Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | /* * Copyright (c) 2017 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * * @brief Offload to the Kernel workqueue * * This test verifies that the kernel workqueue operates as * expected. * * This test has two threads that increment a counter. The routine that * increments the counter is invoked from workqueue due to the two threads * calling using it. The final result of the counter is expected * to be the the number of times work item was called to increment * the counter. * * This is done with time slicing both disabled and enabled to ensure that the * result always matches the number of times the workqueue is called. * * @{ * @} */ #include <zephyr/kernel.h> #include <zephyr/linker/sections.h> #include <zephyr/ztest.h> #define NUM_MILLISECONDS 50 #define TEST_TIMEOUT 200 #ifdef CONFIG_COVERAGE #define OFFLOAD_WORKQUEUE_STACK_SIZE 4096 #else #define OFFLOAD_WORKQUEUE_STACK_SIZE 1024 #endif static uint32_t critical_var; static uint32_t alt_thread_iterations; static struct k_work_q offload_work_q; static K_THREAD_STACK_DEFINE(offload_work_q_stack, OFFLOAD_WORKQUEUE_STACK_SIZE); #define STACK_SIZE (1024 + CONFIG_TEST_EXTRA_STACK_SIZE) static K_THREAD_STACK_DEFINE(stack1, STACK_SIZE); static K_THREAD_STACK_DEFINE(stack2, STACK_SIZE); static struct k_thread thread1; static struct k_thread thread2; K_SEM_DEFINE(ALT_SEM, 0, UINT_MAX); K_SEM_DEFINE(REGRESS_SEM, 0, UINT_MAX); K_SEM_DEFINE(TEST_SEM, 0, UINT_MAX); /** * @brief Routine to be called from a workqueue * * This routine increments the global variable @a critical_var. */ void critical_rtn(struct k_work *unused) { volatile uint32_t x; ARG_UNUSED(unused); x = critical_var; critical_var = x + 1; } /** * @brief Common code for invoking work * * @param tag text identifying the invocation context * @param count number of critical section calls made thus far * * @return number of critical section calls made by a thread */ uint32_t critical_loop(const char *tag, uint32_t count) { int64_t now; int64_t last; int64_t mseconds; last = mseconds = k_uptime_get(); TC_PRINT("Start %s at %u\n", tag, (uint32_t)last); while (((now = k_uptime_get())) < mseconds + NUM_MILLISECONDS) { struct k_work work_item; if (now < last) { TC_PRINT("Time went backwards: %u < %u\n", (uint32_t)now, (uint32_t)last); } last = now; k_work_init(&work_item, critical_rtn); k_work_submit_to_queue(&offload_work_q, &work_item); count++; Z_SPIN_DELAY(50); } TC_PRINT("End %s at %u\n", tag, (uint32_t)now); return count; } /** * @brief Alternate thread * * This routine invokes the workqueue many times. */ void alternate_thread(void *arg1, void *arg2, void *arg3) { ARG_UNUSED(arg1); ARG_UNUSED(arg2); ARG_UNUSED(arg3); k_sem_take(&ALT_SEM, K_FOREVER); /* Wait to be activated */ alt_thread_iterations = critical_loop("alt1", alt_thread_iterations); k_sem_give(®RESS_SEM); k_sem_take(&ALT_SEM, K_FOREVER); /* Wait to be re-activated */ alt_thread_iterations = critical_loop("alt2", alt_thread_iterations); k_sem_give(®RESS_SEM); } /** * @brief Regression thread * * This routine invokes the workqueue many times. It also checks to * ensure that the number of times it is called matches the global variable * @a critical_var. */ void regression_thread(void *arg1, void *arg2, void *arg3) { uint32_t ncalls = 0U; ARG_UNUSED(arg1); ARG_UNUSED(arg2); ARG_UNUSED(arg3); k_sem_give(&ALT_SEM); /* Activate alternate_thread() */ ncalls = critical_loop("reg1", ncalls); /* Wait for alternate_thread() to complete */ zassert_true(k_sem_take(®RESS_SEM, K_MSEC(TEST_TIMEOUT)) == 0, "Timed out waiting for REGRESS_SEM"); zassert_equal(critical_var, ncalls + alt_thread_iterations, "Unexpected value for <critical_var>"); TC_PRINT("Enable timeslicing at %u\n", k_uptime_get_32()); k_sched_time_slice_set(20, 10); k_sem_give(&ALT_SEM); /* Re-activate alternate_thread() */ ncalls = critical_loop("reg2", ncalls); /* Wait for alternate_thread() to finish */ zassert_true(k_sem_take(®RESS_SEM, K_MSEC(TEST_TIMEOUT)) == 0, "Timed out waiting for REGRESS_SEM"); zassert_equal(critical_var, ncalls + alt_thread_iterations, "Unexpected value for <critical_var>"); k_sem_give(&TEST_SEM); } /** * @brief Verify thread context * * @details Check whether variable value per-thread is saved * during context switch * * @ingroup kernel_workqueue_tests */ ZTEST(kernel_offload_wq, test_offload_workqueue) { critical_var = 0U; alt_thread_iterations = 0U; k_work_queue_start(&offload_work_q, offload_work_q_stack, K_THREAD_STACK_SIZEOF(offload_work_q_stack), CONFIG_MAIN_THREAD_PRIORITY, NULL); k_thread_create(&thread1, stack1, STACK_SIZE, alternate_thread, NULL, NULL, NULL, K_PRIO_PREEMPT(12), 0, K_NO_WAIT); k_thread_create(&thread2, stack2, STACK_SIZE, regression_thread, NULL, NULL, NULL, K_PRIO_PREEMPT(12), 0, K_NO_WAIT); zassert_true(k_sem_take(&TEST_SEM, K_MSEC(TEST_TIMEOUT * 2)) == 0, "Timed out waiting for TEST_SEM"); } ZTEST_SUITE(kernel_offload_wq, NULL, NULL, ztest_simple_1cpu_before, ztest_simple_1cpu_after, NULL); |