Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 | /*
* Copyright (c) 2016-2020 Nordic Semiconductor ASA
* Copyright (c) 2016 Vinayak Kariappa Chettimada
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <zephyr/sys/onoff.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
#include "nrf_clock_calibration.h"
#include <nrfx_clock.h>
#include <zephyr/logging/log.h>
#include <zephyr/shell/shell.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(clock_control, CONFIG_CLOCK_CONTROL_LOG_LEVEL);
#define DT_DRV_COMPAT nordic_nrf_clock
#define CTX_ONOFF BIT(6)
#define CTX_API BIT(7)
#define CTX_MASK (CTX_ONOFF | CTX_API)
#define STATUS_MASK 0x7
#define GET_STATUS(flags) (flags & STATUS_MASK)
#define GET_CTX(flags) (flags & CTX_MASK)
/* Used only by HF clock */
#define HF_USER_BT BIT(0)
#define HF_USER_GENERIC BIT(1)
/* Helper logging macros which prepends subsys name to the log. */
#ifdef CONFIG_LOG
#define CLOCK_LOG(lvl, dev, subsys, ...) \
LOG_##lvl("%s: " GET_ARG_N(1, __VA_ARGS__), \
get_sub_config(dev, (enum clock_control_nrf_type)subsys)->name \
COND_CODE_0(NUM_VA_ARGS_LESS_1(__VA_ARGS__),\
(), (, GET_ARGS_LESS_N(1, __VA_ARGS__))))
#else
#define CLOCK_LOG(...)
#endif
#define ERR(dev, subsys, ...) CLOCK_LOG(ERR, dev, subsys, __VA_ARGS__)
#define WRN(dev, subsys, ...) CLOCK_LOG(WRN, dev, subsys, __VA_ARGS__)
#define INF(dev, subsys, ...) CLOCK_LOG(INF, dev, subsys, __VA_ARGS__)
#define DBG(dev, subsys, ...) CLOCK_LOG(DBG, dev, subsys, __VA_ARGS__)
/* Clock subsys structure */
struct nrf_clock_control_sub_data {
clock_control_cb_t cb;
void *user_data;
uint32_t flags;
};
typedef void (*clk_ctrl_func_t)(void);
/* Clock subsys static configuration */
struct nrf_clock_control_sub_config {
clk_ctrl_func_t start; /* Clock start function */
clk_ctrl_func_t stop; /* Clock stop function */
#ifdef CONFIG_LOG
const char *name;
#endif
};
struct nrf_clock_control_data {
struct onoff_manager mgr[CLOCK_CONTROL_NRF_TYPE_COUNT];
struct nrf_clock_control_sub_data subsys[CLOCK_CONTROL_NRF_TYPE_COUNT];
};
struct nrf_clock_control_config {
struct nrf_clock_control_sub_config
subsys[CLOCK_CONTROL_NRF_TYPE_COUNT];
};
static atomic_t hfclk_users;
static uint64_t hf_start_tstamp;
static uint64_t hf_stop_tstamp;
static struct nrf_clock_control_sub_data *get_sub_data(const struct device *dev,
enum clock_control_nrf_type type)
{
struct nrf_clock_control_data *data = dev->data;
return &data->subsys[type];
}
static const struct nrf_clock_control_sub_config *get_sub_config(const struct device *dev,
enum clock_control_nrf_type type)
{
const struct nrf_clock_control_config *config =
dev->config;
return &config->subsys[type];
}
static struct onoff_manager *get_onoff_manager(const struct device *dev,
enum clock_control_nrf_type type)
{
struct nrf_clock_control_data *data = dev->data;
return &data->mgr[type];
}
#define CLOCK_DEVICE DEVICE_DT_GET(DT_NODELABEL(clock))
struct onoff_manager *z_nrf_clock_control_get_onoff(clock_control_subsys_t sys)
{
return get_onoff_manager(CLOCK_DEVICE,
(enum clock_control_nrf_type)(size_t)sys);
}
static enum clock_control_status get_status(const struct device *dev,
clock_control_subsys_t subsys)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)(size_t)subsys;
__ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT);
return GET_STATUS(get_sub_data(dev, type)->flags);
}
static int set_off_state(uint32_t *flags, uint32_t ctx)
{
int err = 0;
unsigned int key = irq_lock();
uint32_t current_ctx = GET_CTX(*flags);
if ((current_ctx != 0) && (current_ctx != ctx)) {
err = -EPERM;
} else {
*flags = CLOCK_CONTROL_STATUS_OFF;
}
irq_unlock(key);
return err;
}
static int set_starting_state(uint32_t *flags, uint32_t ctx)
{
int err = 0;
unsigned int key = irq_lock();
uint32_t current_ctx = GET_CTX(*flags);
if ((*flags & (STATUS_MASK)) == CLOCK_CONTROL_STATUS_OFF) {
*flags = CLOCK_CONTROL_STATUS_STARTING | ctx;
} else if (current_ctx != ctx) {
err = -EPERM;
} else {
err = -EALREADY;
}
irq_unlock(key);
return err;
}
static void set_on_state(uint32_t *flags)
{
unsigned int key = irq_lock();
*flags = CLOCK_CONTROL_STATUS_ON | GET_CTX(*flags);
irq_unlock(key);
}
static void clkstarted_handle(const struct device *dev,
enum clock_control_nrf_type type)
{
struct nrf_clock_control_sub_data *sub_data = get_sub_data(dev, type);
clock_control_cb_t callback = sub_data->cb;
void *user_data = sub_data->user_data;
sub_data->cb = NULL;
set_on_state(&sub_data->flags);
DBG(dev, type, "Clock started");
if (callback) {
callback(dev, (clock_control_subsys_t)type, user_data);
}
}
static inline void anomaly_132_workaround(void)
{
#if (CONFIG_NRF52_ANOMALY_132_DELAY_US - 0)
static bool once;
if (!once) {
k_busy_wait(CONFIG_NRF52_ANOMALY_132_DELAY_US);
once = true;
}
#endif
}
static void lfclk_start(void)
{
if (IS_ENABLED(CONFIG_NRF52_ANOMALY_132_WORKAROUND)) {
anomaly_132_workaround();
}
nrfx_clock_lfclk_start();
}
static void lfclk_stop(void)
{
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_DRIVER_CALIBRATION)) {
z_nrf_clock_calibration_lfclk_stopped();
}
nrfx_clock_lfclk_stop();
}
static void hfclk_start(void)
{
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_SHELL)) {
hf_start_tstamp = k_uptime_get();
}
nrfx_clock_hfclk_start();
}
static void hfclk_stop(void)
{
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_SHELL)) {
hf_stop_tstamp = k_uptime_get();
}
nrfx_clock_hfclk_stop();
}
#if NRF_CLOCK_HAS_HFCLK192M
static void hfclk192m_start(void)
{
nrfx_clock_start(NRF_CLOCK_DOMAIN_HFCLK192M);
}
static void hfclk192m_stop(void)
{
nrfx_clock_stop(NRF_CLOCK_DOMAIN_HFCLK192M);
}
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
static void hfclkaudio_start(void)
{
nrfx_clock_start(NRF_CLOCK_DOMAIN_HFCLKAUDIO);
}
static void hfclkaudio_stop(void)
{
nrfx_clock_stop(NRF_CLOCK_DOMAIN_HFCLKAUDIO);
}
#endif
static uint32_t *get_hf_flags(void)
{
struct nrf_clock_control_data *data = CLOCK_DEVICE->data;
return &data->subsys[CLOCK_CONTROL_NRF_TYPE_HFCLK].flags;
}
static void generic_hfclk_start(void)
{
nrf_clock_hfclk_t type;
bool already_started = false;
unsigned int key = irq_lock();
hfclk_users |= HF_USER_GENERIC;
if (hfclk_users & HF_USER_BT) {
(void)nrfx_clock_is_running(NRF_CLOCK_DOMAIN_HFCLK, &type);
if (type == NRF_CLOCK_HFCLK_HIGH_ACCURACY) {
already_started = true;
/* Set on state in case clock interrupt comes and we
* want to avoid handling that.
*/
set_on_state(get_hf_flags());
}
}
irq_unlock(key);
if (already_started) {
/* Clock already started by z_nrf_clock_bt_ctlr_hf_request */
clkstarted_handle(CLOCK_DEVICE,
CLOCK_CONTROL_NRF_TYPE_HFCLK);
return;
}
hfclk_start();
}
static void generic_hfclk_stop(void)
{
/* It's not enough to use only atomic_and() here for synchronization,
* as the thread could be preempted right after that function but
* before hfclk_stop() is called and the preempting code could request
* the HFCLK again. Then, the HFCLK would be stopped inappropriately
* and hfclk_user would be left with an incorrect value.
*/
unsigned int key = irq_lock();
hfclk_users &= ~HF_USER_GENERIC;
/* Skip stopping if BT is still requesting the clock. */
if (!(hfclk_users & HF_USER_BT)) {
hfclk_stop();
}
irq_unlock(key);
}
void z_nrf_clock_bt_ctlr_hf_request(void)
{
if (atomic_or(&hfclk_users, HF_USER_BT) & HF_USER_GENERIC) {
/* generic request already activated clock. */
return;
}
hfclk_start();
}
void z_nrf_clock_bt_ctlr_hf_release(void)
{
/* It's not enough to use only atomic_and() here for synchronization,
* see the explanation in generic_hfclk_stop().
*/
unsigned int key = irq_lock();
hfclk_users &= ~HF_USER_BT;
/* Skip stopping if generic is still requesting the clock. */
if (!(hfclk_users & HF_USER_GENERIC)) {
hfclk_stop();
}
irq_unlock(key);
}
static int stop(const struct device *dev, clock_control_subsys_t subsys,
uint32_t ctx)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)(size_t)subsys;
struct nrf_clock_control_sub_data *subdata = get_sub_data(dev, type);
int err;
__ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT);
err = set_off_state(&subdata->flags, ctx);
if (err < 0) {
return err;
}
get_sub_config(dev, type)->stop();
return 0;
}
static int api_stop(const struct device *dev, clock_control_subsys_t subsys)
{
return stop(dev, subsys, CTX_API);
}
static int async_start(const struct device *dev, clock_control_subsys_t subsys,
clock_control_cb_t cb, void *user_data, uint32_t ctx)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)(size_t)subsys;
struct nrf_clock_control_sub_data *subdata = get_sub_data(dev, type);
int err;
err = set_starting_state(&subdata->flags, ctx);
if (err < 0) {
return err;
}
subdata->cb = cb;
subdata->user_data = user_data;
get_sub_config(dev, type)->start();
return 0;
}
static int api_start(const struct device *dev, clock_control_subsys_t subsys,
clock_control_cb_t cb, void *user_data)
{
return async_start(dev, subsys, cb, user_data, CTX_API);
}
static void blocking_start_callback(const struct device *dev,
clock_control_subsys_t subsys,
void *user_data)
{
struct k_sem *sem = user_data;
k_sem_give(sem);
}
static int api_blocking_start(const struct device *dev,
clock_control_subsys_t subsys)
{
struct k_sem sem = Z_SEM_INITIALIZER(sem, 0, 1);
int err;
if (!IS_ENABLED(CONFIG_MULTITHREADING)) {
return -ENOTSUP;
}
err = api_start(dev, subsys, blocking_start_callback, &sem);
if (err < 0) {
return err;
}
return k_sem_take(&sem, K_MSEC(500));
}
static clock_control_subsys_t get_subsys(struct onoff_manager *mgr)
{
struct nrf_clock_control_data *data = CLOCK_DEVICE->data;
size_t offset = (size_t)(mgr - data->mgr);
return (clock_control_subsys_t)offset;
}
static void onoff_stop(struct onoff_manager *mgr,
onoff_notify_fn notify)
{
int res;
res = stop(CLOCK_DEVICE, get_subsys(mgr), CTX_ONOFF);
notify(mgr, res);
}
static void onoff_started_callback(const struct device *dev,
clock_control_subsys_t sys,
void *user_data)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)(size_t)sys;
struct onoff_manager *mgr = get_onoff_manager(dev, type);
onoff_notify_fn notify = user_data;
notify(mgr, 0);
}
static void onoff_start(struct onoff_manager *mgr,
onoff_notify_fn notify)
{
int err;
err = async_start(CLOCK_DEVICE, get_subsys(mgr),
onoff_started_callback, notify, CTX_ONOFF);
if (err < 0) {
notify(mgr, err);
}
}
/** @brief Wait for LF clock availability or stability.
*
* If LF clock source is SYNTH or RC then there is no distinction between
* availability and stability. In case of XTAL source clock, system is initially
* starting RC and then seamlessly switches to XTAL. Running RC means clock
* availability and running target source means stability, That is because
* significant difference in startup time (<1ms vs >200ms).
*
* In order to get event/interrupt when RC is ready (allowing CPU sleeping) two
* stage startup sequence is used. Initially, LF source is set to RC and when
* LFSTARTED event is handled it is reconfigured to the target source clock.
* This approach is implemented in nrfx_clock driver and utilized here.
*
* @param mode Start mode.
*/
static void lfclk_spinwait(enum nrf_lfclk_start_mode mode)
{
static const nrf_clock_domain_t d = NRF_CLOCK_DOMAIN_LFCLK;
static const nrf_clock_lfclk_t target_type =
/* For sources XTAL, EXT_LOW_SWING, and EXT_FULL_SWING,
* NRF_CLOCK_LFCLK_XTAL is returned as the type of running clock.
*/
(IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_XTAL) ||
IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_EXT_LOW_SWING) ||
IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_EXT_FULL_SWING))
? NRF_CLOCK_LFCLK_XTAL
: CLOCK_CONTROL_NRF_K32SRC;
nrf_clock_lfclk_t type;
if ((mode == CLOCK_CONTROL_NRF_LF_START_AVAILABLE) &&
(target_type == NRF_CLOCK_LFCLK_XTAL) &&
(nrf_clock_lf_srccopy_get(NRF_CLOCK) == CLOCK_CONTROL_NRF_K32SRC)) {
/* If target clock source is using XTAL then due to two-stage
* clock startup sequence, RC might already be running.
* It can be determined by checking current LFCLK source. If it
* is set to the target clock source then it means that RC was
* started.
*/
return;
}
bool isr_mode = k_is_in_isr() || k_is_pre_kernel();
int key = isr_mode ? irq_lock() : 0;
if (!isr_mode) {
nrf_clock_int_disable(NRF_CLOCK, NRF_CLOCK_INT_LF_STARTED_MASK);
}
while (!(nrfx_clock_is_running(d, (void *)&type)
&& ((type == target_type)
|| (mode == CLOCK_CONTROL_NRF_LF_START_AVAILABLE)))) {
/* Synth source start is almost instant and LFCLKSTARTED may
* happen before calling idle. That would lead to deadlock.
*/
if (!IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_SYNTH)) {
if (isr_mode || !IS_ENABLED(CONFIG_MULTITHREADING)) {
k_cpu_atomic_idle(key);
} else {
k_msleep(1);
}
}
/* Clock interrupt is locked, LFCLKSTARTED is handled here. */
if ((target_type == NRF_CLOCK_LFCLK_XTAL)
&& (nrf_clock_lf_src_get(NRF_CLOCK) == NRF_CLOCK_LFCLK_RC)
&& nrf_clock_event_check(NRF_CLOCK,
NRF_CLOCK_EVENT_LFCLKSTARTED)) {
nrf_clock_event_clear(NRF_CLOCK,
NRF_CLOCK_EVENT_LFCLKSTARTED);
nrf_clock_lf_src_set(NRF_CLOCK,
CLOCK_CONTROL_NRF_K32SRC);
/* Clear pending interrupt, otherwise new clock event
* would not wake up from idle.
*/
NVIC_ClearPendingIRQ(DT_INST_IRQN(0));
nrf_clock_task_trigger(NRF_CLOCK,
NRF_CLOCK_TASK_LFCLKSTART);
}
}
if (isr_mode) {
irq_unlock(key);
} else {
nrf_clock_int_enable(NRF_CLOCK, NRF_CLOCK_INT_LF_STARTED_MASK);
}
}
void z_nrf_clock_control_lf_on(enum nrf_lfclk_start_mode start_mode)
{
static atomic_t on;
static struct onoff_client cli;
if (atomic_set(&on, 1) == 0) {
int err;
struct onoff_manager *mgr =
get_onoff_manager(CLOCK_DEVICE,
CLOCK_CONTROL_NRF_TYPE_LFCLK);
sys_notify_init_spinwait(&cli.notify);
err = onoff_request(mgr, &cli);
__ASSERT_NO_MSG(err >= 0);
}
/* In case of simulated board leave immediately. */
if (IS_ENABLED(CONFIG_SOC_SERIES_BSIM_NRFXX)) {
return;
}
switch (start_mode) {
case CLOCK_CONTROL_NRF_LF_START_AVAILABLE:
case CLOCK_CONTROL_NRF_LF_START_STABLE:
lfclk_spinwait(start_mode);
break;
case CLOCK_CONTROL_NRF_LF_START_NOWAIT:
break;
default:
__ASSERT_NO_MSG(false);
}
}
static void clock_event_handler(nrfx_clock_evt_type_t event)
{
const struct device *dev = CLOCK_DEVICE;
switch (event) {
case NRFX_CLOCK_EVT_HFCLK_STARTED:
{
struct nrf_clock_control_sub_data *data =
get_sub_data(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK);
/* Check needed due to anomaly 201:
* HFCLKSTARTED may be generated twice.
*/
if (GET_STATUS(data->flags) == CLOCK_CONTROL_STATUS_STARTING) {
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK);
}
break;
}
#if NRF_CLOCK_HAS_HFCLK192M
case NRFX_CLOCK_EVT_HFCLK192M_STARTED:
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK192M);
break;
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
case NRFX_CLOCK_EVT_HFCLKAUDIO_STARTED:
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_HFCLKAUDIO);
break;
#endif
case NRFX_CLOCK_EVT_LFCLK_STARTED:
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_DRIVER_CALIBRATION)) {
z_nrf_clock_calibration_lfclk_started();
}
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_LFCLK);
break;
case NRFX_CLOCK_EVT_CAL_DONE:
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_DRIVER_CALIBRATION)) {
z_nrf_clock_calibration_done_handler();
} else {
/* Should not happen when calibration is disabled. */
__ASSERT_NO_MSG(false);
}
break;
default:
__ASSERT_NO_MSG(0);
break;
}
}
static void hfclkaudio_init(void)
{
#if DT_NODE_HAS_PROP(DT_NODELABEL(clock), hfclkaudio_frequency)
const uint32_t frequency =
DT_PROP(DT_NODELABEL(clock), hfclkaudio_frequency);
/* As specified in the nRF5340 PS:
*
* FREQ_VALUE = 2^16 * ((12 * f_out / 32M) - 4)
*/
const uint32_t freq_value =
(uint32_t)((384ULL * frequency) / 15625) - 262144;
#if NRF_CLOCK_HAS_HFCLKAUDIO
nrf_clock_hfclkaudio_config_set(NRF_CLOCK, freq_value);
#else
#error "hfclkaudio-frequency specified but HFCLKAUDIO clock is not present."
#endif /* NRF_CLOCK_HAS_HFCLKAUDIO */
#endif
}
static int clk_init(const struct device *dev)
{
nrfx_err_t nrfx_err;
int err;
static const struct onoff_transitions transitions = {
.start = onoff_start,
.stop = onoff_stop
};
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority),
nrfx_isr, nrfx_power_clock_irq_handler, 0);
nrfx_err = nrfx_clock_init(clock_event_handler);
if (nrfx_err != NRFX_SUCCESS) {
return -EIO;
}
hfclkaudio_init();
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_DRIVER_CALIBRATION)) {
struct nrf_clock_control_data *data = dev->data;
z_nrf_clock_calibration_init(data->mgr);
}
nrfx_clock_enable();
for (enum clock_control_nrf_type i = 0;
i < CLOCK_CONTROL_NRF_TYPE_COUNT; i++) {
struct nrf_clock_control_sub_data *subdata =
get_sub_data(dev, i);
err = onoff_manager_init(get_onoff_manager(dev, i),
&transitions);
if (err < 0) {
return err;
}
subdata->flags = CLOCK_CONTROL_STATUS_OFF;
}
return 0;
}
static const struct clock_control_driver_api clock_control_api = {
.on = api_blocking_start,
.off = api_stop,
.async_on = api_start,
.get_status = get_status,
};
static struct nrf_clock_control_data data;
static const struct nrf_clock_control_config config = {
.subsys = {
[CLOCK_CONTROL_NRF_TYPE_HFCLK] = {
.start = generic_hfclk_start,
.stop = generic_hfclk_stop,
IF_ENABLED(CONFIG_LOG, (.name = "hfclk",))
},
[CLOCK_CONTROL_NRF_TYPE_LFCLK] = {
.start = lfclk_start,
.stop = lfclk_stop,
IF_ENABLED(CONFIG_LOG, (.name = "lfclk",))
},
#if NRF_CLOCK_HAS_HFCLK192M
[CLOCK_CONTROL_NRF_TYPE_HFCLK192M] = {
.start = hfclk192m_start,
.stop = hfclk192m_stop,
IF_ENABLED(CONFIG_LOG, (.name = "hfclk192m",))
},
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
[CLOCK_CONTROL_NRF_TYPE_HFCLKAUDIO] = {
.start = hfclkaudio_start,
.stop = hfclkaudio_stop,
IF_ENABLED(CONFIG_LOG, (.name = "hfclkaudio",))
},
#endif
}
};
DEVICE_DT_DEFINE(DT_NODELABEL(clock), clk_init, NULL,
&data, &config,
PRE_KERNEL_1, CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&clock_control_api);
#if defined(CONFIG_SHELL)
static int cmd_status(const struct shell *sh, size_t argc, char **argv)
{
nrf_clock_hfclk_t hfclk_src;
bool hf_status;
bool lf_status = nrfx_clock_is_running(NRF_CLOCK_DOMAIN_LFCLK, NULL);
struct onoff_manager *hf_mgr =
get_onoff_manager(CLOCK_DEVICE,
CLOCK_CONTROL_NRF_TYPE_HFCLK);
struct onoff_manager *lf_mgr =
get_onoff_manager(CLOCK_DEVICE,
CLOCK_CONTROL_NRF_TYPE_LFCLK);
uint32_t abs_start, abs_stop;
unsigned int key = irq_lock();
uint64_t now = k_uptime_get();
(void)nrfx_clock_is_running(NRF_CLOCK_DOMAIN_HFCLK, (void *)&hfclk_src);
hf_status = (hfclk_src == NRF_CLOCK_HFCLK_HIGH_ACCURACY);
abs_start = hf_start_tstamp;
abs_stop = hf_stop_tstamp;
irq_unlock(key);
shell_print(sh, "HF clock:");
shell_print(sh, "\t- %srunning (users: %u)",
hf_status ? "" : "not ", hf_mgr->refs);
shell_print(sh, "\t- last start: %u ms (%u ms ago)",
(uint32_t)abs_start, (uint32_t)(now - abs_start));
shell_print(sh, "\t- last stop: %u ms (%u ms ago)",
(uint32_t)abs_stop, (uint32_t)(now - abs_stop));
shell_print(sh, "LF clock:");
shell_print(sh, "\t- %srunning (users: %u)",
lf_status ? "" : "not ", lf_mgr->refs);
return 0;
}
SHELL_STATIC_SUBCMD_SET_CREATE(subcmds,
SHELL_CMD_ARG(status, NULL, "Status", cmd_status, 1, 0),
SHELL_SUBCMD_SET_END
);
SHELL_COND_CMD_REGISTER(CONFIG_CLOCK_CONTROL_NRF_SHELL,
nrf_clock_control, &subcmds,
"Clock control commands",
cmd_status);
#endif /* defined(CONFIG_SHELL) */
|