the CLK48 HSEM and do not release to prevent * M0 core to disable this clock (used for RNG on M0). * No-op on other series. */ z_stm32_hsem_lock(CFG_HW_CLK48_CONFIG_SEMID, HSEM_LOCK_DEFAULT_RETRY); LL_RCC_HSI48_Enable(); while (LL_RCC_HSI48_IsReady() != 1) { } } #endif /* STM32_HSI48_ENABLED */ } /** * @brief Initialize clocks for the stm32 * * This routine is called to enable and configure the clocks and PLL * of the soc on the board. It depends on the board definition. * This function is called on the startup and also to restore the config * when exiting for low power mode. * * @param dev clock device struct * * @return 0 */ int stm32_clock_control_init(const struct device *dev) { ARG_UNUSED(dev); /* Some clocks would be activated by default */ config_enable_default_clocks(); #if defined(STM32_PLL_ENABLED) && defined(CONFIG_SOC_SERIES_STM32F7X) /* Assuming we stay on Power Scale default value: Power Scale 1 */ if (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC > 180000000) { /* Set Overdrive if needed before configuring the Flash Latency */ LL_PWR_EnableOverDriveMode(); while (LL_PWR_IsActiveFlag_OD() != 1) { /* Wait for OverDrive mode ready */ } LL_PWR_EnableOverDriveSwitching(); while (LL_PWR_IsActiveFlag_ODSW() != 1) { /* Wait for OverDrive switch ready */ } } #endif /* STM32_PLL_ENABLED && CONFIG_SOC_SERIES_STM32F7X */ #if defined(FLASH_ACR_LATENCY) uint32_t old_flash_freq; uint32_t new_flash_freq; old_flash_freq = RCC_CALC_FLASH_FREQ(HAL_RCC_GetSysClockFreq(), GET_CURRENT_FLASH_PRESCALER()); new_flash_freq = RCC_CALC_FLASH_FREQ(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC, STM32_FLASH_PRESCALER); /* If freq increases, set flash latency before any clock setting */ if (old_flash_freq < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); } #endif /* FLASH_ACR_LATENCY */ /* Set up indiviual enabled clocks */ set_up_fixed_clock_sources(); /* Set up PLLs */ set_up_plls(); if (DT_PROP(DT_NODELABEL(rcc), undershoot_prevention) && (STM32_CORE_PRESCALER == LL_RCC_SYSCLK_DIV_1) && (MHZ(80) < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC)) { LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_2); } else { LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER)); } #if STM32_SYSCLK_SRC_PLL /* Set PLL as System Clock Source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { } #elif STM32_SYSCLK_SRC_HSE /* Set HSE as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) { } #elif STM32_SYSCLK_SRC_MSI /* Set MSI as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI) { } #elif STM32_SYSCLK_SRC_HSI stm32_clock_switch_to_hsi(); #endif /* STM32_SYSCLK_SRC_... */ if (DT_PROP(DT_NODELABEL(rcc), undershoot_prevention) && (STM32_CORE_PRESCALER == LL_RCC_SYSCLK_DIV_1) && (MHZ(80) < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC)) { LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER)); } #if defined(FLASH_ACR_LATENCY) /* If freq not increased, set flash latency after all clock setting */ if (old_flash_freq >= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); } #endif /* FLASH_ACR_LATENCY */ SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; /* Set bus prescalers prescaler */ LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER)); #if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler) LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER)); #endif #if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), cpu2_prescaler) LL_C2_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CPU2_PRESCALER)); #endif #if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler) LL_RCC_SetAHB3Prescaler(ahb_prescaler(STM32_AHB3_PRESCALER)); #endif #if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb4_prescaler) LL_RCC_SetAHB4Prescaler(ahb_prescaler(STM32_AHB4_PRESCALER)); #endif /* configure MCO1/MCO2 based on Kconfig */ stm32_clock_control_mco_init(); return 0; } /** * @brief RCC device, note that priority is intentionally set to 1 so * that the device init runs just after SOC init */ DEVICE_DT_DEFINE(DT_NODELABEL(rcc), &stm32_clock_control_init, NULL, NULL, NULL, PRE_KERNEL_1, CONFIG_CLOCK_CONTROL_INIT_PRIORITY, &stm32_clock_control_api); |