Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 | /* * Copyright (c) 2020 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ /* This test covers deprecated API. Avoid inappropriate diagnostics * about the use of that API. */ #include <zephyr/toolchain.h> #undef __deprecated #define __deprecated #undef __DEPRECATED_MACRO #define __DEPRECATED_MACRO #include <zephyr/ztest.h> #define STACK_SIZE (1024 + CONFIG_TEST_EXTRA_STACK_SIZE) #define COOPHI_PRIORITY K_PRIO_COOP(0) /* = -4 */ /* SYSTEM_WORKQUEUE_PRIORITY = -3 */ /* ZTEST_THREAD_PRIORITY = -2 */ #define COOPLO_PRIORITY K_PRIO_COOP(3) /* = -1 */ #define PREEMPT_PRIORITY K_PRIO_PREEMPT(1) /* = 1 */ #define DELAY_MS 100 #define DELAY_TIMEOUT K_MSEC(DELAY_MS) BUILD_ASSERT(COOPHI_PRIORITY < CONFIG_SYSTEM_WORKQUEUE_PRIORITY, "COOPHI not higher priority than system workqueue"); BUILD_ASSERT(CONFIG_SYSTEM_WORKQUEUE_PRIORITY < CONFIG_ZTEST_THREAD_PRIORITY, "System workqueue not higher priority than ZTEST"); BUILD_ASSERT(CONFIG_ZTEST_THREAD_PRIORITY < COOPLO_PRIORITY, "ZTEST not higher priority than COOPLO"); BUILD_ASSERT(COOPLO_PRIORITY < 0, "COOPLO not cooperative"); /* Given by work thread to signal completion. */ static struct k_sem sync_sem; static bool run_flag = true; /* Given by test thread to release a work item. */ static struct k_sem rel_sem; /* Common work structures, to avoid dead references to stack objects * if a test fails. */ static struct k_work work; static struct k_work work1; static struct k_work_delayable dwork; /* Work synchronization objects must be in cache-coherent memory, * which excludes stacks on some architectures. */ static struct k_work_sync work_sync; static struct k_thread *main_thread; /* We have these threads, in strictly decreasing order of priority: * * coophi: a high priority cooperative work queue * * system: the standard system work queue * * ztest thread: priority for threads running tests * * cooplo : a low-priority cooperative work queue * * preempt: a preemptible work queue * * The test infrastructure records the number of times each work queue * executes in a counter. * * The common work handler also supports internal re-submission if * configured to do so. * * There are three core handlers: * * The basic one (counter_handler) increments the count of handler * invocations by work queue thread, optionally resubmits, then * releases the semaphore the test is waiting for. * * The blocking one (rel_handler) waits until something invokes * handler_release() to allow it to complete by invoking * counter_handler(). This makes a work queue busy for arbitrary * periods, but requires something external to trigger the release. * * The delaying one (delay_handler) waits for K_MSEC(DELAY_MS) before * invoking counter_handler(). */ static atomic_t resubmits_left; /* k_uptime_get32() on the last invocation of the core handler. */ static uint32_t volatile last_handle_ms; static K_THREAD_STACK_DEFINE(coophi_stack, STACK_SIZE); static struct k_work_q coophi_queue; static struct k_work_q not_start_queue; static atomic_t coophi_ctr; static inline int coophi_counter(void) { return atomic_get(&coophi_ctr); } static K_THREAD_STACK_DEFINE(cooplo_stack, STACK_SIZE); static struct k_work_q cooplo_queue; static atomic_t cooplo_ctr; static inline int cooplo_counter(void) { return atomic_get(&cooplo_ctr); } static inline int coop_counter(struct k_work_q *wq) { return (wq == &coophi_queue) ? coophi_counter() : (wq == &cooplo_queue) ? cooplo_counter() : -1; } static K_THREAD_STACK_DEFINE(preempt_stack, STACK_SIZE); static struct k_work_q preempt_queue; static atomic_t preempt_ctr; static inline int preempt_counter(void) { return atomic_get(&preempt_ctr); } static K_THREAD_STACK_DEFINE(invalid_test_stack, STACK_SIZE); static struct k_work_q invalid_test_queue; static atomic_t system_ctr; static inline int system_counter(void) { return atomic_get(&system_ctr); } static inline void reset_counters(void) { /* If this fails the previous test didn't clean up */ zassert_equal(k_sem_take(&sync_sem, K_NO_WAIT), -EBUSY); last_handle_ms = UINT32_MAX; atomic_set(&resubmits_left, 0); atomic_set(&coophi_ctr, 0); atomic_set(&system_ctr, 0); atomic_set(&cooplo_ctr, 0); atomic_set(&preempt_ctr, 0); } static void counter_handler(struct k_work *work) { last_handle_ms = k_uptime_get_32(); if (k_current_get() == &coophi_queue.thread) { atomic_inc(&coophi_ctr); } else if (k_current_get() == &k_sys_work_q.thread) { atomic_inc(&system_ctr); } else if (k_current_get() == &cooplo_queue.thread) { atomic_inc(&cooplo_ctr); } else if (k_current_get() == &preempt_queue.thread) { atomic_inc(&preempt_ctr); } if (atomic_dec(&resubmits_left) > 0) { (void)k_work_submit_to_queue(NULL, work); } else { k_sem_give(&sync_sem); } } static inline void handler_release(void) { k_sem_give(&rel_sem); } static void async_release_cb(struct k_timer *timer) { handler_release(); } static K_TIMER_DEFINE(async_releaser, async_release_cb, NULL); static inline void async_release(void) { k_timer_start(&async_releaser, K_TICKS(1), K_NO_WAIT); } static void rel_handler(struct k_work *work) { (void)k_sem_take(&rel_sem, K_FOREVER); counter_handler(work); } static void delay_handler(struct k_work *work) { k_sleep(K_MSEC(DELAY_MS)); counter_handler(work); } /* Check that standard initializations result in expected content. */ static void test_work_init(void) { static K_WORK_DEFINE(fnstat, counter_handler); static struct k_work stack; k_work_init(&stack, counter_handler); zassert_mem_equal(&stack, &fnstat, sizeof(stack), NULL); } static void test_delayable_init(void) { static K_WORK_DELAYABLE_DEFINE(fnstat, counter_handler); static struct k_work_delayable stack; k_work_init_delayable(&stack, counter_handler); zassert_mem_equal(&stack, &fnstat, sizeof(stack), NULL); } /* Check that submission to an unstarted queue is diagnosed. */ ZTEST(work, test_unstarted) { int rc; k_work_init(&work, counter_handler); zassert_equal(k_work_busy_get(&work), 0); rc = k_work_submit_to_queue(¬_start_queue, &work); zassert_equal(rc, -ENODEV); } static void test_queue_start(void) { struct k_work_queue_config cfg = { .name = "wq.preempt", }; k_work_queue_init(&preempt_queue); zassert_equal(preempt_queue.flags, 0); k_work_queue_start(&preempt_queue, preempt_stack, STACK_SIZE, PREEMPT_PRIORITY, &cfg); zassert_equal(preempt_queue.flags, K_WORK_QUEUE_STARTED); if (IS_ENABLED(CONFIG_THREAD_NAME)) { const char *tn = k_thread_name_get(&preempt_queue.thread); zassert_true(tn != cfg.name); zassert_true(tn != NULL); zassert_equal(strcmp(tn, cfg.name), 0); } cfg.name = NULL; zassert_equal(invalid_test_queue.flags, 0); k_work_queue_start(&invalid_test_queue, invalid_test_stack, STACK_SIZE, PREEMPT_PRIORITY, &cfg); zassert_equal(invalid_test_queue.flags, K_WORK_QUEUE_STARTED); if (IS_ENABLED(CONFIG_THREAD_NAME)) { const char *tn = k_thread_name_get(&invalid_test_queue.thread); zassert_true(tn != cfg.name); zassert_true(tn != NULL); zassert_equal(strcmp(tn, ""), 0); } cfg.name = "wq.coophi"; cfg.no_yield = true; k_work_queue_start(&coophi_queue, coophi_stack, STACK_SIZE, COOPHI_PRIORITY, &cfg); zassert_equal(coophi_queue.flags, K_WORK_QUEUE_STARTED | K_WORK_QUEUE_NO_YIELD, NULL); cfg.name = "wq.cooplo"; cfg.no_yield = true; k_work_queue_start(&cooplo_queue, cooplo_stack, STACK_SIZE, COOPLO_PRIORITY, &cfg); zassert_equal(cooplo_queue.flags, K_WORK_QUEUE_STARTED | K_WORK_QUEUE_NO_YIELD, NULL); } /* Check validation of submission without a destination queue. */ ZTEST(work, test_null_queue) { int rc; k_work_init(&work, counter_handler); zassert_equal(k_work_busy_get(&work), 0); rc = k_work_submit_to_queue(NULL, &work); zassert_equal(rc, -EINVAL); } /* Basic single-CPU check submitting with a non-blocking handler. */ ZTEST(work_1cpu, test_1cpu_simple_queue) { int rc; /* Reset state and use the non-blocking handler */ reset_counters(); k_work_init(&work, counter_handler); zassert_equal(k_work_busy_get(&work), 0); zassert_equal(k_work_is_pending(&work), false); /* Submit to the cooperative queue */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); zassert_equal(k_work_busy_get(&work), K_WORK_QUEUED); zassert_equal(k_work_is_pending(&work), true); /* Shouldn't have been started since test thread is * cooperative. */ zassert_equal(coophi_counter(), 0); /* Let it run, then check it finished. */ k_sleep(K_TICKS(1)); zassert_equal(coophi_counter(), 1); zassert_equal(k_work_busy_get(&work), 0); /* Flush the sync state from completion */ rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); } /* Basic SMP check submitting with a non-blocking handler. */ ZTEST(work, test_smp_simple_queue) { if (!IS_ENABLED(CONFIG_SMP)) { ztest_test_skip(); return; } int rc; /* Reset state and use the non-blocking handler */ reset_counters(); k_work_init(&work, counter_handler); zassert_equal(k_work_busy_get(&work), 0); zassert_equal(k_work_is_pending(&work), false); /* Submit to the cooperative queue */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); /* It should run and finish without this thread yielding. */ int64_t ts0 = k_uptime_ticks(); uint32_t delay; do { delay = k_ticks_to_ms_floor32(k_uptime_ticks() - ts0); } while (k_work_is_pending(&work) && (delay < DELAY_MS)); zassert_equal(k_work_busy_get(&work), 0); zassert_equal(coophi_counter(), 1); /* Flush the sync state from completion */ rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); } /* Basic single-CPU check submitting with a blocking handler */ ZTEST(work_1cpu, test_1cpu_sync_queue) { int rc; /* Reset state and use the blocking handler */ reset_counters(); k_work_init(&work, rel_handler); zassert_equal(k_work_busy_get(&work), 0); /* Submit to the cooperative queue */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); zassert_equal(k_work_busy_get(&work), K_WORK_QUEUED); /* Shouldn't have been started since test thread is * cooperative. */ zassert_equal(coophi_counter(), 0); /* Let it run, then check it didn't finish. */ k_sleep(K_TICKS(1)); zassert_equal(coophi_counter(), 0); zassert_equal(k_work_busy_get(&work), K_WORK_RUNNING); /* Make it ready so it can finish when this thread yields. */ handler_release(); zassert_equal(coophi_counter(), 0); /* Wait for then verify finish */ rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); zassert_equal(coophi_counter(), 1); } /* Verify that if a work item is submitted while it is being run by a * queue thread it gets submitted to the queue it's running on, to * prevent reentrant invocation, at least on a single CPU. */ ZTEST(work_1cpu, test_1cpu_reentrant_queue) { int rc; /* Reset state and use the blocking handler */ reset_counters(); k_work_init(&work, rel_handler); /* Submit to the cooperative queue. */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); zassert_equal(coophi_counter(), 0); /* Release it so it's running and can be rescheduled. */ k_sleep(K_TICKS(1)); zassert_equal(coophi_counter(), 0); /* Resubmit to a different queue. */ rc = k_work_submit_to_queue(&preempt_queue, &work); zassert_equal(rc, 2); /* Release the first submission. */ handler_release(); rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); zassert_equal(coophi_counter(), 1); /* Confirm the second submission was redirected to the running * queue to avoid re-entrancy problems. */ handler_release(); rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); zassert_equal(coophi_counter(), 2); } /* Single CPU submit two work items and wait for flush in order * before they get started. */ ZTEST(work_1cpu, test_1cpu_queued_flush) { int rc; /* Reset state and use the delaying handler */ reset_counters(); k_work_init(&work, delay_handler); k_work_init(&work1, delay_handler); /* Submit to the cooperative queue. */ rc = k_work_submit_to_queue(&coophi_queue, &work1); zassert_equal(rc, 1); rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); zassert_equal(coophi_counter(), 0); /* Confirm that it's still in the queue, then wait for completion. * This should wait. */ zassert_equal(k_work_busy_get(&work), K_WORK_QUEUED); zassert_equal(k_work_busy_get(&work1), K_WORK_QUEUED); zassert_true(k_work_flush(&work, &work_sync)); zassert_false(k_work_flush(&work1, &work_sync)); /* Verify completion. */ zassert_equal(coophi_counter(), 2); zassert_true(!k_work_is_pending(&work)); zassert_true(!k_work_is_pending(&work1)); rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); /* After completion flush should be a no-op */ zassert_false(k_work_flush(&work, &work_sync)); zassert_false(k_work_flush(&work1, &work_sync)); } /* Single CPU submit a work item and wait for flush after it's started. */ ZTEST(work_1cpu, test_1cpu_running_flush) { int rc; /* Reset state and use the delaying handler */ reset_counters(); k_work_init(&work, delay_handler); /* Submit to the cooperative queue. */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); zassert_equal(coophi_counter(), 0); zassert_equal(k_work_busy_get(&work), K_WORK_QUEUED); /* Release it so it's running. */ k_sleep(K_TICKS(1)); zassert_equal(k_work_busy_get(&work), K_WORK_RUNNING); zassert_equal(coophi_counter(), 0); /* Wait for completion. This should be released by the delay * handler. */ zassert_true(k_work_flush(&work, &work_sync)); /* Verify completion. */ zassert_equal(coophi_counter(), 1); rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); } /* Single CPU schedule a work item and wait for flush. */ ZTEST(work_1cpu, test_1cpu_delayed_flush) { int rc; uint32_t flush_ms; uint32_t wait_ms; /* Reset state and use non-blocking handler */ reset_counters(); k_work_init_delayable(&dwork, counter_handler); /* Unscheduled completes immediately. */ zassert_false(k_work_flush_delayable(&dwork, &work_sync)); /* Submit to the cooperative queue. */ rc = k_work_schedule_for_queue(&coophi_queue, &dwork, K_MSEC(DELAY_MS)); zassert_equal(rc, 1); zassert_equal(coophi_counter(), 0); /* Align to tick then flush. */ k_sleep(K_TICKS(1)); flush_ms = k_uptime_get_32(); zassert_true(k_work_flush_delayable(&dwork, &work_sync)); wait_ms = last_handle_ms - flush_ms; zassert_true(wait_ms <= 1, "waited %u", wait_ms); /* Verify completion. */ zassert_equal(coophi_counter(), 1); rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); } /* Single CPU cancel before work item is unqueued should complete * immediately. */ ZTEST(work_1cpu, test_1cpu_queued_cancel) { int rc; /* Reset state and use the blocking handler */ reset_counters(); k_work_init(&work, rel_handler); /* Submit to the cooperative queue. */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); zassert_equal(coophi_counter(), 0); /* Cancellation should complete immediately. */ zassert_equal(k_work_cancel(&work), 0); /* Shouldn't have run. */ zassert_equal(coophi_counter(), 0); } /* Single CPU cancel before work item is unqueued should not wait. */ ZTEST(work_1cpu, test_1cpu_queued_cancel_sync) { int rc; /* Reset state and use the blocking handler */ reset_counters(); k_work_init(&work, rel_handler); /* Cancel an unqueued work item should not affect the work * and return false. */ zassert_false(k_work_cancel_sync(&work, &work_sync)); /* Submit to the cooperative queue. */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); zassert_equal(coophi_counter(), 0); /* Cancellation should complete immediately, indicating that * work was pending. */ zassert_true(k_work_cancel_sync(&work, &work_sync)); /* Shouldn't have run. */ zassert_equal(coophi_counter(), 0); } /* Single CPU cancel before scheduled work item is queued should * complete immediately. */ ZTEST(work_1cpu, test_1cpu_delayed_cancel) { int rc; /* Reset state and use the blocking handler */ reset_counters(); k_work_init_delayable(&dwork, rel_handler); /* Submit to the cooperative queue. */ rc = k_work_schedule_for_queue(&coophi_queue, &dwork, K_MSEC(DELAY_MS)); zassert_equal(rc, 1); zassert_equal(coophi_counter(), 0); /* Cancellation should complete immediately. */ zassert_equal(k_work_cancel_delayable(&dwork), 0); /* Shouldn't have run. */ zassert_equal(coophi_counter(), 0); } /* Single CPU cancel before scheduled work item is queued should not wait. */ ZTEST(work_1cpu, test_1cpu_delayed_cancel_sync) { int rc; /* Reset state and use the blocking handler */ reset_counters(); k_work_init_delayable(&dwork, rel_handler); /* Cancel an unqueued delayable work item should not affect the work * and return false. */ zassert_false(k_work_cancel_delayable_sync(&dwork, &work_sync)); /* Submit to the cooperative queue. */ rc = k_work_schedule_for_queue(&coophi_queue, &dwork, K_MSEC(DELAY_MS)); zassert_equal(rc, 1); zassert_equal(coophi_counter(), 0); /* Cancellation should complete immediately, indicating that * work was pending. */ zassert_true(k_work_cancel_delayable_sync(&dwork, &work_sync)); /* Shouldn't have run. */ zassert_equal(coophi_counter(), 0); } /* Single CPU cancel after delayable item starts should wait. */ ZTEST(work_1cpu, test_1cpu_delayed_cancel_sync_wait) { int rc; /* Reset state and use the blocking handler */ reset_counters(); k_work_init_delayable(&dwork, rel_handler); /* Submit to the cooperative queue. */ rc = k_work_schedule_for_queue(&coophi_queue, &dwork, K_NO_WAIT); zassert_equal(k_work_delayable_busy_get(&dwork), K_WORK_QUEUED); zassert_equal(coophi_counter(), 0); /* Get it to running, where it will block. */ k_sleep(K_TICKS(1)); zassert_equal(coophi_counter(), 0); zassert_equal(k_work_delayable_busy_get(&dwork), K_WORK_RUNNING); /* Schedule to release, then cancel should delay. */ async_release(); zassert_true(k_work_cancel_delayable_sync(&dwork, &work_sync)); /* Verify completion. */ zassert_equal(coophi_counter(), 1); rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); } /* Infrastructure to capture behavior of work item that's being * cancelled. */ struct test_running_cancel_timer { struct k_timer timer; struct k_work work; int submit_rc; int busy_rc; }; static struct test_running_cancel_timer test_running_cancel_ctx; static void test_running_cancel_cb(struct k_timer *timer) { struct test_running_cancel_timer *ctx = CONTAINER_OF(timer, struct test_running_cancel_timer, timer); ctx->busy_rc = k_work_busy_get(&ctx->work); ctx->submit_rc = k_work_submit_to_queue(&coophi_queue, &ctx->work); handler_release(); } /* Single CPU test cancellation after work starts. */ ZTEST(work_1cpu, test_1cpu_running_cancel) { struct test_running_cancel_timer *ctx = &test_running_cancel_ctx; struct k_work *wp = &ctx->work; static const uint32_t ms_timeout = 10; int rc; /* Reset state and use the blocking handler */ reset_counters(); k_work_init(wp, rel_handler); /* Submit to the cooperative queue. */ rc = k_work_submit_to_queue(&coophi_queue, wp); zassert_equal(rc, 1); zassert_equal(coophi_counter(), 0); /* Release it so it's running. */ k_sleep(K_TICKS(1)); zassert_equal(coophi_counter(), 0); /* Schedule the async process to capture state and release work. */ ctx->submit_rc = INT_MAX; ctx->busy_rc = INT_MAX; k_timer_init(&ctx->timer, test_running_cancel_cb, NULL); k_timer_start(&ctx->timer, K_MSEC(ms_timeout), K_NO_WAIT); /* Cancellation should not complete. */ zassert_equal(k_work_cancel(wp), K_WORK_RUNNING | K_WORK_CANCELING, NULL); /* Handler should not have run. */ zassert_equal(coophi_counter(), 0); /* Busy wait until timer expires. Thread context is blocked so cancelling * of work won't be completed. */ k_busy_wait(1000 * (ms_timeout + 1)); zassert_equal(k_timer_status_get(&ctx->timer), 1); /* Wait for cancellation to complete. */ zassert_true(k_work_cancel_sync(wp, &work_sync)); /* Verify completion */ rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); /* Handler should have detected running and canceling. */ zassert_equal(ctx->busy_rc, K_WORK_RUNNING | K_WORK_CANCELING); /* Attempt to submit while cancelling should have been * rejected. */ zassert_equal(ctx->submit_rc, -EBUSY); /* Post-cancellation should have no flags. */ rc = k_work_busy_get(wp); zassert_equal(rc, 0, "bad: %d", rc); } /* Single CPU test wait-for-cancellation after the work item has * started running. */ ZTEST(work_1cpu, test_1cpu_running_cancel_sync) { struct test_running_cancel_timer *ctx = &test_running_cancel_ctx; struct k_work *wp = &ctx->work; static const uint32_t ms_timeout = 10; int rc; /* Reset state and use the blocking handler */ reset_counters(); k_work_init(wp, rel_handler); /* Submit to the cooperative queue. */ rc = k_work_submit_to_queue(&coophi_queue, wp); zassert_equal(rc, 1); zassert_equal(coophi_counter(), 0); /* Release it so it's running. */ k_sleep(K_TICKS(1)); zassert_equal(coophi_counter(), 0); /* Schedule the async process to capture state and release work. */ ctx->submit_rc = INT_MAX; ctx->busy_rc = INT_MAX; k_timer_init(&ctx->timer, test_running_cancel_cb, NULL); k_timer_start(&ctx->timer, K_MSEC(ms_timeout), K_NO_WAIT); /* Cancellation should wait. */ zassert_true(k_work_cancel_sync(wp, &work_sync)); /* Handler should have run. */ zassert_equal(coophi_counter(), 1); /* Busy wait until timer expires. Thread context is blocked so cancelling * of work won't be completed. */ k_busy_wait(1000 * (ms_timeout + 1)); zassert_equal(k_timer_status_get(&ctx->timer), 1); /* Verify completion */ rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); /* Handler should have detected running and canceling. */ zassert_equal(ctx->busy_rc, K_WORK_RUNNING | K_WORK_CANCELING, NULL); /* Attempt to submit while cancelling should have been * rejected. */ zassert_equal(ctx->submit_rc, -EBUSY); /* Post-cancellation should have no flags. */ rc = k_work_busy_get(wp); zassert_equal(rc, 0, "bad: %d", rc); } /* SMP cancel after work item is started should succeed but require * wait. */ ZTEST(work, test_smp_running_cancel) { int rc; if (!IS_ENABLED(CONFIG_SMP)) { ztest_test_skip(); return; } /* Reset state and use the delaying handler */ reset_counters(); k_work_init(&work, delay_handler); /* Submit to the cooperative queue. */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); /* It should advance to running without this thread yielding. */ int64_t ts0 = k_uptime_ticks(); uint32_t delay; do { delay = k_ticks_to_ms_floor32(k_uptime_ticks() - ts0); } while ((k_work_busy_get(&work) != K_WORK_RUNNING) && (delay < DELAY_MS)); /* Cancellation should not succeed immediately because the * work is running. */ rc = k_work_cancel(&work); zassert_equal(rc, K_WORK_RUNNING | K_WORK_CANCELING, "rc %x", rc); /* Sync should wait. */ zassert_equal(k_work_cancel_sync(&work, &work_sync), true); /* Should have completed. */ zassert_equal(coophi_counter(), 1); rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); } /* Drain with no active workers completes immediately. */ ZTEST(work, test_drain_empty) { int rc; rc = k_work_queue_drain(&coophi_queue, false); zassert_equal(rc, 0); } struct test_drain_wait_timer { struct k_timer timer; struct k_work work; int submit_rc; }; static struct test_drain_wait_timer test_drain_wait_ctx; static void test_drain_wait_cb(struct k_timer *timer) { struct test_drain_wait_timer *ctx = CONTAINER_OF(timer, struct test_drain_wait_timer, timer); ctx->submit_rc = k_work_submit_to_queue(&coophi_queue, &ctx->work); } /* Single CPU submit an item and wait for it to drain. */ ZTEST(work_1cpu, test_1cpu_drain_wait) { struct test_drain_wait_timer *ctx = &test_drain_wait_ctx; int rc; /* Reset state, allow one re-submission, and use the delaying * handler. */ reset_counters(); atomic_set(&resubmits_left, 1); k_work_init(&work, delay_handler); /* Submit to the cooperative queue. */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); zassert_equal(coophi_counter(), 0); /* Schedule the async process to capture submission state * while draining. */ ctx->submit_rc = INT_MAX; k_timer_init(&ctx->timer, test_drain_wait_cb, NULL); k_timer_start(&ctx->timer, K_MSEC(10), K_NO_WAIT); /* Wait to drain */ rc = k_work_queue_drain(&coophi_queue, false); zassert_equal(rc, 1); /* Wait until timer expires. */ (void)k_timer_status_sync(&ctx->timer); /* Verify completion */ rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); /* Confirm that chained submission worked, and non-chained * submission failed. */ zassert_equal(coophi_counter(), 2); zassert_equal(ctx->submit_rc, -EBUSY); } /* Single CPU submit item, drain with plug, test, then unplug. */ ZTEST(work_1cpu, test_1cpu_plugged_drain) { int rc; /* Reset state and use the delaying handler. */ reset_counters(); k_work_init(&work, delay_handler); /* Submit to the cooperative queue */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); /* Wait to drain, and plug. */ rc = k_work_queue_drain(&coophi_queue, true); zassert_equal(rc, 1); /* Verify completion */ rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); zassert_equal(coophi_counter(), 1); /* Queue should be plugged */ zassert_equal(coophi_queue.flags, K_WORK_QUEUE_STARTED | K_WORK_QUEUE_PLUGGED | K_WORK_QUEUE_NO_YIELD, NULL); /* Switch to the non-blocking handler. */ k_work_init(&work, counter_handler); /* Resubmission should fail because queue is plugged */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, -EBUSY); /* Unplug the queue */ rc = k_work_queue_unplug(&coophi_queue); zassert_equal(rc, 0); /* Unplug the unplugged queue should not affect the queue */ rc = k_work_queue_unplug(&coophi_queue); zassert_equal(rc, -EALREADY); zassert_equal(coophi_queue.flags, K_WORK_QUEUE_STARTED | K_WORK_QUEUE_NO_YIELD, NULL); /* Resubmission should succeed and complete */ rc = k_work_submit_to_queue(&coophi_queue, &work); zassert_equal(rc, 1); /* Flush the sync state and verify completion */ rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); zassert_equal(coophi_counter(), 2); } /* Single CPU test delayed submission */ ZTEST(work_1cpu, test_1cpu_basic_schedule) { int rc; uint32_t sched_ms; uint32_t max_ms = k_ticks_to_ms_ceil32(1U + k_ms_to_ticks_ceil32(DELAY_MS)); uint32_t elapsed_ms; struct k_work *wp = &dwork.work; /* whitebox testing */ /* Reset state and use non-blocking handler */ reset_counters(); k_work_init_delayable(&dwork, counter_handler); /* Verify that work is idle and marked delayable. */ zassert_equal(k_work_busy_get(wp), 0); zassert_equal(wp->flags & K_WORK_DELAYABLE, K_WORK_DELAYABLE, NULL); /* Align to tick, then schedule after normal delay. */ k_sleep(K_TICKS(1)); sched_ms = k_uptime_get_32(); rc = k_work_schedule_for_queue(&coophi_queue, &dwork, K_MSEC(DELAY_MS)); zassert_equal(rc, 1); rc = k_work_busy_get(wp); zassert_equal(rc, K_WORK_DELAYED); zassert_equal(k_work_delayable_busy_get(&dwork), rc); zassert_equal(k_work_delayable_is_pending(&dwork), true); /* Scheduling again does nothing. */ rc = k_work_schedule_for_queue(&coophi_queue, &dwork, K_NO_WAIT); zassert_equal(rc, 0); /* Wait for completion */ rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); /* Make sure it ran and is now idle */ zassert_equal(coophi_counter(), 1); zassert_equal(k_work_busy_get(wp), 0); /* Check that the delay is within the expected range. */ elapsed_ms = last_handle_ms - sched_ms; zassert_true(elapsed_ms >= DELAY_MS, "short %u < %u\n", elapsed_ms, DELAY_MS); zassert_true(elapsed_ms <= max_ms, "long %u > %u\n", elapsed_ms, max_ms); } struct state_1cpu_basic_schedule_running { struct k_work_delayable dwork; int schedule_res; }; static void handle_1cpu_basic_schedule_running(struct k_work *work) { struct k_work_delayable *dwork = k_work_delayable_from_work(work); struct state_1cpu_basic_schedule_running *state = CONTAINER_OF(dwork, struct state_1cpu_basic_schedule_running, dwork); /* Co-opt the resubmits so we can test the schedule API * explicitly. */ if (atomic_dec(&resubmits_left) > 0) { /* Schedule again on current queue */ state->schedule_res = k_work_schedule_for_queue(NULL, dwork, K_MSEC(DELAY_MS)); } else { /* Flag that it didn't schedule */ state->schedule_res = -EALREADY; } counter_handler(work); } /* Single CPU test that schedules when running */ ZTEST(work_1cpu, test_1cpu_basic_schedule_running) { int rc; static struct state_1cpu_basic_schedule_running state = { .schedule_res = -1, }; /* Reset state and set for one resubmit. Use a test-specific * handler. */ reset_counters(); atomic_set(&resubmits_left, 1); k_work_init_delayable(&state.dwork, handle_1cpu_basic_schedule_running); zassert_equal(state.schedule_res, -1); rc = k_work_schedule_for_queue(&coophi_queue, &state.dwork, K_MSEC(DELAY_MS)); zassert_equal(rc, 1); zassert_equal(coop_counter(&coophi_queue), 0); /* Wait for completion */ rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); zassert_equal(state.schedule_res, 1); zassert_equal(coop_counter(&coophi_queue), 1); /* Wait for completion */ rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); zassert_equal(state.schedule_res, -EALREADY); zassert_equal(coop_counter(&coophi_queue), 2); } /* Single CPU test schedule without delay is queued immediately. */ ZTEST(work_1cpu, test_1cpu_immed_schedule) { int rc; struct k_work *wp = &dwork.work; /* whitebox testing */ /* Reset state and use the non-blocking handler */ reset_counters(); k_work_init_delayable(&dwork, counter_handler); zassert_equal(k_work_busy_get(wp), 0); /* Submit to the cooperative queue */ rc = k_work_schedule_for_queue(&coophi_queue, &dwork, K_NO_WAIT); zassert_equal(rc, 1); rc = k_work_busy_get(wp); zassert_equal(rc, K_WORK_QUEUED); zassert_equal(k_work_delayable_busy_get(&dwork), rc); zassert_equal(k_work_delayable_is_pending(&dwork), true); /* Scheduling again does nothing. */ rc = k_work_schedule_for_queue(&coophi_queue, &dwork, K_NO_WAIT); zassert_equal(rc, 0); /* Shouldn't have been started since test thread is * cooperative. */ zassert_equal(coophi_counter(), 0); /* Let it run, then check it didn't finish. */ k_sleep(K_TICKS(1)); zassert_equal(coophi_counter(), 1); zassert_equal(k_work_busy_get(wp), 0); /* Flush the sync state from completion */ rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); } /* Single CPU test that delayed work can be rescheduled. */ ZTEST(work_1cpu, test_1cpu_basic_reschedule) { int rc; uint32_t sched_ms; uint32_t max_ms = k_ticks_to_ms_ceil32(1U + k_ms_to_ticks_ceil32(DELAY_MS)); uint32_t elapsed_ms; struct k_work *wp = &dwork.work; /* whitebox testing */ /* Reset state and use non-blocking handler */ reset_counters(); k_work_init_delayable(&dwork, counter_handler); /* Verify that work is idle and marked delayable. */ zassert_equal(k_work_busy_get(wp), 0); zassert_equal(wp->flags & K_WORK_DELAYABLE, K_WORK_DELAYABLE, NULL); /* Schedule to the preempt queue after twice the standard * delay. */ rc = k_work_reschedule_for_queue(&preempt_queue, &dwork, K_MSEC(2U * DELAY_MS)); zassert_equal(rc, 1); zassert_equal(k_work_busy_get(wp), K_WORK_DELAYED); /* Align to tick then reschedule on the cooperative queue for * the standard delay. */ k_sleep(K_TICKS(1)); sched_ms = k_uptime_get_32(); rc = k_work_reschedule_for_queue(&coophi_queue, &dwork, K_MSEC(DELAY_MS)); zassert_equal(rc, 1); zassert_equal(k_work_busy_get(wp), K_WORK_DELAYED); /* Wait for completion */ rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); /* Make sure it ran on the coop queue and is now idle */ zassert_equal(coophi_counter(), 1); zassert_equal(k_work_busy_get(wp), 0); /* Check that the delay is within the expected range. */ elapsed_ms = last_handle_ms - sched_ms; zassert_true(elapsed_ms >= DELAY_MS, "short %u < %u\n", elapsed_ms, DELAY_MS); zassert_true(elapsed_ms <= max_ms, "long %u > %u\n", elapsed_ms, max_ms); } /* Single CPU test that delayed work can be immediately queued by * reschedule API. */ ZTEST(work_1cpu, test_1cpu_immed_reschedule) { int rc; struct k_work *wp = &dwork.work; /* whitebox testing */ /* Reset state and use the delay handler */ reset_counters(); k_work_init_delayable(&dwork, delay_handler); zassert_equal(k_work_busy_get(wp), 0); /* Schedule immediately to the cooperative queue */ rc = k_work_reschedule_for_queue(&coophi_queue, &dwork, K_NO_WAIT); zassert_equal(rc, 1); zassert_equal(k_work_busy_get(wp), K_WORK_QUEUED); /* Shouldn't have been started since test thread is * cooperative. */ zassert_equal(coophi_counter(), 0); /* Let it run, then check it didn't finish. */ k_sleep(K_TICKS(1)); zassert_equal(coophi_counter(), 0); zassert_equal(k_work_busy_get(wp), K_WORK_RUNNING); /* Schedule immediately to the preemptive queue (will divert * to coop since running). */ rc = k_work_reschedule_for_queue(&preempt_queue, &dwork, K_NO_WAIT); zassert_equal(rc, 2); zassert_equal(k_work_busy_get(wp), K_WORK_QUEUED | K_WORK_RUNNING, NULL); /* Schedule after 3x the delay to the preemptive queue * (will not divert since previous submissions will have * completed). */ rc = k_work_reschedule_for_queue(&preempt_queue, &dwork, K_MSEC(3 * DELAY_MS)); zassert_equal(rc, 1); zassert_equal(k_work_busy_get(wp), K_WORK_DELAYED | K_WORK_QUEUED | K_WORK_RUNNING, NULL); /* Wait for the original no-wait submission (total 1 delay)) */ rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); /* Check that coop ran once, and work is still delayed and * also running. */ zassert_equal(coophi_counter(), 1); zassert_equal(k_work_busy_get(wp), K_WORK_DELAYED | K_WORK_RUNNING, NULL); /* Wait for the queued no-wait submission (total 2 delay) */ rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); /* Check that got diverted to coop and ran, and work is still * delayed. */ zassert_equal(coophi_counter(), 2); zassert_equal(preempt_counter(), 0); zassert_equal(k_work_busy_get(wp), K_WORK_DELAYED, NULL); /* Wait for the delayed submission (total 3 delay) */ rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); /* Check that ran on preempt. In fact we're here because the * test thread is higher priority, so the work will still be * marked running. */ zassert_equal(coophi_counter(), 2); zassert_equal(preempt_counter(), 1); zassert_equal(k_work_busy_get(wp), K_WORK_RUNNING, NULL); /* Wait for preempt to drain */ rc = k_work_queue_drain(&preempt_queue, false); zassert_equal(rc, 1); } /* Test no-yield behavior, returns true iff work queue priority is * higher than test thread priority */ static bool try_queue_no_yield(struct k_work_q *wq) { int rc; bool is_high = (k_thread_priority_get(k_work_queue_thread_get(wq)) < k_thread_priority_get(k_current_get())); TC_PRINT("Testing no-yield on %s-priority queue\n", is_high ? "high" : "low"); reset_counters(); /* Submit two work items directly to the cooperative queue. */ k_work_init(&work, counter_handler); k_work_init_delayable(&dwork, counter_handler); rc = k_work_submit_to_queue(wq, &work); zassert_equal(rc, 1); rc = k_work_schedule_for_queue(wq, &dwork, K_NO_WAIT); zassert_equal(rc, 1); /* Wait for completion */ zassert_equal(k_work_is_pending(&work), true); zassert_equal(k_work_delayable_is_pending(&dwork), true); rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); /* Because there was no yield both should have run, and * another yield won't cause anything to happen. */ zassert_equal(coop_counter(wq), 2); zassert_equal(k_work_is_pending(&work), false); zassert_equal(k_work_delayable_is_pending(&dwork), false); /* The first give unblocked this thread; we need to consume * the give from the second work task. */ zassert_equal(k_sem_take(&sync_sem, K_NO_WAIT), 0); zassert_equal(k_sem_take(&sync_sem, K_NO_WAIT), -EBUSY); return is_high; } /* Verify that no-yield policy works */ ZTEST(work_1cpu, test_1cpu_queue_no_yield) { /* This test needs two slots available in the sem! */ k_sem_init(&sync_sem, 0, 2); zassert_equal(try_queue_no_yield(&coophi_queue), true); zassert_equal(try_queue_no_yield(&cooplo_queue), false); k_sem_init(&sync_sem, 0, 1); } /* Basic functionality with the system work queue. */ ZTEST(work_1cpu, test_1cpu_system_queue) { int rc; /* Reset state and use the non-blocking handler */ reset_counters(); k_work_init(&work, counter_handler); zassert_equal(k_work_busy_get(&work), 0); /* Submit to the system queue */ rc = k_work_submit(&work); zassert_equal(rc, 1); zassert_equal(k_work_busy_get(&work), K_WORK_QUEUED); /* Shouldn't have been started since test thread is * cooperative. */ zassert_equal(system_counter(), 0); /* Let it run, then check it didn't finish. */ k_sleep(K_TICKS(1)); zassert_equal(system_counter(), 1); zassert_equal(k_work_busy_get(&work), 0); /* Flush the sync state from completion */ rc = k_sem_take(&sync_sem, K_NO_WAIT); zassert_equal(rc, 0); } ZTEST(work_1cpu, test_1cpu_system_schedule) { int rc; uint32_t sched_ms; uint32_t max_ms = k_ticks_to_ms_ceil32(1U + k_ms_to_ticks_ceil32(DELAY_MS)); uint32_t elapsed_ms; /* Reset state and use non-blocking handler */ reset_counters(); k_work_init_delayable(&dwork, counter_handler); /* Verify that work is idle and marked delayable. */ zassert_equal(k_work_delayable_busy_get(&dwork), 0); zassert_equal(dwork.work.flags & K_WORK_DELAYABLE, K_WORK_DELAYABLE, NULL); /* Align to tick, then schedule after normal delay. */ k_sleep(K_TICKS(1)); sched_ms = k_uptime_get_32(); rc = k_work_schedule(&dwork, K_MSEC(DELAY_MS)); zassert_equal(rc, 1); zassert_equal(k_work_delayable_busy_get(&dwork), K_WORK_DELAYED); /* Scheduling again does nothing. */ rc = k_work_schedule(&dwork, K_NO_WAIT); zassert_equal(rc, 0); /* Wait for completion */ rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); /* Make sure it ran and is now idle */ zassert_equal(system_counter(), 1); zassert_equal(k_work_delayable_busy_get(&dwork), 0); /* Check that the delay is within the expected range. */ elapsed_ms = last_handle_ms - sched_ms; zassert_true(elapsed_ms >= DELAY_MS, "short %u < %u\n", elapsed_ms, DELAY_MS); zassert_true(elapsed_ms <= max_ms, "long %u > %u\n", elapsed_ms, max_ms); } ZTEST(work_1cpu, test_1cpu_system_reschedule) { int rc; uint32_t sched_ms; uint32_t max_ms = k_ticks_to_ms_ceil32(1U + k_ms_to_ticks_ceil32(DELAY_MS)); uint32_t elapsed_ms; /* Reset state and use non-blocking handler */ reset_counters(); k_work_init_delayable(&dwork, counter_handler); /* Verify that work is idle and marked delayable. */ zassert_equal(k_work_delayable_busy_get(&dwork), 0); zassert_equal(dwork.work.flags & K_WORK_DELAYABLE, K_WORK_DELAYABLE, NULL); /* Schedule to the preempt queue after twice the standard * delay. */ rc = k_work_reschedule(&dwork, K_MSEC(2U * DELAY_MS)); zassert_equal(rc, 1); zassert_equal(k_work_delayable_busy_get(&dwork), K_WORK_DELAYED); /* Align to tick then reschedule on the system queue for * the standard delay. */ k_sleep(K_TICKS(1)); sched_ms = k_uptime_get_32(); rc = k_work_reschedule(&dwork, K_MSEC(DELAY_MS)); zassert_equal(rc, 1); zassert_equal(k_work_delayable_busy_get(&dwork), K_WORK_DELAYED); /* Wait for completion */ rc = k_sem_take(&sync_sem, K_FOREVER); zassert_equal(rc, 0); /* Make sure it ran on the system queue and is now idle */ zassert_equal(system_counter(), 1); zassert_equal(k_work_delayable_busy_get(&dwork), 0); /* Check that the delay is within the expected range. */ elapsed_ms = last_handle_ms - sched_ms; zassert_true(elapsed_ms >= DELAY_MS, "short %u < %u\n", elapsed_ms, DELAY_MS); zassert_true(elapsed_ms <= max_ms, "long %u > %u\n", elapsed_ms, max_ms); } ZTEST(work, test_nop) { ztest_test_skip(); } void *workq_setup(void) { main_thread = k_current_get(); k_sem_init(&sync_sem, 0, 1); k_sem_init(&rel_sem, 0, 1); test_work_init(); test_delayable_init(); if (run_flag) { test_queue_start(); run_flag = false; } return NULL; } ZTEST_SUITE(work_1cpu, NULL, workq_setup, ztest_simple_1cpu_before, ztest_simple_1cpu_after, NULL); ZTEST_SUITE(work, NULL, workq_setup, NULL, NULL, NULL); |