Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/*
 * Copyright (c) 2022 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr/ztest.h>

#define HELPER_STACK_SIZE 500

/**
 * @brief Verify @a va1 and @a val2 are within @a pcnt % of each other
 */
#define TEST_WITHIN_X_PERCENT(val1, val2, pcnt)                       \
	((((val1) * 100) < ((val2) * (100 + (pcnt)))) &&              \
	 (((val1) * 100) > ((val2) * (100 - (pcnt))))) ? true : false

#if defined(CONFIG_RISCV)
#define IDLE_EVENT_STATS_PRECISION 7
#else
#define IDLE_EVENT_STATS_PRECISION 1
#endif

static struct k_thread helper_thread;
static K_THREAD_STACK_DEFINE(helper_stack, HELPER_STACK_SIZE);

static struct k_thread *main_thread;

/**
 * @brief Helper thread to test_thread_runtime_stats_get()
 */
void helper1(void *p1, void *p2, void *p3)
{
	while (1) {
	}
}

/**
 * @brief Busy wait for specified number of ticks
 */
void busy_loop(uint32_t ticks)
{
	uint32_t  tick = sys_clock_tick_get_32();

	while (sys_clock_tick_get_32() < (tick + ticks)) {
	}
}

/**
 * @brief Test the k_threads_runtime_stats_all_get() API
 *
 * 1. Create a helper thread.
 * 2. Busy loop for 2 ticks.
 *    - Idle time should not increase.
 * 3. Sleep for two ticks. Helper executes and busy loops.
 *    - Idle time should not increase
 * 4. Kill helper thread, and sleep for 2 ticks
 *    - Idle time should increase
 * 5. Busy loop for 3 ticks
 *    - Idle time should not increase
 *    - current, peak and average cycles should be different
 */
ZTEST(usage_api, test_all_stats_usage)
{
	int  priority;
	k_tid_t  tid;
	k_thread_runtime_stats_t  stats1;
	k_thread_runtime_stats_t  stats2;
	k_thread_runtime_stats_t  stats3;
	k_thread_runtime_stats_t  stats4;
	k_thread_runtime_stats_t  stats5;

	priority = k_thread_priority_get(_current);
	tid = k_thread_create(&helper_thread, helper_stack,
			      K_THREAD_STACK_SIZEOF(helper_stack),
			      helper1, NULL, NULL, NULL,
			      priority + 2, 0, K_NO_WAIT);

	k_thread_runtime_stats_all_get(&stats1);

	busy_loop(2);   /* Busy wait 2 ticks */

	k_thread_runtime_stats_all_get(&stats2);

	k_sleep(K_TICKS(2));  /* Helper runs for 2 ticks */

	k_thread_runtime_stats_all_get(&stats3);

	k_thread_abort(tid);

	k_sleep(K_TICKS(2));  /* Idle for 2 ticks */

	k_thread_runtime_stats_all_get(&stats4);

	busy_loop(3);   /* Busy wait for 3 ticks */

	k_thread_runtime_stats_all_get(&stats5);

	/*
	 * Verify that before the system idles for 2 ticks that
	 * [execution_cycles] is increasing, [total_cycles] matches
	 * [execution_cycles] and [idle_cycles] is not changing (as the
	 * system has been idle yet.
	 */

	zassert_true(stats2.execution_cycles > stats1.execution_cycles);
	zassert_true(stats3.execution_cycles > stats2.execution_cycles);
	zassert_true(stats1.execution_cycles == stats1.total_cycles);
	zassert_true(stats2.execution_cycles == stats2.total_cycles);
	zassert_true(stats3.execution_cycles == stats3.total_cycles);
#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
	zassert_true(stats1.idle_cycles == stats2.idle_cycles);
	zassert_true(stats1.idle_cycles == stats3.idle_cycles);
#endif

#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS

	/*
	 * The analysis fields should behave as follows prior to the system
	 * going idle.
	 * 1. [current_cycles] increases.
	 * 2. [peak_cycles] matches [current_cycles].
	 * 3. [average_cycles] is 0 (because system has not gone idle yet)
	 * 4. [current_cycles] matches [execution_cycles].
	 */

	zassert_true(stats2.current_cycles > stats1.current_cycles);
	zassert_true(stats3.current_cycles > stats2.current_cycles);

	zassert_true(stats1.peak_cycles == stats1.current_cycles);
	zassert_true(stats2.peak_cycles == stats2.current_cycles);
	zassert_true(stats3.peak_cycles == stats3.current_cycles);

	zassert_true(stats1.average_cycles == 0);
	zassert_true(stats2.average_cycles == 0);
	zassert_true(stats3.average_cycles == 0);

	zassert_true(stats1.current_cycles == stats1.execution_cycles);
	zassert_true(stats2.current_cycles == stats2.execution_cycles);
	zassert_true(stats3.current_cycles == stats3.execution_cycles);
#endif

	/*
	 * Now process the statistics after the idle event.
	 *
	 * 1. [execution_cycles] continues to increase
	 * 2. [total_cycles] increases
	 * 3. [current_cycles] had a reset event but still increases
	 * 4. [peak_cycles] does not change
	 * 5. [average_cycles] increases
	 * 6. [idle_cycles] increased once.
	 */

	zassert_true(stats4.execution_cycles > stats3.execution_cycles);
	zassert_true(stats5.execution_cycles > stats4.execution_cycles);

	/*
	 * If the frequency is low enough, the [total_cycles] might not
	 * increase between sample points 3 and 4. Count this as acceptable.
	 */

	zassert_true(stats4.total_cycles >= stats3.total_cycles);
	zassert_true(stats5.total_cycles > stats4.total_cycles);

#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
	zassert_true(stats4.current_cycles <= stats1.current_cycles);
	zassert_true(stats5.current_cycles > stats4.current_cycles);

	zassert_true(TEST_WITHIN_X_PERCENT(stats4.peak_cycles,
					   stats3.peak_cycles, IDLE_EVENT_STATS_PRECISION), NULL);
	zassert_true(stats4.peak_cycles == stats5.peak_cycles);

	zassert_true(stats4.average_cycles > stats3.average_cycles);
	zassert_true(stats5.average_cycles > stats4.average_cycles);
#endif

#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
	zassert_true(stats4.idle_cycles > stats3.idle_cycles);
	zassert_true(stats4.idle_cycles == stats5.idle_cycles);
#endif
}

#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
/**
 * @brief Test the k_thread_runtime_stats_enable/disable APIs
 */
ZTEST(usage_api, test_thread_stats_enable_disable)
{
	k_tid_t  tid;
	k_thread_runtime_stats_t  stats1;
	k_thread_runtime_stats_t  stats2;
	k_thread_runtime_stats_t  helper_stats1;
	k_thread_runtime_stats_t  helper_stats2;
	k_thread_runtime_stats_t  helper_stats3;
	int  priority;

	priority = k_thread_priority_get(_current);
	tid = k_thread_create(&helper_thread, helper_stack,
			      K_THREAD_STACK_SIZEOF(helper_stack),
			      helper1, NULL, NULL, NULL,
			      priority + 2, 0, K_NO_WAIT);

	/*
	 * Sleep to let the helper thread execute for some time before
	 * disabling the runtime stats on the helper thread.
	 */

	k_sleep(K_TICKS(5));

	k_thread_runtime_stats_get(_current, &stats1);
	k_thread_runtime_stats_get(tid, &helper_stats1);
	k_thread_runtime_stats_disable(tid);

	/*
	 * Busy wait for the remaining tick before re-enabling the thread
	 * runtime stats on the helper thread.
	 */

	busy_loop(1);

	/* Sleep for two ticks to let the helper thread execute. */

	k_sleep(K_TICKS(2));

	k_thread_runtime_stats_enable(tid);
	k_thread_runtime_stats_get(_current, &stats2);
	k_thread_runtime_stats_get(tid, &helper_stats2);

	/* Sleep for two ticks to let the helper thread execute again. */

	k_sleep(K_TICKS(2));

	k_thread_runtime_stats_get(tid, &helper_stats3);

	/*
	 * Verify that the between sample sets 1 and 2 that additional stats
	 * were not gathered for the helper thread, but were gathered for the
	 * main current thread.
	 */

	zassert_true(helper_stats1.execution_cycles ==
		     helper_stats2.execution_cycles, NULL);
	zassert_true(stats1.execution_cycles < stats2.execution_cycles);

	/*
	 * Verify that between sample sets 2 and 3 that additional stats were
	 * gathered for the helper thread.
	 */

	zassert_true(helper_stats2.execution_cycles <
		     helper_stats3.execution_cycles, NULL);

	k_thread_abort(tid);
}
#else
ZTEST(usage_api, test_thread_stats_enable_disable)
{
}
#endif

#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
/**
 * @brief Test the k_sys_runtime_stats_enable/disable APIs
 */
ZTEST(usage_api, test_sys_stats_enable_disable)
{
	k_thread_runtime_stats_t  sys_stats1;
	k_thread_runtime_stats_t  sys_stats2;
	k_thread_runtime_stats_t  sys_stats3;
	k_thread_runtime_stats_t  thread_stats1;
	k_thread_runtime_stats_t  thread_stats2;
	k_thread_runtime_stats_t  thread_stats3;

	/*
	 * Disable system runtime stats gathering.
	 * This should not impact thread runtime stats gathering.
	 */

	k_sys_runtime_stats_disable();

	k_thread_runtime_stats_get(_current, &thread_stats1);
	k_thread_runtime_stats_all_get(&sys_stats1);

	busy_loop(2);

	k_thread_runtime_stats_get(_current, &thread_stats2);
	k_thread_runtime_stats_all_get(&sys_stats2);

	/*
	 * Enable system runtime stats gathering.
	 * This should not impact thread runtime stats gathering.
	 */

	k_sys_runtime_stats_enable();

	busy_loop(2);

	k_thread_runtime_stats_get(_current, &thread_stats3);
	k_thread_runtime_stats_all_get(&sys_stats3);

	/*
	 * There ought to be no differences between sys_stat1 and sys_stat2.
	 * Although a memory compare of the two structures would be sufficient,
	 * each individual field is being tested in case to more easily
	 * isolate the cause of any error.
	 */

	zassert_true(sys_stats1.execution_cycles == sys_stats2.execution_cycles,
		     NULL);
	zassert_true(sys_stats1.total_cycles == sys_stats2.total_cycles);

#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
	zassert_true(sys_stats1.current_cycles == sys_stats2.current_cycles,
		     NULL);
	zassert_true(sys_stats1.peak_cycles == sys_stats2.peak_cycles);
	zassert_true(sys_stats1.average_cycles == sys_stats2.average_cycles,
		     NULL);
#endif

#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
	zassert_true(sys_stats1.idle_cycles == sys_stats2.idle_cycles);
#endif

	/*
	 * As only system stats have been disabled, thread stats should be
	 * unaffected. To simplify things, just check [execution_cycles] and
	 * [current_cycles] (if enabled).
	 */

	zassert_true(thread_stats1.execution_cycles <
		     thread_stats2.execution_cycles, NULL);

#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
	zassert_true(thread_stats1.current_cycles <
		     thread_stats2.current_cycles, NULL);
#endif

	/*
	 * Now verify that the enabling of system runtime stats gathering
	 * has resulted in the gathering of system runtime stats. Again,
	 * thread runtime stats gathering should be unaffected.
	 */

	zassert_true(sys_stats2.execution_cycles < sys_stats3.execution_cycles,
		     NULL);
	zassert_true(sys_stats2.total_cycles < sys_stats3.total_cycles);

#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS

	/*
	 * As enabling reset [current_cycles], it is not easy to predict
	 * what its value should be. For now, settle for ensuring that it
	 * is different and not zero.
	 */

	zassert_true(sys_stats2.current_cycles != sys_stats3.current_cycles,
		     NULL);
	zassert_true(sys_stats2.current_cycles != 0);
	zassert_true(sys_stats2.peak_cycles == sys_stats3.peak_cycles);
	zassert_true(sys_stats2.average_cycles > sys_stats3.average_cycles,
		     NULL);
#endif

#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
	zassert_true(sys_stats2.idle_cycles == sys_stats3.idle_cycles);
#endif
}
#else
ZTEST(usage_api, test_sys_stats_enable_disable)
{
}
#endif

/**
 * @brief Timer handler to resume the main thread
 */
void resume_main(struct k_timer *timer)
{
	k_thread_resume(main_thread);
}

/**
 * @brief Test the k_thread_runtime_stats_get() API
 *
 * This routine tests the k_thread_runtime_stats_get() routine. It verifies
 * that the contents of the fields guarded by CONFIG_SCHED_THREAD_USAGE
 * are correct.
 */
ZTEST(usage_api, test_thread_stats_usage)
{
	k_tid_t  tid;
	int  priority;
	int  status;
	struct k_timer   timer;
	k_thread_runtime_stats_t  stats1;
	k_thread_runtime_stats_t  stats2;
	k_thread_runtime_stats_t  stats3;

	priority = k_thread_priority_get(_current);

	/*
	 * Verify that k_thread_runtime_stats_get() returns the expected
	 * values for error cases.
	 */

	status = k_thread_runtime_stats_get(NULL, &stats1);
	zassert_true(status == -EINVAL);

	status = k_thread_runtime_stats_get(_current, NULL);
	zassert_true(status == -EINVAL);

	/* Align to the next tick */

	k_sleep(K_TICKS(1));

	/* Create a low priority helper thread to start in 1 tick. */

	tid = k_thread_create(&helper_thread, helper_stack,
			      K_THREAD_STACK_SIZEOF(helper_stack),
			      helper1, NULL, NULL, NULL,
			      priority + 2, 0, K_TICKS(1));

	main_thread = _current;
	k_timer_init(&timer, resume_main, NULL);
	k_timer_start(&timer, K_TICKS(1), K_TICKS(10));

	/* Verify thread creation succeeded */

	zassert_true(tid == &helper_thread);

	/* Get a valid set of thread runtime stats */

	status = k_thread_runtime_stats_get(tid, &stats1);
	zassert_true(status == 0);

	/*
	 * Suspend main thread. Timer will wake it 1 tick to sample
	 * the helper threads runtime stats.
	 */

	k_thread_suspend(_current);

	/*
	 * T = 1.
	 * Timer woke the main thread. Sample runtime stats for helper thread
	 * before suspending.
	 */

	k_thread_runtime_stats_get(tid, &stats1);
	k_thread_suspend(_current);

	/*
	 * T = 11.
	 * Timer woke the main thread. Suspend main thread again.
	 */

	k_thread_suspend(_current);

	/*
	 * T = 21.
	 * Timer woke the main thread. Sample runtime stats for helper thread
	 * before suspending.
	 */

	k_thread_runtime_stats_get(tid, &stats2);
	k_thread_suspend(_current);

	/*
	 * T = 31.
	 * Timer woke the main thread. Sample runtime stats for helper thread
	 * and stop the timer.
	 */

	k_thread_runtime_stats_get(tid, &stats3);
	k_timer_stop(&timer);

#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
	k_thread_runtime_stats_t  stats4;
	k_thread_runtime_stats_t  stats5;

	/*
	 * Sleep for 20 ticks, and then 1 tick. This will allow the helper
	 * thread to have two different scheduled execution windows.
	 */

	k_sleep(K_TICKS(20));
	k_thread_runtime_stats_get(tid, &stats4);

	k_sleep(K_TICKS(1));
	k_thread_runtime_stats_get(tid, &stats5);
#endif

	/* Verify execution_cycles are identical to total_cycles */

	zassert_true(stats1.execution_cycles == stats1.total_cycles);
	zassert_true(stats2.execution_cycles == stats2.total_cycles);

#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
	zassert_true(stats3.idle_cycles == 0);
#endif

	/*
	 * Verify that the time for which the helper thread executed between
	 * the first and second samplings is more than that between the
	 * second and third.
	 */

	uint64_t  diff12;
	uint64_t  diff23;

	diff12 = stats2.execution_cycles - stats1.execution_cycles;
	diff23 = stats3.execution_cycles - stats2.execution_cycles;

	zassert_true(diff12 > diff23);

#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS

	/* Verify that [current_cycles] change as expected. */

	zassert_true(stats4.current_cycles >= stats5.current_cycles);
	zassert_true(stats4.current_cycles > stats3.current_cycles);
	zassert_true(stats5.current_cycles < stats3.current_cycles);

	/* Verify that [peak_cycles] change as expected */

	zassert_true(stats4.peak_cycles > stats2.peak_cycles);
	zassert_true(stats4.peak_cycles == stats5.peak_cycles);
	zassert_true(stats4.peak_cycles == stats4.current_cycles);

	/* Verify that [average_cycles] change as expected */

	zassert_true(stats4.average_cycles > stats3.average_cycles);
	zassert_true(stats4.average_cycles > stats5.average_cycles);
	zassert_true(stats5.average_cycles >= stats3.average_cycles);
#endif

	/* Abort the helper thread */

	k_thread_abort(tid);
}

ZTEST_SUITE(usage_api, NULL, NULL,
		ztest_simple_1cpu_before, ztest_simple_1cpu_after, NULL);